Аэс подрядчики. Россия занимает первое место в мире по строительству атомных электростанций за рубежом

Строительство АЭС.

Выбор площадки

Одним из основных требований при оценке возможности строительства АЭС является обеспечение безопасности её эксплуатации для окружающего населения, которая регламентируется нормами радиационной безопасности. Одним из мероприятий защиты окружающей среды — территории и населения от вредных воздействий при эксплуатации АЭС является организация вокруг неё санитарно-защитной зоны. При выборе места строительства АЭС должна учитываться возможность создания санитарно-защитной зоны, определяемой кругом, центром которого является вентиляционная труба АЭС. В санитарно-защитной зоне запрещается проживать населению. Особое внимание должно быть обращено на исследование ветровых режимов в районе строительства АЭС с тем, чтобы располагать атомную электростанцию с подветренной стороны по отношению к населённым пунктам. Исходя из возможности аварийной протечки активных жидкостей, предпочтение отдается площадкам с глубоким стоянием грунтовых вод.
При выборе площадки для строительства атомной электростанции большое значение имеет техническое водоснабжение. Атомная электростанция — крупный водопользователь. Потребление воды АЭС незначительно, а использование воды велико, то есть в основном вода возвращается в источник водоснабжения. К АЭС, так же как и ко всем строящимся промышленным сооружениям, предъявляются требования по сохранению окружающей среды При выборе площадки для строительства атомной электростанции необходимо руководствоваться следующими требованиями:

  • земли, отводимые для сооружения АЭС, непригодны или малопригодны для сельскохозяйственного производства;
  • площадка строительства располагается у водоёмов и рек, на прибрежных незатапливаемых паводковыми водами территориях;
  • грунты площадки допускают строительство зданий и сооружений без проведения дополнительных дорогостоящих мероприятий;
  • уровень грунтовых вод находится ниже глубины заложения подвалов зданий и подземных инженерных коммуникаций и на водопонижение при строительстве АЭС не требуется дополнительных затрат;
  • площадка имеет относительно ровную поверхность с уклоном, обеспечивающим поверхностный водоотвод, при этом земляные работы сведены к минимуму.

Площадки строительства АЭС, как правило, не допускается располагать:

  • в зонах активного карста;
  • в районах тяжёлых (массовых) оползней и селевых потоков;
  • в районах возможного действия снежных лавин;
  • в районах заболоченных и переувлажнённых с постоянным притоком напорных грунтовых вод,
  • в зонах крупных провалов в результате горных выработок;
  • в районах, подверженных воздействию катастрофических явлений, как цунами, землетрясение и т. п.
  • в районах залегания полезных ископаемых;

Для определения возможности строительства АЭС в намеченных районах и сравнения вариантов по геологическим, топографическим и гидрометеорологическим условиям на стадии выбора площадки проводятся конкретные изыскания по каждому рассматриваемому варианту размещения электростанции.
Инженерно-геологические изыскания проводятся в два этапа. На первом этапе собираются материалы по ранее проведённым изысканиям в рассматриваемом районе и определяется степень изученности предполагаемого места строительства. На втором этапе в случае необходимости проводятся специальные инженерно-геологические изыскания с бурением скважин и отбором грунтов, а также рекогносцировочное геологическое обследование площадки. По результатам камеральной обработки собранных данных и дополнительных изысканий должна быть получена инженерно-геологические характеристика района строительства, определяющая:

  • рельеф и геоморфологию территории;
  • стратиграфию, мощность и литологический состав коренных и четвертичных отложений, распространённых в районе до глубины 50—100 м;
  • количество, характер, отметку залегания и условия распространения отдельных водоносных горизонтов в пределах общей глубины;
  • характер и интенсивность физико-геологических процессов и явлений.

При проведении инженерно-геологических изысканий на стадии выбора площадки собираются сведения о наличии местных строительных материалов — разрабатываемых карьерах и месторождениях камня, песка, гравия и других строительных материалов. В этот же период определяются возможности использования подземных вод для технологического и хозяйственно-питьевого водоснабжения. При проектировании атомных электростанций, так же как и других крупных промышленных комплексов, выполняются ситуационные планы строительства, схемы генеральных планов и генеральные планы промышленной площадки АЭС.

Объёмно-планировочные решения зданий

Целью проектирования атомных электростанций является создание наиболее рационального проекта. Основные требования, которым должны отвечать здания АЭС:

  • удобство для выполнения основного технологического процесса, для которого предназначены (функциональная целесообразность здания);
  • надежность при воздействии окружающей среды, прочность и долговечность (техническая целесообразность здания);
  • экономичность, но не в ущерб долговечности (экономическая целесообразность).
  • эстетичность (архитектурно-художественная целесообразность);

Компоновку АЭС создает коллектив проектировщиков разных специальностей.

Строительные конструкции зданий и сооружений

В состав атомной электростанции входят здания и сооружения различного назначения и соответственно различного конструктивного выполнения. Это — многоэтажное и многопролетное здание главного корпуса с массивными конструкциями из предварительно-напряжённого железобетона, ограждающими радиоактивный контур; отдельно стоящие здания вспомогательных систем, например химводоочистка, дизель-генераторная, азотная станция, обычно выполненных в сборных железобетонных типовых конструкциях; подземные каналы и туннели, проходные и непроходные для размещения кабельных потоков и трубопроводов связи между системами; надземные эстакады, соединяющие между собой главный корпус и вспомогательные здания и сооружения, а также здания административного санитарно-бытового корпуса. Наиболее сложным и ответственным зданием атомной электростанции является главный корпус, который представляет собой систему сооружений, образованных в общем случае каркасными строительными конструкциями и массивами реакторного отделения.

Особенности инженерного оборудования

Особенностью АЭС, как и любых зданий ядерных установок, является наличие в процессе эксплуатации ионизирующих излучений. Этот главный отличительный фактор необходимо учитывать при проектировании. Основным источником излучений на АЭС является ядерный реактор, в котором происходит реакция деления ядер горючего. Эта реакция сопровождается всеми известными видами излучений.

За минувшие четверть века сменилось несколько поколений не только в нашем обществе. Сегодня строятся АЭС нового поколения. Новейшие российские энергоблоки теперь оснащаются только водо-водяными реакторами поколения 3+. Реакторы этого типа можно без преувеличения назвать самыми безопасными. За всё время работы реакторов не было ни одной серьезной аварии. АЭС нового типа по миру в сумме имеют уже больше 1000 лет стабильной и безаварийной деятельности.

Устройство и работа новейшего реактора 3+

Урановое топливо в реакторе заключено в циркониевые трубки, так называемые тепловыделяющие элементы, или ТВЭЛы. Они составляют реактивную зону самого реактора. Когда происходит извлечение из этой зоны поглотительных стержней, то в реакторе нарастает поток нейтронных частиц, а затем начинается самоподдерживающая цепная реакция деления. При этой связи урана освобождается большая энергия, которая разогревает ТВЭЛы. АЭС, оборудованная ВВЭР, работает по двухконтурной схеме. Сначала сквозь реактор проходит чистая вода, которую подали уже очищенной от разных примесей. Далее она проходит непосредственно через активную зону, где охлаждает и омывает собою ТВЭЛы. Такая вода нагревается, ее температура достигает 320 градусов по Цельсию, чтобы она осталась в жидком состоянии, необходимо ее держать под давлением 160 атмосфер! Потом горячая вода следует в парогенератор, отдавая теплоту. А жидкость второго контура после этого вновь проникает в реактор.

Следующие действия идут в соответствии с привычной нам ТЭЦ. Вода, находящаяся во втором контуре, в парогенераторе превращается, естественно, в пар, газообразное состояние воды вращает турбину. Этот механизм заставляет двигаться электрогенератор, вырабатывающий электроток. Сам реактор и парогенератор находится внутри герметичной бетонной оболочки. В генераторе пара вода первого контура, выходящая из реактора, никаким образом не взаимодействует с жидкостью из второго контура, идущей на турбину. Данная схема работы размещения реактора и парогенератора исключают проникновение радиационных отходов за пределы реакторного зала станции.

Об экономии денежных средств

Новая АЭС в России требует на затраты систем безопасности 40 % от общей стоимости самой станции. Основная доля средств закладывается на автоматику и конструкцию энергоблока, а также на оборудование систем безопасности.

В основу обеспечения безопасности в АЭС нового поколения заложен принцип глубокоэшелонированной защиты, основанной на использовании системы из четырех физических барьеров, препятствующих выходу радиоактивных веществ.

Первый барьер

Он представлен в виде прочности самих таблеток с урановым топливом. После так называемого процесса спекания в печи при температуре 1200 градусов таблетки приобретают высокопрочные динамические свойства. Они не разрушается под воздействием высоких температур. Они помещаются в циркониевые трубки, образующие оболочку тепловыделяющих элементов. В один такой тепловыделяющий элемент вводится автоматом более 200 таблеток. Когда они заполняют циркониевую трубку полностью, то робот-автомат вводит пружину, прижимающую их до отказа. Затем автомат откачивает воздух, а потом и вовсе запечатывает ее.

Второй барьер

Представляет собой герметичность оболочки из циркония Оболочка ТВЭЛа выполнена из циркония ядерной чистоты. Она обладает повышенной коррозионной стойкостью, способна сохранять форму при температуре более 1000 градусов. Контроль качества изготовления проводится на всех этапах его производства. В результате многоступенчатых проверок качества возможность разгерметизации тепловыделяющих элементов крайне низка.

Третий барьер

Выполнен он в виде прочного стального корпуса реактора, толщина которого равна 20 см. Он рассчитан на рабочее давление в 160 атмосфер. Корпус реактора обеспечивает предотвращение выхода продуктов деления под защитную оболочку.

Четвертый барьер

Это герметичная защитная оболочка самого реакторного зала, имеющая еще одно название - контаймент. Он состоит всего из двух частей: внутренняя и внешняя оболочки. Внешняя оболочка обеспечивает защиту от всех внешних воздействий как природного, так и техногенного характера. Толщина внешней оболочки - 80 см высокопрочного бетона.

Внутренняя оболочка с толщиной бетонной стены равна 1 метру 20 см. Ее покрывают сплошным стальным 8-миллиметровым листом. Кроме того, ее стяжку усиливают специальные системы тросов, натянутых внутри самой оболочки. Иными словами, это кокон из стали, который стягивает бетон, усиливая его прочность в три раза.

Нюансы защитного покрытия

Внутренняя защитная оболочка АЭС нового поколения выдерживает давление в 7 килограмм на квадратный сантиметр, а также высокую температуру до 200 градусов Цельсия.

Между внутренней и внешней оболочками существует межоболочное пространство. Оно имеет систему фильтрации газов, которые попадают из реакторного отделения. Мощнейшая железобетонная оболочка сохраняет герметичность при землетрясении в 8 баллов. Выдерживает падение самолёта, вес которого рассчитали до 200 тонн, а также позволяет выдержать экстремальные внешние воздействия, такие как смерч и ураганы, при максимальной скорости ветра 56 метров в секунду, вероятность которых возможна один раз в 10 000 лет. А еще такая оболочка защищает от воздушной ударной волны с давлением во фронте до 30 кПа.

Особенность АЭС поколения 3+

Система из четырех физических барьеров глубокоэшелонированной защиты исключает радиоактивные выбросы за пределы энергоблока в случае чрезвычайных ситуаций. Во всех реакторах ВВЭР существуют пассивные и активные системы безопасности, сочетание которых гарантирует решение трех основных задач, возникающих при аварийной ситуации:

  • остановка и прекращение ядерных реакций;
  • обеспечение постоянного отвода тепла от ядерного топлива и самого энергоблока;
  • предотвращение выхода радионуклидов за пределы контаймента в случае аварийных ситуаций.

ВВЭР-1200 в России и мире

Безопасными стали АЭС нового поколения Японии после аварии на АЭС «Фукусима-1». Японцы тогда решили больше не получать энергию при помощи мирного атома. Однако новое правительство вернулось к ядерной энергетике, так как экономика страны понесла большие убытки. Отечественные инженеры с физиками-ядерщиками начали разрабатывать безопасную АЭС нового поколения. В 2006 году мир узнал о новой сверхмощной и безопасной разработке отечественных ученых.

В мае 2016 года завершилась грандиозная стройка в черноземном регионе и успешное окончание тестирования 6-го энергоблока на Нововоронежской АЭС. Новая система работает стабильно и эффективно! Впервые при возведении станции инженеры спроектировали всего одну и самую высокую в мире градирню для охлаждения воды. В то время как ранее строили две градирни на один энергоблок. Благодаря подобным разработкам удалось сэкономить финансовые средства и сохранить технологии. Еще год на станции будут проводиться работы различного характера. Это необходимо для того, чтобы постепенно ввести в эксплуатацию оставшееся оборудование, так как запускать все и сразу нельзя. Впереди у Нововоронежской АЭС - возведение 7-го энергоблока, оно будет длиться еще два года. После этого Воронеж станет единственным регионом, который реализовал такой масштабный проект. Ежегодно Воронеж посещают различные делегации, изучающие Такая отечественная разработка оставила позади Запад и Восток в сфере энергетики. Сегодня различные государства хотят внедрить, а некоторые уже используют такие АЭС.

Новое поколение реакторов трудится на благо Китая в Тяньване. Сегодня строятся такие станции в Индии, Беларуси, Прибалтике. В Российской Федерации внедряют ВВЭР-1200 в Воронеже, Ленинградской области. В планах - возвести подобное сооружение в энергетической отрасли в республике Бангладеш и Турецком государстве. В марте 2017 года стало известно, что Чехия активно сотрудничает с «Росатомом» для постройки такой же станции на своей земле. В России планируют возводить АЭС (новое поколение) в Северске (Томская область), Нижнем Новгороде и Курске.

Расположение: близ г. Неман, Калининградская обл.

Тип реактора: ВВЭР-1200

Энергоблоков: 2

Балтийская АЭС - первый проект сооружения атомной электростанции на территории России , к которому будет допущен частный инвестор. Проект предусматривает использование реакторной установки ВВЭР мощностью 1200 МВт (электрических). Первый блок планируется построить к 2016 году, второй - к 2018. Расчетный срок службы каждого блока - 60 лет. Генеральным подрядчиком по сооружению станции выступает ЗАО «Атомстройэкспорт». В 2011 году получена лицензия Ростехнадзора на сооружение АЭС

Белоярская АЭС

Расположение: близ г. Заречный (Свердловская обл.)

Тип реактора: БН-600, БН-800, БН-1200 (в проекте)

Энергоблоков: 4 (Белоярск-1 и 2 закрыты в 1983 и 1990 годах, Белоярск-3 работает с 1981 года)

Основу второй очереди станции должен составить энергоблок № 4 Белоярской атомной электростанции с реакторной установкой на быстрых нейтронах БН-800. Он сооружается в соответствии с Федеральной целевой программой «Развитие атомного энергопромышленного комплекса России на 2007 - 2010 годы и на перспективу до 2015 года». В 2014 году реактор БН-800 заработал на минимальной мощности. Ввод в строй этого энергоблока обещает существенно расширить топливную базу атомной энергетики, а также минимизировать радиоактивные отходы, за счёт организации замкнутого ядерно-топливного цикла.

После запуска реактора БН-800 планируется начать реактора БН-1200. Аналогичные реакторы планиуется установить на перспективной Южно-Уральской АЭС.

Ленинградская АЭС-2

Расположение: близ г. Сосновый Бор (Ленинградская обл.)

Тип реактора: ВВЭР-1200

Энергоблоков: 2 - в стадии строительства, 4 - по проекту

Станция строится на площадке ЛАЭС.

Сооружение энергоблоков №№ 1 и 2 ЛАЭС-2 включено в Программу деятельности Государственной корпорации по атомной энергии «Росатом» на долгосрочный период (2009−2015 годы), утвержденную постановлением Правительства Российской Федерации от 20.09.2008 № 705. Функции заказчика-застройщика выполняет ОАО «Концерн «Росэнергоатом». 12 сентября 2007 г. Ростехнадзор официально сообщил о выдаче лицензий на размещение 1-го и 2-го энергоблоков типа ВВЭР-1200 Ленинградской АЭС-2. ОАО «СПб АЭП» (входит в состав интегрированной компании ОАО «Атомэнергопром») по итогам открытого конкурса 14 марта 2008 года подписало с Росатомом госконтракт на «выполнение комплекса работ по сооружению и вводу в эксплуатацию энергоблоков №№ 1 и 2 Ленинградской АЭС-2, включая проектно-изыскательские, строительно-монтажные, пусконаладочные работы, поставку оборудования, материалов и изделий». В июне 2008 года и июле 2009 года Ростехнадзор выдал лицензии на сооружение энергоблоков.

Нововоронежская АЭС-2

Расположение: близ г. Нововоронежа (Воронежская обл.)

Тип реактора: ВВЭР-1200

Энергоблоков: 2 - строятся, еще 2 - в проекте

Нововоронежская АЭС-2 строится на площадке действующей станции. Генеральным подрядчиком по сооружению Нововоронежской АЭС-2 выступает ОАО «Атомэнергопроект» (г. Москва). Проект предусматривает использование реакторной установки ВВЭР мощность до 1200 МВт (электрических) со сроком эксплуатации 60 лет. Первая очередь Нововоронежской АЭС-2 будет включать два энергоблока.

Ростовская АЭС

Расположение: близ г. Волгодонска, Ростовская обл.Тип реактора: ВВЭР-1000

Энергоблоков: 2 - в эксплуатации, 2 - строятся

Ростовская АЭС является одним из крупнейших предприятий энергетики на Юге России. Станция обеспечивает 40% производства электроэнергии в Ростовской области. Кроме того, электроэнергия по пяти ЛЭП-500 поступает в Волгоградскую и Ростовскую области, Краснодарский и Ставропольский края, по двум ЛЭП-220 - г. Волгодонск. На станции работают два энергоблока. Первый с реактором типа ВВЭР-1000 и мощностью 1000 МВт введен в эксплуатацию в 2001 году. Энергоблок № 2 введен в промышленную эксплуатацию 10 декабря 2010 года. На площадке станции ведется строительство энергоблоков №№ 3,4. В ноябре 2014 г. началась проедура пуска 3 энергоблока

Плавучая АЭС «Академик Ломоносов»

Расположение: Певек, Чукотка

Тип реактора: КЛТ-40С

Энергоблоков: 2

Первая в мире плавучая атомная теплоэлектростанция (ПАТЭС) оснащена судовыми реакторами типа КЛТ-40С. Аналогичные реакторные установки имеют большой опыт успешной эксплуатации на атомных ледоколах «Таймыр» и «Вайгач» и лихтеровозе «Севморпуть». Электрическая мощность станции составит 70 МВт. Основной элемент станции - плавучий энергоблок сооружается промышленным способом на судостроительном заводе и доставляется к месту размещения ПАТЭС морским путем в полностью готовом виде. На площадке размещения строятся только вспомогательные сооружения, обеспечивающие установку плавучего энергоблока и передачу тепла и электроэнергии на берег. Строительство первого плавучего энергоблока началось в 2007 году на ОАО «ПО «Севмаш», в 2008 году проект был передан ОАО «Балтийский завод» в Санкт-Петербурге. 30 июня 2010 года состоялся спуск на воду плавучего энергоблока.

Атомные электростанции за рубежом

АЭС «Аккую»

Расположение: Турция

Тип реактора: ВВЭР-1200

Энергоблоков - 4

12 мая 2010 года в ходе визита Президента России Дмитрия Медведева в Турцию было подписано Соглашение между Правительством Российской Федерации и Правительством Турецкой Республики о сотрудничестве в сфере строительства и эксплуатации атомной электростанции на площадке «Аккую» в Турецкой Республике. Строительство первой турецкой АЭС будет реализовано на условиях ВОО (Build - Own - Operate или «Строй - Владей - Эксплуатируй»). До настоящего момента в мировой практике не было прецедентов использования механизма BOO в атомной энергетике. На старте проект турецкой атомные электростанции будет финансироваться из российских источников, в дальнейшем планируется привлечение инвесторов, как из Турции, так и из третьих стран.

Проект АЭС «Аккую» включает в себя четыре реактора типа ВВЭР. Мощность каждого энергоблока турецкой АЭС составит 1200 МВт. Технико-экономические показатели АЭС обеспечат надежную и экономичную выработку электрической и тепловой энергии в соответствиями с требованиями турецкого заказчика. АЭС «Аккую» будет вырабатывать около 35 млрд кВт.ч в год.

Белорусская АЭС

Расположение: Белоруссия

Тип реактора: ВВЭР-1200

Энергоблоков: 2

15 марта 2011 года в Минске в ходе заседания Совета министров Союзного государства было подписано Соглашение между Правительством Российской Федерации и Правительством Республики Беларусь о сотрудничестве в строительстве на территории Республики Беларусь атомной электростанции. Белорусская АЭС будет состоять из двух энергоблоков суммарной мощностью до 2400 (2×1200) МВт и будет построена на Островецкой площадке в Гродненской области. Для строительства первой белорусской АЭС был выбран проект «АЭС-2006», который полностью соответствует международным нормам и рекомендациям МАГАТЭ. Соглашение предусматривает, что строительство АЭС осуществляется под ключ российской стороной. Генеральным подрядчиком было назначено ЗАО «Атомстройэкспорт», заказчиком - ГУ «Дирекция строительства атомной электростанции» (ГУ «ДСАЭ»). 11 октября 2011 года было подписано контрактное соглашение о строительстве АЭС в Республике Беларусь. 25 ноября 2011 года было подписано Межправительственное соглашение о предоставлении российской стороной белорусской стороне государственного кредита на строительство станции, которое создало необходимую международно-правовую базу для осуществления механизма финансирования работ по проекту. 31 января 2012 года был подписан контракт на изыскательские работы, разработку проектной документации и первоочередной рабочей документации Белорусской АЭС. 18 июля 2012 года в Минске по итогам заседания Cовета министров Союзного государства РФ и Белоруссии был подписан генеральный контракт на сооружение Белорусской АЭС. С российской стороны генконтракт подписал директор ОАО «НИАЭП» - управляющей организации ЗАО «Атомстройэкспорт» (ЗАО АСЭ) Валерий Лимаренко, с белорусской стороны - директор ГУ «Дирекция строительства АЭС» (ГУ «ДСАЭ») Михаил Филимонов.

АЭС «Бушер» (Иран)

Расположение: Иран

Тип реактора: ВВЭР-1000

Энергоблоков: 3 (Бушер-1 запушен в 2013 году)

АЭС «Бушер» - уникальный объект, аналогов которому нет в мире. ЗАО «Атомстройэкспорт» продолжает строительство атомной электростанции в Иране, начатое в 1974 году немецким концерном Kraftwerk Union A.G. (Siemens/KWU). В 1980 году концерн разорвал контракт с иранским заказчиком из-за решения германского правительства присоединиться к американскому эмбарго на поставки оборудования в Иран. Между Правительством Российской Федерации и Правительством Исламской Республики Иран 24 августа 1992 года было подписано соглашение о сотрудничестве в области мирного использования атомной энергии, и 25 августа 1992 года заключено соглашение о сооружении атомной электростанции в Иране. Строительство АЭС было возобновлено после длительной консервации в 1995 году. Строительство основных инфраструктур станции завершилось в августе 2010 года. Электростанция была подключена к электрической сети Ирана в сентябре 2011 года, а к 30 августа 2012 года ее первый энергоблок вышел на полную рабочую мощность. Российским подрядчикам удалось осуществить интеграцию российского оборудования в строительную часть, выполненную по немецкому проекту, и, кроме того, применить около 12 тысяч тонн немецкого оборудования.

11.11.2014 года был подписан контракт на постройку 2 и 3 энергоблоков.

Расположение - Индия

Тип реактора - ВВЭР-1000

Энергоблоков - 4 (Куданкулам-1 запущен в 2013 году, рассматривается возможность строительства до 8 энергоблоков)

На юге Индии сооружается АЭС «Куданкулам» с двумя энергоблоками с реакторными установками ВВЭР-1000. Станцию возводят в рамках выполнения Межгосударственного Соглашения от 20.11.1988 и Дополнения к нему от 21.06.1998. Заказчик - Индийская корпорация по атомной энергии Ltd (ИКАЭЛ).

Проект «АЭС-92», применяемый на АЭС «Куданкулам», разработан институтом «Атомэнергопроект» (Москва) на базе серийных энергоблоков, которые длительное время эксплуатируются в России и странах Восточной Европы.

11.12.2014 года подписан договор о строительстве 3 и 4 энергоблоков.

АЭС «Моховце»

Расположение: Словакия

Тип реактора: ВВЭР-440

Энергоблоков: 4 (Моховце-1 и 2 запущены в 1998 и 1999 годах)

Российские предприятия совместно с словацкими достраивают третий и четвертый энергоблоки АЭС «Моховце», сооружение которых было начато в 1987 г. и приостановлено в 1992 г.

11 мая 2010 года подписан контракт на выполнение работ в рамках достройки «Ядерного острова» между ЗАО «Атомстройэкспорт» и АО «Словацкие электростанции». Контрактом предусмотрено выполнение работ, поставка оборудования и оказание услуг по внедрению на обоих блоках систем внутриреакторного контроля, систем измерений концентрации бора и подсистем измерения уровня в корпусе реактора и измерения температуры на выходе из активной зоны.

АЭС «Ниньтхуан»

Расположение: Вьетнам

Тип реактора: ВВЭР-1000/ВВЭР-1200

Энергоблоков: до 6

Осуществляется строительство энергоблоков № 1 и № 2 с реакторами типа ВВЭР-1000 или ВВЭР-1200 (окончательный выбор пока не сделан). Место реализации проекта - провинция Ниньтхуан, Вьетнам

АЭС «Руппур»

Расположение: Бангладеш

Тип реактора: ВВЭР-1000

Энергоблоков - 2

Осуществляется подготовительная стадия строительства энергоблоков № 1 и № 2 с реакторами типа ВВЭР-1000, общей мощностью в 2000 МВт. Место реализации проекта - площадка в 160 км от г. Дакка, Бангладеш

Тяньваньская АЭС

Расположение: КНР

Тип реактора: ВВЭР-1000, ВВЭР-1200

Энергоблоков - 8 (Тяньвань-1 и 2 запущены в 2007 году, Тяньвань-5 и 6 запланированы с реакторами CNP-1000, Тяньвань-7 и 8 - с реакторами ВВЭР-1200)

В октябре 2009 года Государственная корпорация «Росатом» и Китайская корпорация ядерной промышленности (CNNC) подписали протокол, в котором подтвердили желание и намерение продолжать сотрудничество в сооружении второй очереди Тяньваньской АЭС - третьего и четвертого блоков станции.

Третий и четвертый блоки Тяньваньской АЭС будут сооружаться аналогично проекту первой очереди: два энергоблока российского дизайна с реакторными установками ВВЭР-1000. Проектирование и поставку оборудования неядерной части атомной станции будет осуществлять JNPC.

Расположение: Украина

Тип реактора: ВВЭР-1000

Энергоблоков: 4 (Хмельницкий-1 и 2 запущены в 1988 и 2005 годах)

9 июня 2010 года в Киеве подписано Соглашение между Правительством Российской Федерации и Кабинетом Министров Украины о сотрудничестве в строительстве энергоблоков №№ 3 и 4 Хмельницкой АЭС. По требованиям НАЭК «Энергоатом» сроки эксплуатации оборудования по проекту ВВЭР-1000 увеличены и составляют для корпуса реактора - 60 лет, парогенераторов - 60 лет, для остального оборудования реакторного отделения - 50 лет. Увеличение срока службы оборудования достигается за счет эволюционных конструктивных изменений. Реализация проекта под вопросом.

АЭС «Пакш»

Расположение: Венгрия

Тип реактора ВВЭР-440, ВВЭР-1200

Энергоблоков 6

ЗАО «Атомстройэкспорт» в рамках долгосрочного рамочного контракта поставляет сменное оборудование и запасные части, необходимые для обеспечения надежной эксплуатации АЭС «Пакш».С 2012 года проект реализуется силами объединенной компании ОАО «НИАЭП» - ЗАО АСЭ.

8.12.2014 года подписано соглашение о постройке 5 и 6 энергоблоков.

АЭС Пюхяйоки

Расположение: Финляндия

Тип реактора: ВВЭР-1200

Энергоблоков: 1

В октябре 2014 года ЗАО «Русатом Оверсиз» подписало договор с ОАО «Атомпроект» на разработку полного пакета проектной документации АЭС в Пюхяйоки. В сентябре 2014 года правительство Финляндииодобрило проект строительства АЭС при участии России, предусматривающий использование российского реактора ВВЭР-1200.

Перспективные проекты

В России в планах строительство Курской АЭС-2, Кольской АЭС-2, Смоленской АЭС-2, а также Тверской, Северской и Южно-Уральской АЭС. Также имеются планы достройки 5 и 6 энергоблоков Балаковской АЭС.

За рубежом Россия планирует осуществить строительство до 8 энергоблоков в Иране, АЭС Харипур в Индии (всего в Индии планируется постройка до 12 энергоблоков), АЭС Маджал в Иордании, Сянминской АЭС в КНР. Также возможно строительство двух энергоблоков на АЭС Темелин (Чехия), одного энергоблока АЭС Козлодуй (Болгария) и одного энергоблока Армянской АЭС.

Перечитав собственную заметку на эту же тему, признаю – был слишком эмоционален. Просто новость была совершенно неожиданной лично для меня: я был абсолютно уверен, что планы Росатома не протиснутся сквозь сито требований по сокращению бюджетных расходов, действующее на уровне Правительства РФ.

И я чрезвычайно признателен Константину Пулину, который взял на себя труд свести в подробную «справку» все то, то намечено Росатомом и одобрено Правительством РФ. Еще приятнее – то, то Константин согласился начать сотрудничество с нашим сайтом. Надеюсь, что дебют вам понравится и, разумеется, на то, что сотрудничество будет продолжено. Ваши оценки этой статьи и комментарии к ней – весьма ожидаемы и командой сайта, и Константином. Так что – будьте добры!..

(c) Шеф-редактор сайт

Новые АЭС

Дмитрий Медведев 01.08. 2016 своим распоряжением Председателя Правительства РФ № 1634-р утвердил план строительства восьми новых АЭС. Согласно распоряжению, до 2030 года в России будут построены восемь крупных АЭС

  1. Кольская АЭС-2, 1 ВВЭР-600. Итого 675 МВт.
  2. Центральная АЭС, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  3. Смоленская АЭС-2, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  4. Нижегородская АЭС, 2 ВВЭР-ТОИ, по 1255 МВт. Итого 2510 МВт.
  5. Татарская АЭС, 1 ВВЭР-ТОИ, по 1255 МВт. Итого 1255 МВт.
  6. Белоярская АЭС, 1 БН-1200. Итого 1200 МВт.
  7. Южноуральская АЭС, 1 БН-1200. Итого 1200 МВт.
  8. Северская АЭС, 1 БРЕСТ-300. Итого 300 МВт.

Все 8 АЭС – это блоки новых типов АЭС, ранее не строившихся в России! И это – на фоне того, что новинки атомной энергетики в нашей стране – не новость, а нечто, становящееся потихоньку привычным. Буквально на днях, 5 августа, выдал в сеть первую электроэнергию новый самый мощный в России и не имеющий аналогов в мире ВВЭР-1200. В 2014 году был построен «быстрый» реактор с натриевым теплоносителем БН-800, 15 апреля 2016 были закончены его испытания на мощности в 85% от номинала (730 Мвт), осенью его выведут уже на 100% и тоже присоединят к единой энергетической системе страны.

Итого 6 новых типов АЭС менее чем за 20 лет: БН-800, ВВЭР-1200, ВВЭР-600, ВВЭР-1300-ТОИ, БРЕСТ-ОД-300, БН-1200! Если думаете, что это так просто разрабатывать и строить новые типы АЭС, то посмотрите, к примеру, на США. Там за 40 лет разработали всего один новый проект реактора – АР1000. Но разработка и строительство, как говорили в Одессе, две большие разницы: США строят АР1000 в Китае с 2008 года, регулярно увеличивая сметную стоимость, но пока так и не построили. Для сравнения: ВВЭР-1200 также начали строить в 2008 году, но уже подсоединили к ЕЭС России 5 августа 2016 года.

Прим. БA: ВВЭР-600 – не что-то старое, это тоже новинка: реактор постфукусимской технологии поколения III+ средней мощности. Потребность в атомных энергоблоках средней мощности существует в регионах со слабо развитой сетевой инфраструктурой, в удаленных районах, куда доставка топлива извне затруднена. Для выхода России на рынок строительства АЭС средней мощности за рубежом в РФ надо сначала построить соответствующий первый, так называемый референтный (эталонный), энергоблок. Кольский полуостров выбран для размещения нового энергоблока потому, что на его территории будут реализованы крупные инвестиционные проекты.

Мощность новых и строящихся АЭС

8 новых АЭС и 11 энергоблоков – это много или мало? Давайте посчитаем. Мощность 8 новых АЭС равна 675 + 2510 + 2510 + 2510 + 1255 + 1200 + 1200 + 300 = 12 160 МВт

“На конец 1991 года в Российской Федерации функционировало 28 энергоблоков, общей номинальной мощностью 20 242 МВт.” С Обнинской и Сибирской АЭС, которые выдавали 6 и 500 МВт, и которые были закрыты в 2002 и 2008 гг, было 20 748 МВт.

“На конец 2015 года в России на 10 действующих АЭС эксплуатировалось 35 энергоблоков общей мощностью 27 206 МВт”.

“С 1991 года по 2015 год к сети было подключено 7 новых энергоблоков общей номинальной мощностью 6 964 МВт.”

Однако данные подсчёты не учитывают уже строящиеся АЭС в России и те, которые будут выводиться из эксплуатации.

Уже строящиеся АЭС:

  1. Балтийская АЭС, ВВЭР-1200. Итого 1200 МВт. Строительство приостановлено. Поэтому пока не учитываем.
  1. Ленинградская АЭС-2, 4 ВВЭР-1200 по 1170 МВт. Итого 4680 МВт.
  1. Нововоронежская АЭС, 2 ВВЭР-1200. Итого 2400 МВт. (Первый ВВЭР-1200 уже построен и дал электроэнергию для ЕЭС страны 5 августа, однако в статистике за 2015 год его ещё нет).
  1. Ростовская АЭС, ВВЭР-1000, 1100 МВт. Итого 1100 МВт.

Итого 4680 + 2400+ 1100 = 8 180 МВт. Из них 5,84 ГВт мощностей будут сданы с 2016 по 2020 гг. (1,2 ГВт уже сданы 5 августа).

  1. Курская АЭС-2, 4 блока ВВЭР-ТОИ по 1255 МВт. Итого 5 010 МВт. Данная АЭС находится на самых ранних этапах строительства. Поэтому она уже не попала в распоряжение Медведева, но ещё не попала в список строящихся АЭС в википедию 🙂 Блоки будут сдаваться в 2021, 2023, 2026 и 2029 гг.
  1. Плавучая АЭС «Ломоносов», которую ждет Певек – две реакторные установки ледокольного типа КЛТ-40С по 35 Мвт электрической мощности. Итого – 70 Мвт.

8 новых АЭС также начнут сдаваться после 2020 года вплоть до 2030 года. (Т.к. АЭС менее 5 лет не строятся). Сравниваем: за 5 ближайших лет будет сдано 5,84 ГВт и 5 энергоблоков. А с 2021 года по 2030 год будет построено ещё как минимум 19,51 ГВт мощностей и 17 энергоблоков. Почему “как минимум”? Потому что вероятна постройка двух блоков ВВЭР-600 на Кольской АЭС-2, а не одного. Надеюсь, что будет достроена Балтийская АЭС из 1 или 2 блоков. Возможно, что будет построена Приморская АЭС. Ранее она включалась в планы развития ДВ . И ещё два блока ВВЭР-ТОИ Нововоронежской АЭС числятся “в проекте”. Есть проекты Тверской и Башкирской АЭС.

Росатом с 2014 сдавал и до 2020 года будет сдавать до 2020 по одному блоку АЭС в год в России. С 2021 по 2030 гг., с учётом распоряжения Медведева, будет построено минимум 17 блоков АЭС. Или 1,7 блоков в год. В то же время уже сейчас вне самой России Росатом сдаёт по 4 блока в год. Значит, Росатом вполне может строить больше АЭС в России, а не за рубежом, если понадобится. Как говорится, росла бы экономика и население, способные запросить побольше электроэнергии, Росатом к этому вполне готов. Как видим, планы вполне реалистичные с учётом текущих мощностей Росатома и роста мощностей в будущем.

Вывод: как по количеству блоков, так и по генерируемой мощности Медведев подписал абсолютно реалистичный, он же минимальный, план ввода АЭС. Приоритет отдаётся строительству и обкатке в России новых типов реакторов. Принцип референтности в атомной энергетике остается одним из – сначала покажи, как это работает и насколько это безопасно, на собственном примере. Будет реализован план, заявленный Постановлением 1634-р – будет и экспорт по всему миру обкатанных в России АЭС, как это было до сих пор.

Выводимые из эксплуатации АЭС с 2016 по 2030 гг

Однако АЭС не только строятся, но и закрываются по разным причинам – срок эксплуатации всегда конечен. Смотрим список выводимых из эксплуатации российских АЭС:

  1. Белоярская АЭС, 1 блок 600 МВт. По плану БН-600 будет закрыт в 2025 году. Срок эксплуатации с 1980 года составит 45 лет. Ему на смену придёт БН-1200 примерно в том же году. Итого «минус» 600 МВт.
  2. Билибинская АЭС. 4 реактора ЭГП-6 по 12 МВт. Итого «минус» 48 МВт. Вывод из эксплуатации с 2019 по 2021 гг Срок эксплуатации с 1974-1976 гг также составит 45 лет.
  3. Кольская АЭС. 4 реактора ВВЭР-440. Итого 1760 МВт. Вывод из эксплуатации в 2018, 2019, 2026, 2029 гг. Срок эксплуатации 44-45 лет. На смену пока что подписан только 1 блок Кольской АЭС-2 на 675 МВт, но предполагается, что когда-нибудь будет и второй блок ВВЭР-600.
  4. Курская АЭС. 4 блока РБМК по 1000 МВт. Итого минус 4 000 МВт. Однако “По мере исчерпания ресурса энергоблоков Курской АЭС их мощность будет замещена блоками Курской АЭС-2.
  5. Ленинградская АЭС. 4 реактора РБМК по 1000 МВт. На смену первым двум реакторам уже строятся два реактора ВВЭР-1200. Остальные два блока заменят ещё двумя блоками ВВЭР-1200 на ЛАЭС-2. Итого «минус» 4000 МВт. Срок эксплуатации 44-45 лет. Однако уже сейчас предельная безопасная мощность 1 блока не 1 000 МВт, а 800 МВт. (ссылка ниже по тексту). Таким образом, если считать по-честному, то на конец 2015 года мощности АЭС России составляли не 27 206 МВт, а 27 006 МВт. И выводиться будет 3 800 МВт, а не 4 000 МВт.
  6. Нововоронежская АЭС. 2 блока ВВЭР-440 по 417 МВт. Итого «минус» 834 МВт. Закрытие в 2016-2017 гг. Срок эксплуатации – 44 года.
  7. Смоленская АЭС. До 2030 года будет выведено из эксплуатации 2 блока из 3. Им на смену придут 2 блока Смоленской АЭС-2 ВВЭР-ТОИ. Вероятный срок эксплуатации – 45 лет. Итого «минус» 2000 МВт.

Итого: будет закрыт 21 энергоблок. Считаем выводимую из эксплуатации мощность: 600 + 48 + 1760 + 4000 + 3800 + 834 + 2000 = 13 042 МВт.

Теперь можно подбить окончательные цифры: За период с 2016 по 2030 гг. будет построено 22 энергоблока и 25,36 ГВт мощностей. За тот же период будет закрыт 21 энергоблок мощностью 13,042 ГВт. Для наглядности представляю цифры в виде таблицы:

27,006 ГВт на конец 2015 года. Плюс 5,84 ГВт до 2020 года. Плюс 19,52 ГВт до 2030 года. Минус 13 042 ГВт до 2030 года. Итого Россия будет иметь 39,324 ГВт установленной мощности к 2030 году на 36 энергоблоках на 14 АЭС. Это минимум 45,6%-ный рост генерации АЭС в России.

Добавляю график для наглядности:

На графике видно, что к 2030 году большинство мощностей АЭС будут те, которые построены после 1991 года. Если точно, то из реакторов общей мощностью 32,324 ГВт только 7 ГВт останутся от тех реакторов, которые построены до 1991 года. Минимум 45,6% рост не только потому, что энергоблоков, скорее всего, будет построено больше. Но и потому, что КИУМ АЭС в России растёт:

Выводы

  1. Из эксплуатации до 2025 года будут выведены старые типы АЭС: ЭГП-6, БН-600, ВВЭР-440. Срок эксплуатации составит 44-45 лет.
  1. РБМК-1000 будут выведены из эксплуатации в основном до 2030. В России было построено 11 блоков РБМК-1000 на трёх АЭС. На данный момент все они работают. До 2030 года будут закрыты 10 из 11 блоков РБМК-1000. Это все 4 блока Курской АЭС, 2 блока ЛАЭС и 2 Смоленской АЭС. Сколько прослужат РБМК-1000? Вряд ли срок службы составит менее 45 лет, но и 60 лет данные блоки тоже не прослужат, как новые ВВЭР. Вот коротко причины того, почему РБМК не прослужат так долго: “Первый заместитель главы концерна Владимир Асмолов в июне рассказывал в интервью порталу AtomInfo.Ru, что деградация графита должна была начаться через 40-45 лет эксплуатации. Первый энергоблок ЛАЭС, введенный в 1973 году, уже достиг этого возраста, но на нем проблемы с графитом начались раньше. Сейчас, как отмечал господин Асмолов, мощность блока уже снижена до 80% (то есть с 1 ГВт до 800 МВт), “чтобы дать возможность блоку проработать до появления замещающих мощностей” … “Физический запуск первого энергоблока ЛАЭС-2 намечен уже на май 2017-го года. Начнется первая выработка электроэнергии по сниженным показателям. В промышленную эксплуатацию блок будет запущен 1 января 2018 года Таким образом, замещающие мощности ЛАЭС-2 появятся в 2018 году. Тогда же, в 2018 году, прослужив 45 лет, работая уже на пониженной мощности, первый блок РБМК-1000 будет закрыт. Те же проблемы будут и у других блоков РБМК-1000.
  1. В полном составе до 2030 года останутся работать все ВВЭР-1000. Первый ВВЭР-1000/187 был построен в 1981 году на Нововоронежской АЭС и планируется к закрытию только в 2036 году. Ожидаемый срок службы – 55 лет. Для более новых ВВЭР-1000/320 срок будет продлён до 60 лет. Например, Балаковская АЭС: “физический пуск энергоблока №1 Балаковской АЭС состоялся 12 декабря 1985 года” “Срок действия новой лицензии – до 18 декабря 2045 года.” Это означает, что все блоки ВВЭР-1000, за исключением первого, будут служить, как минимум, до 2040 года.
  1. В 2016-2030 гг. России предстоит закрыть 13,042 ГВт мощностей АЭС. При том, что с 1991 по 2015 гг мощности уменьшились всего на 706 МВт. (6 – Обнинская АЭС, 500 – Сибирская, и на 200 МВТ – 1 блок ЛАЭС) С 2031 по 2040 гг. будет выведено всего 2 ГВт мощностей АЭС. Это РБМК-1000, самый последний, и один ВВЭР-1000, самый первый 🙂
  1. Однако Россия собирается с успехом пройти этот сложный период. Во-первых, Россия подошла к данному периоду с новыми разработанными типами АЭС – ВВЭР-1200, ВВЭР-ТОИ. Разрабатываются БН-1200 и БРЕСТ-ОД-300. И даже новый “урезанный” ВВЭР-600 не стоит сбрасывать со счетов, т.к. данные АЭС средней мощности имеют хороший экспортный потенциалю С 2016 по 2030 гг. будет введено минимум 25,36 ГВт мощностей! Это почти столько же, сколько было построено за всё время в СССР/России и имелось в эксплуатации на конец 2015 года!
  1. “Выработка электроэнергии в России в 2015 году составила 1049,9 млрд. кВт-ч”. “ АЭС в 2015 году выработано 195,0 млрд. кВт-ч”. Можно ожидать, что 45,6%-ный рост мощностей АЭС даст ~50% рост генерации электроэнергии АЭС. Т.е. можно ожидать 300 млрд. квт-ч генерации АЭС к 2030 году в России. Это дешёвая энергия, которая даст России преимущество перед другими странами.
  1. С 2030 года у Росатома и России ожидается “Золотой Век”, связанный с массовым строительством прорывных АЭС ЗЯТЦ типа – БН и БРЕСТ. При этом закрытие старых АЭС никак не будет тянуть назад.

Обеспечение энергетической безопасности - одна из ключевых задач любого современного государства. На сегодняшний день одним из самых передовых вариантов добычи электроэнергии является использование ядерных реакторов. В связи с этим строится атомная электростанция в Беларуси. Об этом промышленном объекте мы поговорим в статье.

Основная информация

Белорусская возводится в Гродненской области страны буквально в 50 километрах от столицы соседней Литвы - Вильнюса. Строительство началось в 2011 году, а завершиться по плану должно в 2019 году. Проектная мощность агрегата составляет 2400 МВт.

Островецкая площадка - место, где строится станция, - курируется российскими специалистами из компании "Атомстройэкспорт".

Несколько слов о проектировании

В Беларуси обойдётся государственному бюджету в 11 миллиардов американских долларов.

Сам же вопрос монтажа объекта в стране возник ещё в 1990-х годах, но окончательное решение о начале строительства было принято лишь в 2006 году. Основным местом для станции выбрали город Островец.

Влияние политики

Возводить АЭС, анализируя плюсы и минусы атомной энергетики, были готовы начать сразу же несколько иностранных держав: Китай, Чехия, США, Франция, Россия. Однако в итоге главным подрядчиком стала Российская Федерация. Хотя изначально считалось, что это строительство будет невыгодно РФ, которая планировала ввести в эксплуатацию свою АЭС в Калининградской области. Но все же в октябре 2011 года между россиянами и белорусами был подписан контракт на поставку оборудования в Белорусский город Островец.

Законодательный аспект

В Беларуси строится в соответствии с законом, регламентирующим показатели радиационной безопасности населения страны. В этом акте прописаны условия, обязательные для их обеспечения, которые позволят людям сохранить жизнь и здоровье в условиях эксплуатации АЭС.

Денежный займ

С самого начала разработки проекта окончательная стоимость его варьировалась, так как рассматривались различные типы реакторов. Изначально требовалось 9 миллиардов долларов, 6 из которых должны было пойти на само строительство, а 3 на создание всей необходимой инфраструктуры: линий ЛЭП, жилых домов для работников станции, железнодорожных путей и прочего.

Уже сразу стало понятно, что всей необходимой суммы у Белоруссии просто нет. И потому руководство страны планировало взять кредит у России, причём в виде "живых" денег. При этом сразу же белорусы сказали, что если денег они не получат, то строительство окажется под угрозой срыва. В свою очередь российские власти озвучили свои опасения по поводу того, что их соседи окажутся неспособными вернуть долг или используют полученные средства для поддержания экономики своей страны.

В связи с этим российские чиновники вынесли предложение сделать так, чтобы атомная электростанция в Беларуси стала совместным предприятием, однако белорусская сторона на это ответила отказом.

Точка в этом споре была поставлена 15 марта 2015 года, когда Путин посетил Минск и предоставил Беларуси 10 миллиардов для строительства станции. Ориентировочный срок окупаемости проекта около 20 лет.

Строительный процесс

Выемка грунта на объекте началась в 2011 году. А через два года Лукашенко подписал указ, дающий право российскому генподрядчику начать строительство такого огромного промышленного объекта, как атомная электростанция в Беларуси.

В конце мая 2014 года был полностью готов котлован, и стартовали работы по заливке фундамента здания второго В декабре 2015 года на станцию завезли корпус для первого реактора.

Чрезвычайные происшествия

В мае 2016 года в СМИ просочилась информация о том, что на строительной площадке АЭС якобы произошло обрушение металлоконструкции. Белорусский МИД в свою очередь передал официальный ответ литовцам, что никаких нештатных ситуаций на стройке не произошло.

Но к октябрю 2016 года количество официальных несчастных случаев во время возведения станции достигло десяти, три из которых оказались летальными.

Скандал

Как сообщил один из гражданских активистов Белоруссии, по его данным, 10 июля 2015 года во время репетиции установки корпуса реактора произошло его падение на землю. Планировалось, что на следующий день монтаж должен был пройти в присутствии журналистов и телевидения.

26 июля Министерство энергетики страны подтвердило факт ЧП, указав, что инцидент произошёл на площадке хранения корпуса во время его строповки для последующего перемещения в горизонтальном направлении. Данная вызвала мгновенную и крайне острую реакцию со стороны Литвы. 28 июля министр энергетики этой прибалтийской страны подал ноту белорусскому послу с просьбой уточнить все детали происшедшего и уведомить о них.

1 августа монтажные работы по установке корпуса были приостановлены и тогда же главный конструктор этого агрегата сказал, что проведенные теоретические расчёты, показали: реактор не получил серьёзных повреждений от падения. Такого же мнения придерживался и глава "Росатома", указавший на отсутствие оснований для запрета эксплуатации корпуса.

Однако совсем другого мнения придерживались физики-ядерщики и прочие технические специалисты. Все они в один голос говорили: применять упавший корпус в дальнейшем нельзя. Это объяснялось тем, что, учитывая вес изделия, сварочные швы и покрытие могли получить критические повреждения. Все эти дефекты впоследствии могли проявиться из-за непрерывного воздействия потока нейтронов и привести к окончательному разрушению всей конструкции. Кроме того, инженеры отмечали отсутствие полноценного опыта производства подобных корпусов у завода-изготовителя, расположенного в Волгодонске, который не выпускал подобные узлы более тридцати лет.

В итоге 11 августа министр энергетики Беларуси заявил, что реактор все-таки заменят. В результате, сроки окончания монтажных операций сдвинутся на неопределённый срок. В качестве решения проблемы "Росатом" вынес предложение использовать корпус реактора второго блока.

Протестные акции

В самой республике неоднократно были проведены многочисленные народные выступления против постройки АЭС. Также негативное отношение к возведению станции высказали чиновники высших рангов в Литве и Австрии. Оба этих государства отметили неготовность проекта к реализации по целому ряду причин.

Достоинства и недостатки атомной энергетики

Рассматривая плюсы и минусы атомной энергетики, стоит заметить, что за счет специфики протекания ядерных реакций, затраты потребляемого топлива достаточно малы. Это и является основным положительным моментом данного вида производства электричества. Также, как это ни странно звучит, но является экологически чистым. Даже ТЭС делает больше вредных выбросов в атмосферу, чем АЭС.

Из отрицательных моментов атомных реакторов можно отметить проблематичность процесса утилизации отходов и высокую опасность техногенных аварий, которые потенциально способны нанести вред миллионам людей.