Активный центр. Ферменты имеют белковую природу

Биологическая химия Лелевич Владимир Валерьянович

Активный центр фермента

Активный центр фермента

Участок молекулы фермента, который специфически взаимодействует с субстратом, называется активным центром. Активный центр – это уникальная комбинация аминокислотных остатков в молекуле фермента, обеспечивающая непосредственное взаимодействие её с молекулой субстрата и принимающая прямое участие в акте катализа. У сложных ферментов в состав активного центра входит также кофактор. В активном центре условно различают каталитический участок, непосредственно вступающий в химическое взаимодействие с субстратом и участок связывания, который обеспечивает специфическое сродство к субстрату и формирование его комплекса с ферментом.

Свойства активных центров ферментов:

1. На активный центр приходится относительно малая часть общего объема фермента.

2. Активный центр имеет форму узкого углубления или щели в глобуле фермента.

3. Активный центр – это трехмерное образование, в формировании которого участвуют функциональные группы линейно удаленных друг от друга аминокислот.

4. Субстраты относительно слабо связываются с активным центром.

5. Специфичность связывания субстрата зависит от строго определенного расположения атомов и функциональных групп в активном центре.

У некоторых регуляторных ферментов имеется еще один центр, называемый аллостерическим или регуляторным. Он пространственно разделен с активным центром.

Аллостерический центр – это участок молекулы фермента, с которым связываются определенные обычно низкомолекулярные вещества (аллостерические регуляторы), молекулы которых не сходны по строению с субстратом. Присоединение регулятора к аллостерическому центру приводит к изменению третичной и четвертичной структуры молекулы фермента и, соответственно, конформации активного центра, вызывая снижение или повышение ферментативной активности.

Из книги Расширенный фенотип [Дальнее влияние гена] автора Докинз Клинтон Ричард

Глава 5. Активный репликатор зародышевой линии В 1957 году Бизер доказал, что «ген» более не может рассматриваться как единственная, унитарная концепция. Он разложил его на три ипостаси: мутон – минимальная единица мутационных изменений; рекон – минимальная единица

Из книги Новейшая книга фактов. Том 1 [Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина] автора

Из книги Фармацевтическая и продовольственная мафия автора Броуэр Луи

Из книги Новейшая книга фактов. Том 1. Астрономия и астрофизика. География и другие науки о Земле. Биология и медицина автора Кондрашов Анатолий Павлович

Центр фармакологического надзора «Париж, 4 февраля 1977 г. НЦФН, созданный в январе 1974 г., 2 февраля собрался на Генеральную ассамблею вместе с делегатами Национальных хартий врачей и фармацевтов, к которым присоединилась группа центров по борьбе с интоксикацией и

Из книги Читая между строк ДНК [Второй код нашей жизни, или Книга, которую нужно прочитать всем] автора Шпорк Петер

Где находится центр масс системы Земля – Луна? Центр масс системы Земля – Луна, так называемый барицентр, находится на расстоянии 4672 километра от центра Земли по направлению к Луне, то есть на глубине приблизительно 1700 километров под поверхностью Земли. Строго говоря, по

Из книги Тайна Бога и наука о мозге [Нейробиология веры и религиозного опыта] автора Ньюберг Эндрю

Что такое центр удовольствия и где он расположен в организме? Одной из частей головного мозга является гипоталамус, являющийся отделом промежуточного мозга и расположенный под зрительными буграми (таламусом). Гипоталамус, в котором расположены центры вегетативной

Из книги Происхождение мозга автора Савельев Сергей Вячеславович

Из Берлина в центр будущей революции Он не обижается, когда его принимают за студента или докторанта. А это происходит с 32-летним генетиком постоянно. Александр Майсснер - серо-голубые глаза, темно-русые небрежно причесанные волосы, трехдневная щетина - не только молод,

Из книги В поисках памяти [Возникновение новой науки о человеческой психике] автора Кандель Эрик Ричард

Активный подход Медитация активного типа начинается не с намерения очистить ум от мыслей, но со стремления направить предельно сфокусированное внимание на какую-то мысль или какой-то предмет. Так, скажем, буддист может петь мантру или смотреть на сияние свечи либо на

Из книги Что, если Ламарк прав? Иммуногенетика и эволюция автора Стил Эдвард

§ 37. Ассоциативный центр мозга рептилий Рассмотрев общий план строения нервной системы, следует отдельно остановиться на новых принципах организации и работы мозга, впервые реализованных у рептилий. Нервная система архаичных амниот стала логическим развитием строения

Из книги Психопаты. Достоверный рассказ о людях без жалости, без совести, без раскаяния автора Кил Кент А.

Из книги автора

Из книги автора

Центр размножения: соматическое гипермутирование перестроенных V(D)J-генов Все имеющиеся данные говорят о том, что в В-лимфоцитах мутируют только перестроенные V(D)J-гены, кодирующие белок антитела. Другими словами, вариабельные гены, остающиеся в конфигурации зародышевой

Из книги автора

Мендотский реабилитационный центр для несовершеннолетних В начале 1990-х США захлестнула настоящая эпидемия подросткового насилия. Число преступлений, совершаемых несовершеннолетними, почти удвоилось между 1980 и 1993 годами. Казалось, ничто не может остановить этот

Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естественно предположить, что с субстратом взаимодействует не вся молекула фермента в целом, а только какая-то ее часть – так называемый “активный центр” фермента.

Активный центр фермента – это часть его молекулы, непосредственно взаимодействующая с субстратами участвующая в акте катализа.

Активный центр фермента формируется на уровне третичной структуры. Поэтому при денатурации, когда третичная структура нарушается, фермент теряет свою каталитическую активность !

Активный центр в свою очередь состоит из:

- каталитического центра, который осуществляет химическое превращение субстрата;

- субстратного центра (“якорной” или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Четкую грань между каталитическим и субстратным центром провести можно не всегда – у некоторых ферментов они совпадают или перекрываются.

Помимо активного центра, в молекуле фермента существует т.н. аллостерический центр . Это участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного вещества (эффектора ), изменяется третичная структура фермента. Это приводит к изменению конфигурации активного центра и, следовательно, к изменению активности фермента. Это явление аллостерической регуляции активности фермента.

Многие ферменты являются мультимерами (или олигомерами ), т.е. состоят из двух и более субъединиц- протомеров (аналогично четвертичной структуре белка).

Связи между субъединицами, в основном, не ковалентные. Максимальную каталитическую активность фермент проявляет именно в виде мультимера. Диссоциация на протомеры резко снижает активность фермента.

Ферменты – мультимеры содержат обычно четкое число субъединиц (2-4), т.е. являются ди- и тетрамерами. Хотя известны гекса- и октамеры (6-8) и чрезвычайно редко встречаются тримеры и пентамеры (3-5).

Ферменты-мультимеры могут быть построены как из одинаковых, так и из разных субъединиц.

Если ферменты-мультимеры образованы из субъединиц различных типов, они могут существовать в виде нескольких изомеров. Множественные формы фермента называют изоферментами (изоэнзимами или изозимами).

Например, фермент состоит из 4 субъединиц типов А и Б. Он может образовать 5 изомеров: АААА, АААБ, ААББ, АБББ, ББББ. Эти изомерные ферменты являются изоферментами.

Изоферменты катализируют одну и ту же химическую реакцию, обычно воздействуют на один и тот же субстрат, но отличаются по некоторым физико-химическим свойствам (молекулярной массе, аминокислотному составу, электрофоретической подвижности и др.), по локализации в органах и тканях.

Особую группу ферментов составляют т.н. мультимерные комплексы. Это системы ферментов, катализирующих последовательные стадии превращения какого-либо субстрат. Такие системы характеризуются прочностью связи и строгой пространственной организацией ферментов, обеспечивающей минимальный путь прохождения субстрата и максимальную скорость его превращения.

Примером может служить мультиферментный комплекс, осуществляющий окислительное декарбоксилирование пировиноградной кислоты. Комплекс состоит из 3-х видов ферментов (М.в. = 4 500 000).

Конец работы -

Эта тема принадлежит разделу:

Лекции по курсу: биохимия пептиды, белки: их строение, свойства, значение в организме, методы исследования. Физико-химические свойства белков.10

Федеральное агентство по образованию.. государственное образовательное учреждение высшего профессионального..

Если Вам нужно дополнительный материал на эту тему, или Вы не нашли то, что искали, рекомендуем воспользоваться поиском по нашей базе работ:

Что будем делать с полученным материалом:

Если этот материал оказался полезным ля Вас, Вы можете сохранить его на свою страничку в социальных сетях:

Все темы данного раздела:

Рнк днк
Н3РО4 Н3РО4 Рибоза Дезоксирибоза Азотистые основания (А, Г, Ц, У) (А, Г, Ц, Т) В таблице 1 представлены сост

Первичная структура рнк и днк
Первичная структура у РНК и ДНК одинакова – это линейная полинуклеотидная цепь, в которой нуклеотиды соединены между собой 3/5/ фосфодиэфирными связями, которые образуют остат

Вторичная структура ДНК
Вторичная структура ДНК характеризуется правилом Э. Чаргаффа (закономерность количественного содержания азотистых оснований): 1. У ДНК молярные доли пуриновых и пиримидино

Третичная структура ДНК
Третичная структура ДНК – это спираль и суперспираль в комплексе с белками. ДНК может существовать в линейной форме (в хромосомах эукариот) и в кольцевой (у прокариот и в митохондриях). Спирализаци

Структура и функции РНК
В отличие от ДНК, молекула РНК состоит из одной полинуклеотидной цепи, которая спирализована сама на себя, т.е. образует всевозможные «петли» и «шпильки» за счет взаимодействий комплементарных азот

Обмен нуклеиновых кислот и нуклеотидов в организме человека
Обмен нуклеотидов в организме включает процессы анаболизма (биосинтез пуриновых - основной и резерв­ный путь - и пиримидиновых нуклеотидов) и катаболиз­ма (распад нуклеиновых кислот

Транскрипция
Транскрипция - биосинтез молекул РНК на матри­це ДНК, локализован в ядре клетки, идет постоянно, не­зависимо от цикла клетки. Субстратами и источниками энергии для биосинте

Биосинтез белка
Биосинтез белка (трансляция) протекает в полисомах и приводит к построению полипептидной цепи из амино­кислот (первичной структуры белка). Для процесса транс­ляции необходимы: матри

Регуляция транскрипции. Теория Оперона
Оперон - участок ДНК, кодирующий строение од­ного вида белков, содержащий регуляторную зону, конт­ролирующую синтез этих белков. Регуляция транскрипции м-РНК включает индук

Цикл лимонной кислоты - ЦТК - цикл Кребса
Цикл лимонной кислоты представляет собой серию реакций, протекающих в митохондриях, в ходе которых осуществляется катаболизм ацетильных групп (до 2СО2) и образование восс

Регуляция цикла Кребса
Лимитирующая реакция всего цикла Кребса - ре­акция синтеза цитрата (фермент цитратсинтаза). Регуляторные ферменты цикла Кребса: Пируватдегидрогеназа (ингибиторы: АТФ, НАДН +

Роль кислорода в метаболизме
Организм человека функционирует в аэробных усло­виях: 90% энергии он получает при участии кислорода. Кислород выполняет две важнейшие функции в метабо­лизме в процессе жизнедеятельн

Токсичность кислорода
Для организма человека токсичность кислорода обус­ловлена токсичностью его активных форм, которые мо­гут образовываться при переносе электронов от окисляе­мых субстратов на кислород

Нуклеозидтрифосфаты
Наиболее распространенными высокоэнергетически­ми общими промежуточными продуктами являются нук­леозидтрифосфаты (НТФ), которые могут передавать свою концевую высокоэнергетическую ф

Все мы слышали о ферментах, но вряд ли каждый из нас досконально знает, как именно устроены эти вещества и зачем они нужны. Эта статья поможет разобраться в структуре и функциях в целом и их активных центров в частности.

История исследований

В 1833 году французский химик Ансельм Пайен выявил и описал свойства фермента амилазы.

Несколько лет спустя Луи Пастер, изучая превращение сахара в спирт при участии дрожжей, предположил, что этот процесс происходит за счет химических веществ, входящих в состав дрожжей.

В конце XIX века Физиолог Вилли Кюне впервые ввел в употребление термин "энзим".

Немец Эдуард Бухнер в 1897 году выделил и описал зимазу - ферментативный комплекс, который катализирует реакцию превращения сахарозы в этиловый спирт. В природе зимаза в большом количестве содержится в дрожжах.

Точно неизвестно, когда и кто открыл активный центр фермента. Это открытие приписывают лауреату Нобелевской премии химику Эдаурду Бухнеру, американскому биологу Джеймсу Самнеру и другим известным ученым, работавшим над изучением ферментативного катализа.

Общие сведения о ферментах

Напомним, что ферменты - вещества белковой природы, которые выполняют в живых организмах функции катализаторов химических реакций. В ферменте есть участки, которые непосредственно не принимают в этом участия, протекание реакции обеспечивает активный центр фермента.

Приведем некоторые свойства ферментов:

1) Эффективность. Небольшого количества катализатора достаточно, чтобы ускорить химическую реакцию в 10 6 раз.

2) Специфичность. Один фермент не универсальный катализатор любой реакции в клетке. Для ферментов выражена специфичность действия: каждый фермент катализирует только одну или же несколько реакций с похожими субстратами (исходными реагентами), но для реагентов другой химической природы этот же фермент может быть бесполезен. Взаимодействие с подходящими субстратами и дальнейшее ускорение реакции обеспечивает активный центр фермента.

3) Переменная активность. Активность ферментов в клетке постоянно меняется от низкой до высокой.

4) Концентрация некоторых ферментов в клетке не постоянна и может изменяться в зависимости от внешних условий. Такие ферменты в биологии называют индуцибельными.

Классификация ферментов

По своей структуре ферменты принято делить на простые и сложные. Простые состоят исключительно из аминокислотных остатков, сложные имеют в составе вещества небелковую группу. Сложные называют коферментами.

По типу катализируемых реакций ферменты делятся на:

1) Оксидоредуктазы (катализируют окислительно-восстановительные реакции).

2) Трансферазы (переносят отдельные группы атомов).

3) Лиазы (расщепляют химические связи).

4) Липазы (образуют связи в реакциях за счет энергии АТФ).

5) Изомеразы (учувствуют в реакциях взаимного превращения изомеров).

6) Гидролазы (катализируют химические реакции с гидролитическим расщеплением связей).

Структура фермента

Фермент - сложная трехмерная структура, в состав которой входят в основном аминокислотные остатки. Также есть простетическая группа - компонент небелковой природы, связанный с аминокислотными остатками.

Ферменты - в основном глобулярные белки, которые могут объединяться в сложные комплексы. Как и другие вещества белковой природы, ферменты денатурируют при повышении температуры или под воздействием некоторых химических реактивов. Во время денатурации изменяется третичная структура фермента и, соответственно, свойства активного центра ферментов. В результате активность энзима резко уменьшается.

Катализируемый субстрат обычно значительно меньше самого фермента. Самый простой энзим состоит из шестидесяти аминокислотных остатков, а его активный центр - всего из двух.

Существуют ферменты, каталитический участок которых представлен не аминокислотами, а простетической группой органического или (чаще) неорганического происхождения - кофактором.

Понятие об активном центре

Лишь небольшой участок фермента принимает непосредственное участие в химических реакциях. Эта часть фермента и называется активным центром. Активный центр фермента - это липид, несколько аминокислотных остатков или простетическая группа, которая связывается с субстратом и катализирует реакцию. Аминокислотные остатки активного центра могут принадлежать любым аминокислотам - полярным, неполярным, заряженным, ароматическим, незаряженным.

Активный центр фермента (это липид, аминокислоты или другие вещества, способные взаимодействовать с реагентами) - самая важная часть фермента, без него эти вещества были бы бесполезны.

Обычно молекула фермента имеет только один активный центр, связывающийся с одним или несколькими схожими реагентами. Аминокислотные остатки активного центра формируют водородные, гидрофобные или ковалентные связи, образуя энзим-субстратный комплекс.

Структура активного центра

Активный центр простых и сложных ферментов представляет собой карман или щель. Эта структура активного центра фермента должна электростатически и геометрически соответствовать субстрату, так как изменение третичной структуры фермента может изменить активный центр.

Связывающий и каталитический центр - участки активного центра фермента. Очевидно, что связывающий центр "проверяет" субстрат на совместимость и связывается с ним, а каталитический центр принимает непосредственное участие в реакции.

Связывание активного центра с субстратом

Для того чтобы пояснить, как же активный центр фермента связывается с тем или иным реагентом, было предложено несколько теорий. Самая популярная из них - теория Фишера, она же теория "замка и ключа". Фишер предположил, что существует фермент, идеально подходящий каждому субстрату по своим физико-химическим свойствам. После образования энзим-субстратного комплекса никаких модификаций не происходит.

Другой американский ученый - Дэниел Кошланд - дополнил теорию Фишера предположением о том, что активный центр фермента может менять свою конформацию до тех пор, пока не подойдет определенному субстрату.

Кинетика ферментативных реакций

Особенности протекания ферментативных реакций изучает отдельная отрасль биохимии - ферментативная кинетика. Эта наука изучает особенности протекания реакций при различных концентрациях ферментов и субстратов, внутри клетки, а также свойства активного центра ферментов в зависимости от изменения физических и химических параметров среды.

Ферментативная кинетика оперирует такими понятиями, как скорость реакции, энергия активации, активационный барьер, молекулярная активность, удельная активность и др. Рассмотрим некоторые из этих понятий.

Чтобы произошла биологическая реакция, реагентам необходимо передать некоторую энергию. Эта энергия называется энергией активации.

Добавление фермента к реагентам позволяет снизить Некоторые вещества на реагируют без участия энзимов, так как энергия активации слишком высока. Равновесие реакции при добавлении фермента не сдвигается.

Скорость реакции - количество продукта реакции, появившееся или исчезнувшее в единицу времени.

Зависимость скорости реакции от концентрации субстрата характеризует безразмерная физическая величина - константа Михаэлиса.

Молекулярная активность - количество молекул субстрата, преобразованных одной молекулой фермента в единицу времени.

Ферменты – высокомолекулярные вещества, молекулярный вес которых достигает нескольких млн. Молекулы субстратов, взаимодействующих с ферментами обычно имеют гораздо меньший размер. Поэтому естественно предположить, что с субстратом взаимодействует не вся молекула фермента в целом, а только какая-то ее часть – так называемый “активный центр” фермента.

Активный центр фермента – это часть его молекулы, непосредственно взаимодействующая с субстратами участвующая в акте катализа.

Активный центр фермента формируется на уровне третичной структуры. Поэтому при денатурации, когда третичная структура нарушается, фермент теряет свою каталитическую активность !

Активный центр в свою очередь состоит из:

- каталитического центра, который осуществляет химическое превращение субстрата;

- субстратного центра (“якорной” или контактной площадки), которая обеспечивает присоединение субстрата к ферменту, формирование фермент-субстратного комплекса.

Четкую грань между каталитическим и субстратным центром провести можно не всегда – у некоторых ферментов они совпадают или перекрываются.

Помимо активного центра, в молекуле фермента существует т.н. аллостерический центр . Это участок молекулы фермента, в результате присоединения к которому определенного низкомолекулярного вещества (эффектора ), изменяется третичная структура фермента. Это приводит к изменению конфигурации активного центра и, следовательно, к изменению активности фермента. Это явление аллостерической регуляции активности фермента.

Многие ферменты являются мультимерами (или олигомерами ), т.е. состоят из двух и более субъединиц- протомеров (аналогично четвертичной структуре белка).

Связи между субъединицами, в основном, не ковалентные. Максимальную каталитическую активность фермент проявляет именно в виде мультимера. Диссоциация на протомеры резко снижает активность фермента.

Ферменты – мультимеры содержат обычно четкое число субъединиц (2-4), т.е. являются ди- и тетрамерами. Хотя известны гекса- и октамеры (6-8) и чрезвычайно редко встречаются тримеры и пентамеры (3-5).

Ферменты-мультимеры могут быть построены как из одинаковых, так и из разных субъединиц.

Если ферменты-мультимеры образованы из субъединиц различных типов, они могут существовать в виде нескольких изомеров. Множественные формы фермента называют изоферментами (изоэнзимами или изозимами).

Например, фермент состоит из 4 субъединиц типов А и Б. Он может образовать 5 изомеров: АААА, АААБ, ААББ, АБББ, ББББ. Эти изомерные ферменты являются изоферментами.

Изоферменты катализируют одну и ту же химическую реакцию, обычно воздействуют на один и тот же субстрат, но отличаются по некоторым физико-химическим свойствам (молекулярной массе, аминокислотному составу, электрофоретической подвижности и др.), по локализации в органах и тканях.



Особую группу ферментов составляют т.н. мультимерные комплексы. Это системы ферментов, катализирующих последовательные стадии превращения какого-либо субстрат. Такие системы характеризуются прочностью связи и строгой пространственной организацией ферментов, обеспечивающей минимальный путь прохождения субстрата и максимальную скорость его превращения.

Примером может служить мультиферментный комплекс, осуществляющий окислительное декарбоксилирование пировиноградной кислоты. Комплекс состоит из 3-х видов ферментов (М.в. = 4 500 000).

Изучение механизма химической реакции, катализируемой ферментом наряду с определением промежуточных и конечных продуктов на разных стадиях реакции подразумевает точное знание геометрии третичной структуры фермента, природы функциональных групп его молекулы, обеспечивающих специфичность действия и высокую каталитическую активность на данный субстрат, а также химической природы участка (участков) молекулы фермента, который обеспечивает высокую скорость каталитической реакции. Обычно молекулы субстрата, участвующие в ферментативных реакциях, по сравнению с молекулами ферментов имеют относительно небольшие размеры. Таким образом, при образовании фермент-субстратных комплексов в непосредственное химическое взаимодействие вступают лишь ограниченные фрагменты аминокислотной последовательности полипептидной цепи - «активный центр» - уникальная комбинация остатков аминокислот в молекуле фермента, обеспечивающая непосредственное взаимодействие с молекулой субстрата и прямое участие в акте катализа

В активном центре условно выделяют

    каталитический центр - непосредственно химически взаимодействующий с субстратом;

    связывающий центр (контактная или «якорная» площадка) - обеспечивающий специфическое сродство к субстрату и формирование комплекса фермент-субстрат.

Чтобы катализировать реакцию, фермент должен связаться с одним или несколькими субстратами. Белковая цепь фермента сворачивается таким образом, что на поверхности глобулы образуется щель, или впадина, где связываются субстраты. Эта область называется сайтом связывания субстрата. Обычно он совпадает с активным центром фермента или находится вблизи него. Некоторые ферменты содержат также сайты связывания кофакторов или ионов металлов.

Фермент, соединяясь с субстратом:

    очищает субстрат от водяной «шубы»

    располагает реагирующие молекулы субстратов в пространстве нужным для протекания реакции образом

    подготавливает к реакции (например, поляризует) молекулы субстратов.

Обычно присоединение фермента к субстрату происходит за счет ионных или водородных связей, редко - за счет ковалентных. В конце реакции её продукт (или продукты) отделяются от фермента.

В результате фермент снижает энергию активации реакции. Это происходит потому, что в присутствии фермента реакция идет по другому пути (фактически происходит другая реакция), например:

В отсутствие фермента:

В присутствии фермента:

  • АФ+В = АВФ

    АВФ = АВ+Ф

где А, В - субстраты, АВ - продукт реакции, Ф - фермент.

Ферменты не могут самостоятельно обеспечивать энергией эндергонические реакции (для протекания которых требуется энергия). Поэтому ферменты, осуществляющие такие реакции, сопрягают их с экзергоническими реакциями, идущими с выделением большего количества энергии. Например, реакции синтеза биополимеров часто сопрягаются с реакцией гидролиза АТФ.

Для активных центров некоторых ферментов характерно явление кооперативности.

Специфичность

Ферменты обычно проявляют высокую специфичность по отношению к своим субстратам (субстратная специфичность). Это достигается частичной комплементарностью формы, распределения зарядов и гидрофобных областей на молекуле субстрата и в центре связывания субстрата на ферменте. Ферменты обычно демонстрируют также высокий уровень стереоспецифичности (образуют в качестве продукта только один из возможных стереоизомеров или используют в качестве субстрата только один стереоизомер), региоселективности (образуют или разрывают химическую связь только в одном из возможных положений субстрата) и хемоселективности (катализируют только одну химическую реакцию из нескольких возможных для данных условий). Несмотря на общий высокий уровень специфичности, степень субстратной и реакционной специфичности ферментов может быть различной. Например, эндопептидаза трипсин разрывает пептидную связь только после аргинина или лизина, если за ними не следует пролин, а пепсин гораздо менее специфичен и может разрывать пептидную связь, следующую за многими аминокислотами.