Большая энциклопедия нефти и газа. Второе начало термодинамики. Энтропия. Статистическое толкование второго начала термодинамики (Формула Больцмана)



Добавить свою цену в базу

Комментарий

Термодинамика (греч. θέρμη – «тепло», δύναμις – «сила») – раздел физики, изучающий наиболее общие свойства макроскопических систем и способы передачи и превращения энергии в таких системах.

В термодинамике изучаются состояния и процессы, для описания которых можно ввести понятие температуры. Термодинамика (Т.) – это феноменологическая наука, опирающаяся на обобщения опытных фактов. Процессы, происходящие в термодинамических системах, описываются макроскопическими величинами (температура, давление, концентрации компонентов), которые вводятся для описания систем, состоящих из большого числа частиц, и не применимы к отдельным молекулам и атомам, в отличие, например, от величин, вводимых в механике или электродинамике.

Современная феноменологическая термодинамика является строгой теорией, развиваемой на основе нескольких постулатов. Однако связь этих постулатов со свойствами и законами взаимодействия частиц, из которых построены термодинамические системы, даётся статистической физикой. Статистическая физика позволяет выяснить также и границы применимости термодинамики.

Законы термодинамики носят общий характер и не зависят от конкретных деталей строения вещества на атомарном уровне. Поэтому термодинамика успешно применяется в широком круге вопросов науки и техники, таких как энергетика, теплотехника, фазовые переходы, химические реакции, явления переноса и даже чёрные дыры. Термодинамика имеет важное значение для самых разных областей физики и химии, химической технологии, аэрокосмической техники, машиностроения, клеточной биологии, биомедицинской инженерии, материаловедения и находит своё применение даже в таких областях, как экономика.

Важные годы в истории термодинамики

  • Зарождение термодинамики как науки связано с именем Г. Галилея (G. Galilei), корый ввёл понятие температуры и сконструировал первый прибор, реагирующий на изменения температуры окружающей среды (1597).
  • Вскоре Г. Д. Фаренгейт (G. D. Fahrenheit, 1714), Р. Реомюр (R. Reaumur, 1730} и А. Цельсий (A. Celsius, 1742) создали температурные шкалы в соответствии с этим принципом.
  • Дж.Блэк (J. Black) в 1757 году уже ввёл понятия скрытой теплоты плавления и теплоемкости (1770). А Вильке (J. Wilcke, 1772) ввёл определение калории как количества тепла, необходимого для нагревания 1 г воды на 1 °С.
  • Лавуазье (A. Lavoisier) и Лаплас (P. Laplace) в 1780 сконструировали калориметр (см. Калориметрия) и впервые экспериментально определили уд. теплоёмкости ряда веществ.
  • В 1824 С. Карно (N. L, S. Carnot) опубликовал работу, посвящённую исследованию принципов работы тепловых двигателей.
  • Б. Клапейрон (В. Clapeyron) ввёл графическое представление термодинамических процессов и развил метод бесконечно малых циклов (1834).
  • Г. Хельмгольц (G. Helmholtz) отметил универсальный характер закона сохранения энергии (1847). Впоследствии Р. Клаузиус (R. Clausius) и У. Томсон (Кельвин; W. Thomson) систематически развили теоретический аппарат термодинамики, в основу которого положены первое начало термодинамики и второе начало термодинамики.
  • Развитие 2-го начала привело Клаузиуса к определению энтропии (1854) и формулировке закона возрастания энтропии (1865).
  • Начиная с работ Дж. У. Гиббса (J. W. Gibbs, 1873), предложившего метод термодинамических потенциалов, развивается теория термодинамического равновесия.
  • Во 2-й пол. 19 в. проводились исследования реальных газов. Особую роль сыграли эксперименты Т. Эндрюса (Т. Andrews), который впервые обнаружил критическую точку системы жидкость-пар (1861), её существование предсказал Д. И. Менделеев (1860).
  • К концу 19 в. были достигнуты большие успехи в получении низких температур, в результате чего были ожижены О2, N2 и Н2.
  • В 1902 Гиббс опубликовал работу, в которой все основные термодинамические соотношения были получены в рамках статистической физики.
  • Связь между кинетич. свойствами тела и его термодинамич. характеристиками была установлена Л. Онсагером (L. Onsager, 1931).
  • В 20 в. интенсивно исследовали термодинамику твёрдых тел, а также квантовых жидкостей и жидких кристаллов, в которых имеют место многообразные фазовые переходы.
  • Л. Д. Ландау (1935-37) развил общую теорию фазовых переходов, основанную на концепции спонтанного нарушения симметрии.

Разделы термодинамики

Современную феноменологическую термодинамику принято делить на равновесную (или классическую) термодинамику, изучающую равновесные термодинамические системы и процессы в таких системах, и неравновесную термодинамику, изучающую неравновесные процессы в системах, в которых отклонение от термодинамического равновесия относительно невелико и ещё допускает термодинамическое описание.

Равновесная (или классическая) термодинамика

В равновесной термодинамике вводятся такие переменные, как внутренняя энергия, температура, энтропия, химический потенциал. Все они носят название термодинамических параметров (величин). Классическая термодинамика изучает связи термодинамических параметров между собой и с физическими величинами, вводимыми в рассмотрение в других разделах физики, например, с гравитационным или электромагнитным полем, действующим на систему. Химические реакции и фазовые переходы также входят в предмет изучения классической термодинамики. Однако изучение термодинамических систем, в которых существенную роль играют химические превращения, составляет предмет химической термодинамики, а техническими приложениями занимается теплотехника.

Классическая термодинамика включает в себя следующие разделы:

  • начала термодинамики (иногда также называемые законами или аксиомами)
  • уравнения состояния и свойства простых термодинамических систем (идеальный газ, реальный газ, диэлектрики и магнетики и т. д.)
  • равновесные процессы с простыми системами, термодинамические циклы
  • неравновесные процессы и закон неубывания энтропии
  • термодинамические фазы и фазовые переходы

Кроме этого, современная термодинамика включает также следующие направления:

  • строгая математическая формулировка термодинамики на основе выпуклого анализа
  • неэкстенсивная термодинамика

В системах, не находящихся в состоянии термодинамического равновесия, например, в движущемся газе, может применяться приближение локального равновесия, в котором считается, что соотношения равновесной термодинамики выполняются локально в каждой точке системы.

Неравновесная термодинамика

В неравновесной термодинамике переменные рассматриваются как локальные не только в пространстве, но и во времени, то есть в её формулы время может входить в явном виде. Отметим, что посвящённая вопросам теплопроводности классическая работа Фурье «Аналитическая теория тепла» (1822) опередила не только появление неравновесной термодинамики, но и работу Карно «Размышления о движущей силе огня и о машинах, способных развивать эту силу» (1824), которую принято считать точкой отсчёта в истории классической термодинамики.

Основные понятия термодинамики

Термодинамическая система – тело или группа тел, находящихся во взаимодействии, мысленно или реально обособленные от окружающей среды.

Гомогенная система – система, внутри которой нет поверхностей, разделяющих отличающиеся по свойствам части системы (фазы).

Гетерогенная система – система, внутри которой присутствуют поверхности, разделяющие отличающиеся по свойствам части системы.

Фаза – совокупность гомогенных частей гетерогенной системы, одинаковых по физическим и химическим свойствам, отделённая от других частей системы видимыми поверхностями раздела.

Изолированная система – система, которая не обменивается с окружающей средой ни веществом, ни энергией.

Закрытая система – система, которая обменивается с окружающей средой энергией, но не обменивается веществом.

Открытая система – система, которая обменивается с окружающей средой и веществом, и энергией.

Совокупность всех физических и химических свойств системы характеризует её термодинамическое состояние . Все величины, характеризующие какое-либо макроскопическое свойство рассматриваемой системы – параметры состояния . Опытным путем установлено, что для однозначной характеристики данной системы необходимо использовать некоторое число параметров, называемых независимыми ; все остальные параметры рассматриваются как функции независимых параметров. В качестве независимых параметров состояния обычно выбирают параметры, поддающиеся непосредственному измерению, например температуру, давление, концентрацию и т.д. Всякое изменение термодинамического состояния системы (изменения хотя бы одного параметра состояния) есть термодинамический процесс .

Обратимый процесс – процесс, допускающий возможность возвращения системы в исходное состояние без того, чтобы в окружающей среде остались какие-либо изменения.

Равновесный процесс – процесс, при котором система проходит через непрерывный ряд равновесных состояний.

Энергия – мера способности системы совершать работу; общая качественная мера движения и взаимодействия материи. Энергия является неотъемлемым свойством материи. Различают потенциальную энергию, обусловленную положением тела в поле некоторых сил, и кинетическую энергию, обусловленную изменением положения тела в пространстве.

Внутренняя энергия системы – сумма кинетической и потенциальной энергии всех частиц, составляющих систему. Можно также определить внутреннюю энергию системы как её полную энергию за вычетом кинетической и потенциальной энергии системы как целого.

Формы перехода энергии

Формы перехода энергии от одной системы к другой могут быть разбиты на две группы.

  1. В первую группу входит только одна форма перехода движения путем хаотических столкновений молекул двух соприкасающихся тел, т.е. путём теплопроводности (и одновременно путём излучения). Мерой передаваемого таким способом движения является теплота. Теплота есть форма передачи энергии путём неупорядоченного движения молекул.
  2. Во вторую группу включаются различные формы перехода движения, общей чертой которых является перемещение масс, охватывающих очень большие числа молекул (т.е. макроскопических масс), под действием каких-либо сил. Таковы поднятие тел в поле тяготения, переход некоторого количества электричества от большего электростатического потенциала к меньшему, расширение газа, находящегося под давлением и др. Общей мерой передаваемого такими способами движения является работа – форма передачи энергии путём упорядоченного движения частиц.

Теплота и работа характеризуют качественно и количественно две различные формы передачи движения от данной части материального мира к другой. Теплота и работа не могут содержаться в теле. Теплота и работа возникают только тогда, когда возникает процесс, и характеризуют только процесс. В статических условиях теплота и работа не существуют. Различие между теплотой и работой, принимаемое термодинамикой как исходное положение, и противопоставление теплоты работе имеет смысл только для тел, состоящих из множества молекул, т.к. для одной молекулы или для совокупности немногих молекул понятия теплоты и работы теряют смысл. Поэтому термодинамика рассматривает лишь тела, состоящие из большого числа молекул, т.е. так называемые макроскопические системы.

Три начала термодинамики

Начала термодинамики – совокупность постулатов, лежащих в основе термодинамики. Эти положения были установлены в результате научных исследований и были доказаны экспериментально. В качестве постулатов они принимаются для того, чтобы термодинамику можно было построить аксиоматически.

Необходимость начал термодинамики связана с тем, что термодинамика описывает макроскопические параметры систем без конкретных предположений относительно их микроскопического устройства. Вопросами внутреннего устройства занимается статистическая физика.

Начала термодинамики независимы, то есть ни одно из них не может быть выведено из других начал. Аналогами трех законов Ньютона в механике, являются три начала в термодинамике, которые связывают понятия «тепло» и «работа»:

  • Нулевое начало термодинамики говорит о термодинамическом равновесии.
  • Первое начало термодинамики – о сохранении энергии.
  • Второе начало термодинамики – о тепловых потоках.
  • Третье начало термодинамики – о недостижимости абсолютного нуля.

Общее (нулевое) начало термодинамики

Общее (нулевое) начало термодинамики гласит, что два тела находятся в состоянии теплового равновесия, если они могут передавать друг другу теплоту, но этого не происходит.

Нетрудно догадаться, что два тела не передают друг другу теплоту в том случае, если их температуры равны. Например, если измерить температуру человеческого тела при помощи термометра (в конце измерения температура человека и температура градусника будут равны), а затем, этим же термометром измерить температуру воды в ванной, и при этом окажется, что обе температуры совпадают (наблюдается тепловое равновесие человека с термометром и термометра с водой), можно говорить о том, что человек находится в тепловом равновесии с водой в ванной.

Из сказанного выше, можно сформулировать нулевое начало термодинамики следующим образом: два тела, находящиеся в тепловом равновесии с третьим, также находятся в тепловом равновесии между собой.

С физической точки зрения нулевое начало термодинамики устанавливает точку отсчета, поскольку, между двумя телами, которые имеют одинаковую температуру, тепловой поток отсутствует. Другими словами, можно сказать, что температура есть не что иное, как индикатор теплового равновесия.

Первое начало термодинамики

Первое начало термодинамики есть закон сохранения тепловой энергии, утверждающий, что энергия никуда не девается бесследно.

Система может либо поглощать, либо выделять тепловую энергию Q, при этом система выполняет над окружающими телами работу W (или окружающие тела выполняют работу над системой), при этом внутренняя энергия системы, которая имела начальное значение Uнач, будет равна Uкон:

Uкон-Uнач = ΔU = Q-W

Тепловая энергия, работа и внутренняя энергия определяют общую энергию системы, которая является постоянной величиной. Если системе передать (забрать) некое кол-во тепловой энергии Q, при отсутствии работы кол-во внутренней энергии системы U, увеличится (уменьшится) на Q.

Второе начало термодинамики

Второе начало термодинамик гласит, что тепловая энергия может переходить только в одном направлении – от тела с более высокой температурой, к телу, с более низкой температурой, но не наоборот.

Третье начало термодинамики

Третье начало термодинамики гласит, что любой процесс, состоящий из конечного числа этапов, не позволит достичь температуры абсолютного нуля (хотя к нему можно существенно приблизиться).

Как известно, первое начало термодинамики отображает закон сохранения энергии в термодинамических процессах, однако оно не дает представление о направлении протекания процессов. Помимо этого можно придумать множество термодинамических процессов, которые не будут противоречить первому началу, но в реальной действительности таких процессов не существует. Существование второго закона (начала) термодинамики вызвано необходимостью установить возможность того или иного процесса. Этот закон определяет направление течения термодинамических процессов. При формулировке второго начала термодинамики используют понятия энтропии и неравенство Клаузиуса. В таком случае второй закон термодинамики формулируется как закон роста энтропии замкнутой системы, если процесс является необратимым.

Формулировки второго закона термодинамики

Если в замкнутой системе происходит процесс, то энтропия этой системы не убывает. В виде формулы второй закон термодинамики записывают как:

где S - энтропия; L - путь по которому система переходит из одного состояния в другое.

В данной формулировке второго начала термодинамики следует обратить внимание на то, что рассматриваемая система должна быть замкнутой. В незамкнутой системе энтропия может вести себя как угодно (и убывать, и возрастать, и оставаться постоянной). Заметим, что энтропия не изменяется в замкнутой системе при обратимых процессах.

Рост энтропии в замкнутой системе при необратимых процессах — это переход термодинамической системы из состояний с меньшей вероятностью в состояния с большей вероятностью. Известная формула Больцмана дает статистическое толкование второго закона термодинамики:

где k - постоянная Больцмана; w - термодинамическая вероятность (количество способов при помощи которых, может реализовываться рассматриваемое макросостояние системы). Так, второй закон термодинамики является статистическим законом, который связан с описанием закономерностей теплового (хаотического) движения молекул, которые составляют термодинамическую систему.

Другие формулировки второго закона термодинамики

Существует ряд других формулировок второго закона термодинамики:

1) Формулировка Кельвина: Невозможно создать круговой процесс, результатом которого станет исключительно превращение теплоты, которое получено от нагревателя, в работу. Из данной формулировки второго закона термодинамики делают вывод о невозможности создания вечного двигателя второго рода. Это означает, что периодически действующая тепловая машина должна иметь нагреватель, рабочее тело и холодильник. При этом КПД идеальной тепловой машины не может быть больше, чем КПД цикла Карно:

где - температура нагревателя; — температура холодильника; ( title="Rendered by QuickLaTeX.com" height="15" width="65" style="vertical-align: -3px;">).

2) Формулировка Клаузиуса: Невозможно создать круговой процесс в результате которого будет происходить исключительно передача тепла от тела с меньшей температурой к телу с большей температурой.

Второй закон термодинамики отмечает существенное различие между двумя формами передачи энергии (работой и теплотой). Из этого закона следует, переход упорядоченного перемещение тела, как единого целого в хаотическое движение молекул тела и внешней среды - является необратимым процессом. При этом упорядоченное движение может переходить в хаотическое без дополнительных (компенсационных) процессов. Тогда как переход неупорядоченного движения в упорядоченное должен сопровождаться компенсирующим процессом.

Примеры решения задач

ПРИМЕР 1

Задание В чем состоит суть проблемы «Тепловой смерти Вселенной»? Почему эта проблема является несостоятельной?
Решение Данная проблема была сформулирована в XIX веке. Если считать Вселенную замкнутой системой и пытаться применить к ней второй закон термодинамики, то по гипотезе Клаузиуса энтропия Вселенной достигнет некоторого максимума. То есть через некоторое время все формы движения станут тепловым движением. Вся теплота от тел с более высокой температурой перейдет к телам, имеющим более низкую температуру, то есть температуры всех тел Вселенной станут равны. Вселенная придет в состояние теплового равновесия, все процессы прекратятся — это называют тепловой смертью Вселенной. Ошибка данного положения о тепловой смерти Вселенной заключена в том, что второй закон термодинамики неприменим к незамкнутым системам, а Вселенную считать замкнутой не следует. Так как она является безграничной и состоит в бесконечном развитии.

ПРИМЕР 2

Задание Чему равно КПД цикла, который представлен на рис.1? Считайте, что в процессе участвует идеальный газ (число степеней свободы равно i) и его объем изменяется в n раз.

Решение Коэффициент полезного действия цикла, который представлен на рис.1 найдем как:

где — количество теплоты, которое рабочее тело получает от нагревателя в представленном цикле. В адиабатных процессах подвода и отвода тепла нет, получается, что тепло подводится только в процессе 1-2. — количество теплоты, которое отводится от газа в процессе 3-4.

Используя первое начало термодинамики, найдем количество тепла, полученное газом в процессе 1-2, который является изохорным:

так как изменения объема в данном процессе нет. Изменение внутренней энергии газа определим как:

По аналогии для изохорного процесса, в котором теплота отводится, имеем:

Подставим полученный результат (2.2 - 2.5) в выражение (2.1):

Используем уравнение адиабаты для нахождения разностей температур, и рассматривая рис.1. Для процесса 2-3 запишем:

Второе начало термодинамики

Появление второго начала термодинамики связано с необходимостью дать ответ на вопрос, какие процессы в природе возможны, а какие нет. Второе начало термодинамики определяет направление протекания термодинамических процессов.

Используя понятие энтропии и неравенство Клаузиуса второе начало термодинамики можно сформулировать какзакон возрастания энтропии замкнутой системы при необратимых процессах: любой необратимый процесс в замкнутой системе происходит так, что энтропия системы при этом возрастает.

Можно дать более краткую формулировку второго начала термодинамики: в про­цессах, происходящих в замкнутой системе, энтропия не убывает. Здесь существенно, что речь идет о замкнутых системах, так как в незамкнутых системах энтропия может вести себя любым образом (убывать, возрастать, оставаться постоянной). Кроме того, отметим еще раз, что энтропия остается постоянной в замкнутой системе только при обратимых процессах. При необратимых процессах в замкнутой системе энтропия всегда возрастает.

Формула Больцмана (57.8) позволяет объяснить постулируемое вторым началом термодинамики возрастание энтропии в замкнутой системе при необратимых процес­сах: возрастание энтропии означает переход системы из менее вероятных в более вероятные состояния. Таким образом, формула Больцмана позволяет дать статисти­ческое толкование второго начала термодинамики. Оно, являясь статистическим зако­ном, описывает закономерности хаотического движения большого числа частиц, со­ставляющих замкнутую систему.

Укажем еще две формулировки второго начала термодинамики:

1)по Кельвину: невозможен круговой процесс, единственным результатом которого является превращение теплоты, полученной от нагревателя, в эквивалентную ей работу;

2)по Клаузиусу: невозможен круговой процесс, единственным результатом которо­го является передача теплоты от менее нагретого тела к более нагретому.

В середине XIX в. возникла проблема так называемой тепловой смерти Вселенной . Рассматривая Вселенную как замкнутую систему и применяя к ней второе качало термодинамики, Клаузиус свел его содержание к утверждению, что энтропия Вселенной должна достигнуть своего максимума. Это означает, что со временем все формы движения должны перейти в тепловую. Переход же теплоты от горячих тел к холодным приведет к тому, что температура всех тел во Вселенной сравняется, т. е. наступит полное тепловое равновесие и все процессы во Вселенной прекратятся - наступит тепловая смерть Вселенной. Ошибочность вывода о тепловой смерти заключается в том, что бессмысленно применять второе начало термодинамики к незамкнутым системам, например к такой безграничной и бесконечно развивающейся системе, как Вселенная.

Энтропия, ее статистическое толкование и связь с термодинамической вероятностью

Понятие энтропии введено в 1865 г. Р. Клаузиусом. Для выяснения физического содержания этого понятия рассматривают отношение теплоты Q , полученной телом в изотермическом процессе, к температуре Т теплоотдающего тела, называемое приведенным количеством теплоты .

Приведенное количество теплоты, сообщаемое телу на бесконечно малом участке процесса, равно dQ/T. Строгий теоретический анализ показывает, что приведенное количество теплоты, сообщаемое телу в любом обратимом круговом процессе, равно нулю:

Функция состояния, дифференциалом которой является dQ/T, называется энтропией и обозначается S.

Из формулы (57.1) следует, что для обратимых процессов изменение энтропии

(57.3)

В термодинамике доказывается, что энтропия системы, совершающей необратимый цикл, возрастает:

Выражения (57.3) и (57.4) относятся только к замкнутым системам, если же система обменивается теплотой с внешней средой, то ее энтропия может вести себя любым образом. Соотношения (57.3) и (57.4) можно представить в виде неравенства Клаузиуса

(57.5)

т. е. энтропия замкнутой системы может либо возрастать (в случае необратимых процессов), либо оставаться постоянной (в случае обратимых процессов).

Если система совершает равновесный переход из состояния 1 в состояние 2 , то, согласно (57.2), изменение энтропии

(57.6)

где подынтегральное выражение и пределы интегрирования определяются через вели­чины, характеризующие исследуемый процесс. Формула (57.6) определяет энтропию лишь с точностью до аддитивной постоянной. Физический смысл имеет не сама энтропия, а разность энтропий.

Исходя из выражения (57.6), найдем изменение энтропии в процессах идеального газа. Taк как то

(57.7)

т. е. изменение энтропии DS 1 ® 2 идеального газа при переходе его из состояния 1 в со­стояние 2 не зависит от вида процесса перехода 1 ®2.

Таккак для адиабатического процесса dQ = 0, то DS = 0 и, следовательно, S= const,т. е. адиабатический обратимый процесс протекает при постоянной энтропии. Поэтому его часто называютизоэнтропийным процессом. Из формулы (57.7) следует, что при изотермическом процессе (T 1 = T 2)

при изохорном процессе (V 1 = V 2)

Энтропия обладает свойством аддитивности : энтропия системы равна сумме энт­ропий тел, входящих в систему. Свойством аддитивности обладают также внутренняя энергия, масса, объем (температура и давление таким свойством не обладают).

Более глубокий смысл энтропии вскрывается в статистической физике: энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность W состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы, или число микросостояний, осуществляющих данное макросостояние (по определению, 1, т. е. термодинамическая вероятность не есть вероятность в математическом смысле (последняя £ 1!)).

Согласно Больцману (1872), энтропия системы и термодинамическая вероятность связаны между собой следующим образом:

(57.8)

где k - постоянная Больцмана. Таким образом, энтропия определяется логарифмом числа микросостояний, с помощью которых может быть реализовано данное макросостояние. Следовательно, энтропия может рассматриваться как мера вероятности состояния термодинамической системы. Формула Больцмана (57.8) позволяет дать энтропии следующее статистическое толкование: энтропия является мерой неупорядо­ченности системы. В самом деле, чем больше число микросостояний, реализующих данное макросостояние, тем больше энтропия. В состоянии равновесия - наиболее вероятного состояния системы - число микросостояний максимально, при этом мак­симальна и энтропия.

Таккак реальные процессы необратимы, то можно утверждать, что все процессы в замкнутой системе ведут к увеличению ее энтропии -принцип возрастания энтропии. При статистическом толковании энтропии это означает, что процессы в замкнутой системе идут в направлении увеличения числа микросостояний, иными словами, от менее вероятных состояний к более вероятным, до тех пор пока вероятность состояния не станет максимальной.

Самопроизвольные и несамопроизвольные процессы. Термодинамически обратимые и необратимые процессы. Работа и теплота обратимого процесса. Формулировка второго начала термодинамики. Энтропия и ее свойства. Зависимость энтропии от температуры, давления, объема. Изменение энтропии при фазовых переходах. Статистическая трактовка второго начала термодинамики. Понятие о термодинамической вероятности состояния системы. Уравнение Больцмана - Планка. Вычисление абсолютной энтропии вещества. Расчет изменения энтропии в ходе химической реакции при различных температурах.

Первый закон термодинамики позволяет за счет неизменности полной энергии системы делать расчеты о превращении одной формы энергии в другую, но нельзя сделать выводы относительно возможности этого процесса, его глубине и направлении.

Для ответа на этим вопросы на основании практических данных было сформулировано второе начало термодинамики. На основании него можно рассчитать и сделать выводы о возможности самопроизвольного протекания процесса, о том, в каких пределах и условиях он протекает и сколько при этом выделится энергии в виде работы или теплоты.

Второй закон применим лишь к макроскопическим системам. Формулировки второго начала термодинамики:

Формулировка Р.Клаузиуса:

Теплота не может самопроизвольно переходить от менее нагретого тела к более нагретому.

Невозможен процесс, единственным результатом которого является превращение теплоты в работу.

Формулировка, предложенная М.Планком и В.Томсоном:

Невозможно построить машину, все действия которой сводились бы к производству работы за счет охлаждения теплового источника (вечный двигатель второго рода).

Рассмотрим работу тепловой машины, т.е. машины, производящей работу за счет теплоты, поглощаемой от какого-либо тела, называемого нагревателем. Нагреватель с температурой Т 1 передает теплоту Q 1 рабочему телу, например, идеальному газу, совершающему работу расширения А; чтобы вернуться в исходное состояние, рабочее тело должно передать телу, имеющему более низкую температуру Т 2 (холодильнику), некоторое количество теплоты Q 2 , причем

Отношение работы А, совершенной тепловой машиной, к количеству теплоты Q 1 , полученному от нагревателя, называется термодинамическим коэффициентом полезного действия (КПД) машины з:

Схема тепловой машины

Для получения математического выражения второго начала термодинамики рассмотрим работу идеальной тепловой машины (машины, обратимо работающей без трения и потерь тепла; рабочее тело - идеальный газ). Работа машины основана на принципе обратимого циклического процесса - термодинамического цикла Карно (рис. 1.2).

Запишем выражения для работы на всех участках цикла:

Цикл Карно.

1 - 2 Изотермическое расширение.

Газ расширяется строго обратимо, поглощая Q теплоты и производя эквивалентную этой теплоте работу.

2 - 3 Адиабатическое расширение.

Температура падает до T 2:

4 - 1 Адиабатическое сжатие.

Система возвращается в первоначальное состояние.

Общая работа в цикле:

3 - 4 Изотермическое сжатие.

Газ отдает холодильнику Q теплоты, эквивалетной работе (см. формулу)

КПД идеальной тепловой машины, работающей по циклу Карно:

Отсюда следует, что КПД макс тепловой машины определяется только разностью температур нагревателя и холодильника. Поскольку любой цикл можно разбить на множество бесконечно малых циклов Карно, то полученное выражение справедливо для тепловой машины, обратимо работающей по любому циклу.

Для необратимо работающей тепловой машины:

Для общего случая можем записать:

Отсюда видно, что КПД может быть равно единице, только при условии если Т 2 будет равно 0 0 К, что практически недостижимо.

На данном этапе целесообразно ввести понятие энтропии. Внутренняя энергия системы условно состоит "свободной" и "связанной" энергий, причем "свободная" энергия может быть переведена в работу, а "связанная" энергия может перейти только в теплоту. Величина связанной энергии тем больше, чем меньше разность температур, и при T = const тепловая машина не может производить работу. Мерой связанной энергии является новая термодинамическая функция состояния, называемая энтропией.

Введем определение энтропии, основываясь на цикле Карно. Преобразуем выражение (I.41) к следующему виду:

Отсюда получаем, что для обратимого цикла Карно отношение количества теплоты к температуре, при которой теплота передана системе (т.н. приведенная теплота) есть величина постоянная.

Это верно для любого обратимого циклического процесса, т.к. его можно представить в виде суммы элементарных циклов Карно, для каждого из которых

Алгебраическая сумма приведённых теплот для произвольного обратимого цикла равна нулю:

Для любого цикла можно записать интеграл по замкнутому контуру:

Если интеграл по замкнутому контуру равен нулю, то выражение под знаком интеграла есть полный дифференциал некоторой функции состояния; эта функция состояния есть энтропия S:

Если система обратимо переходит из состояния 1 в состояние 2, изменение энтропии будет равно:

Подставляя значение изменения энтропии в выражения для первого начала термодинамики получим совместное аналитическое выражение двух начал термодинамики для обратимых процессов:

Для необратимых процессов можно записать неравенства:

Работа обратимого процесса всегда больше, чем того же процесса, проводимого необратимо. Если рассматривать изолированную систему (дQ = 0), то легко показать, что для обратимого процесса dS = 0, а для самопроизвольного необратимого процесса dS > 0.

В изолированных системах самопроизвольно могут протекать только процессы, сопровождающиеся увеличением энтропии.

Энтропия изолированной системы не может самопроизвольно убывать.

Oба этих вывода также являются формулировками второго начала термодинамики.

Статистическая интерпретация энтропии

Применяя представления классической механики к молекулярным системам, атом уподобляют материальной точке и приписывают ему три степени свободы (т.е. число степеней свободы в данном рассмотрении - число независимых переменных, определяющих положение механической системы в пространстве). Предполагается, что этим атомы различимы и как бы могут быть пронумерованы.

Классическая термодинамика рассматривает происходящие процессы безотносительно к внутреннему строению системы; поэтому в рамках классической термодинамики показать физический смысл энтропии невозможно. Для решения этой проблемы Л.Больцманом в теорию теплоты были введены статистические представления. Каждому состоянию системы приписывается термодинамическая вероятность (определяемая как число микросостояний, составляющих данное макросостояние системы), тем большая, чем более неупорядоченным или неопределенным является это состояние. Т.о., энтропия есть функция состояния, описывающая степень неупорядоченности системы. Количественная связь между энтропией S и термодинамической вероятностью W выражается формулой Больцмана:

С точки зрения статистической термодинамики второе начало термодинамики можно сформулировать следующим образом:

Система стремится самопроизвольно перейти в состояние с максимальной термодинамической вероятностью.

Статистическое толкование второго начала термодинамики придает энтропии конкретный физический смысл меры термодинамической вероятности состояния системы.

Понятие статистического веса. Обобщая результаты, полученные в предыдущем примере, можно доказать, что число способов реализации данного макросостояния равно числу сочетаний С из N элементов по n

C = N!/(n!·(N - n)!), где n! = n·(n - 1)·(n - 2)···3·2·1.

Статистический вес или термодинамическая вероятность W - есть число способов, которыми может быть реализовано данное макросостояние.

W(n, N - n) = N!/(n!·(N - n)!)

Легко доказать, что термодинамическая вероятность пропорциональна обычной вероятности. Из формулы следует, что наибольшей вероятностью обладает состояние с равномерным распределением молекул по объему. Однако важно, что в любой момент времени возможны отклонения от этого равновесного состояния, называемые флуктуациями.

  • § 5.3. Сложение гармонических колебаний
  • § 5.4. Сложное колебание и его гармонический спектр
  • § 5.5. Вынужденные колебания. Резонанс
  • § 5.6. Автоколебания
  • § 5.7. Уравнение механической волны
  • § 5.8. Поток энергии и интенсивность волны
  • § 5.9. Ударные волны
  • § 5.10. Эффект Доплера
  • Глава 6 Акустика
  • § 6.1. Природа звука и его физические характеристики
  • § 6.2. Характеристики слухового ощущения. Понятие об аудиометрии
  • § 6.3. Физические основы звуковых методов исследования в клинике
  • §6.4. Волновое сопротивление. Отражение звуковых волн. Реверберация
  • § 6.5. Физика слуха
  • § 6.6. Ультразвук и его применения в медицине
  • § 6.7. Инфразвук
  • § 6.8. Вибрации
  • § 7.1. Вязкость жидкости. Уравнение Ньютона. Ньютоновские и неньютоновские жидкости
  • § 7.2. Течение вязкой жидкости по трубам. Формула Пуазейля
  • § 7.3. Движение тел в вязкой жидкости. Закон Стокса
  • § 7.4. Методы определения вязкости жидкости. Клинический метод определения вязкости крови
  • § 7.5. Турбулентное течение. Число Рейнольдса
  • § 7.6. Особенности молекулярного строения жидкостей
  • § 7.7. Поверхностное натяжение
  • § 7.8. Смачивание и несмачивание. Капиллярные явления
  • Глава 8
  • §8.1. Кристаллические и аморфные тела. Полимеры и биополимеры
  • § 8.2. Жидкие кристаллы
  • § 8.3. Механические свойства твердых тел
  • § 8.4. Механические свойства биологических тканей
  • Глава 9 Физические вопросы гемодинамики
  • § 9.1. Модели кровообращения
  • § 9.2. Пульсовая волна
  • § 9.3. Работа и мощность сердца. Аппарат искусственного кровообращения
  • § 9.4. Физические основы клинического метода измерения давления крови
  • § 9.5. Определение скорости кровотока
  • § 10.1. Основные понятия термодинамики. Первое начало термодинамики
  • § 10.2. Второе начало термодинамики. Энтропия
  • § 10.3. Стационарное состояние. Принцип минимума производства энтропии
  • § 10.4. Организм как открытая система
  • § 10.5. Термометрия и калориметрия
  • § 10.6. Физические свойства нагретых и холодных сред, используемых для лечения. Применение низких температур в медицине
  • Глава 11
  • § 11.1. Строение и модели мембран
  • § 11.2. Некоторые физические свойства и параметры мембран
  • § 11.3. Перенос молекул (атомов) через мембраны.Уравнение Фика
  • § 11.4.Уравнение Нернста-Планка. Перенос ионов через мембраны
  • § 11.5. Разновидности пассивного переноса молекул и ионов через мембраны
  • § 11.6. Активный транспорт. Опыт Уссинга
  • § 11.7. Равновесный и стационарный мембранные потенциалы. Потенциал покоя
  • § 11.8. Потенциал действия и его распространение
  • § 11.9. Активно-возбудимые среды. Автоволновые процессы в сердечной мышце
  • Раздел4
  • § 12.1. Напряженностьи потенциал - характеристики электрического поля
  • § 12.2. Электрический диполь
  • § 12.3. Понятие о мультиполе
  • § 12.4. Дипольный электрический генератор (токовый диполь)
  • § 12.5. Физические основы электрокардиографии
  • § 12.6. Диэлектрики в электрическом поле
  • § 12.7. Пьезоэлектрический эффект
  • § 12.8. Энергия электрического поля
  • § 12.9. Электропроводимость электролитов
  • § 12.10. Электропроводимость биологических тканей и жидкостей при постоянном токе
  • § 12.11. Электрический разряд в газах. Аэроионы и их лечебно-профилактическое действие
  • Глава 13 Магнитное поле
  • § 13.1. Основные характеристики магнитного поля
  • § 13.2. Закон Ампера
  • § 13.3. Действие магнитного поля
  • § 13.4. Магнитные свойства вещества
  • § 13.5. Магнитные свойства тканей организма. Понятие о биомагнетизме и магнитобиологии
  • §14.1. Свободные электромагнитные колебания
  • § 14.2. Переменный ток
  • § 14.3. Полное сопротивление в цепи переменного тока. Резонанс напряжений
  • § 14.4. Импеданс тканей организма. Дисперсия импеданса. Физические основы реографии
  • § 14.5. Электрический импульс и импульсный ток
  • § 14.6. Электромагнитные волны
  • § 14.7. Шкала электромагнитных волн. Классификация частотных интервалов, принятая в медицине
  • § 15.1. Первичное действие постоянного тока на ткани организма. Гальванизация. Электрофорез лекарственных веществ
  • § 15.2. Воздействие переменными (импульсными) токами
  • § 15.3. Воздействие переменным магнитным полем
  • § 15.4. Воздействие переменным электрическим полем
  • § 15.5. Воздействие электромагнитными волнами
  • Раздел 5 Медицинская электроника
  • Глава 16
  • § 16.1. Общая и медицинская электроника. Основные группы медицинских электронных приборов и аппаратов
  • § 16.2. Электробезопасность медицинской аппаратуры
  • § 16.3. Надежность медицинской аппаратуры
  • Глава 17
  • § 17.1. Структурная схема съема, передачи и регистрации медико-биологической информации
  • § 17.2. Электроды для съема биоэлектрического сигнала
  • § 17.3. Датчики медико-биологической информации
  • § 17.4. Передача сигнала. Радиотелеметрия
  • § 17.5. Аналоговые регистрирующие устройства
  • § 17.6. Принцип работы медицинских приборов, регистрирующих биопотенциалы
  • Глава 18
  • § 18.1. Коэффициент усиления усилителя
  • § 18.2. Амплитудная характеристика усилителя. Нелинейные искажения
  • § 18.3. Частотная характеристика усилителя. Линейные искажения
  • § 18.4. Усиление биоэлектрических сигналов
  • § 18.5. Различные виды электронных генераторов. Генератор импульсных колебаний на неоновой лампе
  • § 18.6. Электронные стимуляторы.Низкочастотная физиотерапевтическая электронная аппаратура
  • § 18.7. Высокочастотная физиотерапевтическая электронная аппаратура. Аппараты электрохирургии
  • § 18.8. Электронный осциллограф
  • Раздел 6
  • Глава 19
  • § 19.3. Интерферометры и их применение. Понятие об интерференционном микроскопе
  • § 19.4. Принцип Гюйгенса-Френеля
  • § 19.5. Дифракция на щели в параллельных лучах
  • § 19.6. Дифракционная решетка. Дифракционный спектр
  • § 19.7. Основы рентгеноструктурного анализа
  • § 19.8. Понятие о голографии и ее возможном применении в медицине
  • Глава 20
  • § 20.1. Свет естественный и поляризованный. Закон Малюса
  • § 20.2. Поляризация света при отражении и преломлении на границе двух диэлектриков
  • § 20.3. Поляризация света при двойном лучепреломлении
  • § 20.4. Вращение плоскости поляризации. Поляриметрия
  • § 20.5. Исследование биологических тканей в поляризованном свете
  • Глава 21
  • § 21.1. Геометрическая оптика как предельный случай волновой оптики
  • § 21.2. Аберрации линз
  • § 21.3. Понятие об идеальной центрированной оптической системе
  • § 21.4. Оптическая система глаза и некоторые ее особенности
  • § 21.5. Недостатки оптической системы глаза и их компенсация
  • § 21.6. Лупа
  • § 21.7. Оптическая система и устройство микроскопа
  • § 21.8. Разрешающая способность и полезное увеличение микроскопа. Понятие о теории Аббе
  • § 21.9. Некоторые специальные приемы оптической микроскопии
  • § 21.10. Волоконная оптика и ее использование в оптических устройствах
  • Глава 22
  • § 22.1. Характеристики теплового излучения. Черное тело
  • § 22.2. Закон Кирхгофа
  • § 22.3. Законы излучения черного тела
  • § 22.5. Теплоотдача организма. Понятие о термографии
  • § 22.6. Инфракрасное излучение и его применение в медицине
  • § 22.7. Ультрафиолетовое излучение и его применение в медицине
  • Раздел 7
  • Глава 23
  • § 23.1. Гипотеза де Бройля.
  • § 23.2. Электронный микроскоп. Понятие об электронной оптике
  • § 23.3. Волновая функция и её физический смысл
  • § 23.4. Соотношения неопределенностей
  • § 23.5. Уравнение Шредингера.
  • § 23.6. Применение уравнения Шредингера к атому водорода. Квантовые числа
  • § 23.7. Понятие о теории Бора
  • § 23.8. Электронные оболочки сложных атомов
  • § 23.9. Энергетические уровни молекул
  • Глава 24
  • § 24.1. Поглощение света
  • § 24.2. Рассеяние света
  • § 24.3. Оптические атомные спектры
  • § 24.4. Молекулярные спектры
  • § 24.5. Различные виды люминесценции
  • § 24.6. Фотолюминесценция
  • § 24.7. Хемилюминесценция
  • § 24.8. Лазеры и их применение в медицине
  • § 24.9. Фотобиологические процессы. Понятия о фотобиологии и фотомедицине
  • § 24.10. Биофизические основы зрительной рецепции
  • Глава 25
  • § 25.1. Расщепление энергетических уровней атомов в магнитном поле
  • § 25.2. Электронный парамагнитный резонанс и его медико-биологические применения
  • § 25.3. Ядерный магнитный резонанс. Ямр-интроскопия (магнито-резонансная томография)
  • Раздел 8
  • Глава 26
  • § 26.1. Устройство рентгеновской трубки. Тормозное рентгеновское излучение
  • § 26.2. Характеристическое рентгеновское излучение. Атомные рентгеновские спектры
  • § 26.3. Взаимодействие рентгеновского излучения с веществом
  • § 26.4. Физические основы применения рентгеновского излучения в медицине
  • Глава 27 Радиоактивность. Взаимодействие ионизирующего излучения с веществом
  • § 27.1. Радиоактивность
  • § 27.2. Основной закон радиоактивного распада. Активность
  • § 27.3. Взаимодействие ионизирующего излучения с веществом
  • § 27.4. Физические основы действия ионизирующих излучений на организм
  • § 27.5. Детекторы ионизирующих излучений
  • § 27.6. Использование радионуклидов и нейтронов в медицине
  • § 27.7. Ускорители заряженных частиц и их использование в медицине
  • Глава 28 Элементы дозиметрии ионизирующих излучений
  • § 28.1. Доза излучения и экспозиционная доза. Мощность дозы
  • § 28.2. Количественная оценка биологического действия ионизирующего излучения. Эквивалентная доза
  • § 28.3. Дозиметрические приборы
  • § 28.4. Защита от ионизирующего излучения
  • По вопросам приобретения продукции
  • § 10.2. Второе начало термодинамики. Энтропия

    Первое начало термодинамики, являющееся, по существу, вы­ражением закона сохранения энергии, не указывает направления возможного протекания процессов. Так, например, по первому началу термодинамики, при теплообмене одинаково возможным был бы как самопроизвольный переход теплоты от тела более на­гретого к телу менее нагретому, так и, наоборот, от тела менее на­гретого к телу более нагретому. Из повседневного опыта, однако, хорошо известно, что второй процесс в природе нереален; так, на­пример, не может самопроизвольно нагреться вода в чайнике вследствие охлаждения воздуха в комнате. Другой пример: при падении камня на землю происходит его нагревание, эквивалент­ное изменению потенциальной энергии, обратный процесс - са­мопроизвольное поднятие камня только из-за его охлаждения - невозможен.

    Второе начало термодинамики, так же как и первое, является обобщением данных опыта.

    Существует несколько формулировок второго закона термоди­намики: теплота самопроизвольно не может переходить от тела с меньшей температурой к телу с большей температу­рой (формулировка Клаузиуса), или невозможен вечный двига­тель второго рода (формулировка Томсона), т. е. невозможен такой периодический процесс, единственным результатом которого было бы превращение теплоты в работу вслед­ствие охлаждения тела.

    В тепловой машине совершается работа за счет переданной теплоты, но при этом часть теплоты обязательно передается холодильнику. На рис. 10.4 схематически показаны соответственно невозможный (а) и возможный (б), по второму началу, периодиче­ские процессы.

    Рассмотрим некоторые термодинамические понятия, которые позволяют количественно выразить второе начало термодинамики.

    Процесс 1 -2 называют обратимым, если можно совершить обратный процесс 2-1 через все промежуточные состояния так, чтобы после возвращения системы в исходное состояние в окру­жающих телах не произошло каких-либо изменений.

    Обратимый процесс является физической абстракцией. Все ре­альные процессы необратимы хотя бы из-за наличия силы тре­ния, которая вызывает нагревание окружающих тел. Некоторые характерные примеры необратимых процессов: расширение газа в пустоту, диффузия, теплообмен и т. д. Для возвращения систе­мы в начальное состояние во всех этих случаях необходимо совер­шение работы внешними телами.

    Циклом или круговым процессом на­зывают процесс, при котором система возвращается в исходное состояние.

    График цикла представляет собой зам­кнутую линию. Цикл, изображенный на рис. 10.5, - прямой, он соответствует тепловой машине, т. е. устройству, кото­рое получает количество теплоты от неко­торого тела - теплоотдатчика (нагрева­теля), совершает работу и

    отдает часть этой теплоты другому телу - теплоприемнику (холодильнику) (рис. 10.4, б).

    В этом цикле рабочее вещество (газ) в целом совершает положи­тельную работу (рис. 10.5): в процессе 1-а-2 газ расширяется, ра­бота положительна и численно равна площади под кривой 1-а-2; в процессе 2-б-1 работа отрицательна (сжатие газа) и численно равна площади под соответствующей кривой. Алгебраическое сум­мирование дает в целом положительную работу, совершенную газом за цикл. Она численно равна площади, ограниченной замкнутой кривой 1-а-2-б-1.

    Коэффициентом полезного действия тепловой машины или прямого цикла называют отношение совершенной рабо­ты к количеству теплоты, полученному рабочим веществом

    от нагревателя:

    Так как работа тепловой машины совершается за счет количе­ства теплоты, а внутренняя энергия рабочего вещества за цикл не изменяется (AU = 0), то из первого закона термодинамики следу­ет, что работа в круговых процессах равна алгебраической сумме количеств теплоты: A = Q X + Q 2 .

    Следовательно,

    Количество теплоты Q v полученное рабочим веществом, положи­тельно, количество теплоты Q 2 , отданное рабочим веществом хо­лодильнику, отрицательно.

    Обратный цикл 2 соответствует работе холодильной машины, т. е. такой системе, которая отбирает теплоту от холодильника и передает большее количество теплоты нагревате­лю. Как следует из второго закона термодинамики, этот процесс (рис. 10.6) не может протекать сам собой, он происхо­дит за счет работы внешних тел. При этом газ совершает отрицательную ра­боту: работа сжатия в процессе 2-а-1 отрицательна, работа. В ре­зультате алгебраического расширения в процессе 1-6-2 положительна. В результате суммирова­ния получаем отрицательную работу га­за, численно равную площади, ограни­ченной кривой 2-а-1 -б-2.

    Рассмотрим цикл Карно (рис. 10.7), т. е. круговой процесс, со­стоящий из двух изотерм 1-2, 3-4, которым соответствуют тем­пературы Т 1 и Т 2 (Т 1 > Т 2), и двух адиабат 2-3, 4-1. В этом цик­ле рабочим веществом является идеальный газ. Передача количе­ства теплоты от нагревателя рабочему веществу происходит при температуре T 1 а от рабочего вещества к холодильнику - при температуре Т 2 . Без доказательства укажем, что КПД обратимого цикла Карно зависит только от температур Т 1 и Т 2 нагревателя и холодильника:

    Карно, исходя из второго начала термодинамики, доказал сле­дующие положения: КПД всех обратимых машин, работающих по циклу, состоящему из двух изотерм и двух адиабат, с нагрева­телем при температуре Т г и холодильником при температуре Т 2 , равны между собой и не зависят от рабочего вещества и конструк­ции машины, совершающей цикл; КПД необратимой машины меньше КПД обратимой машины.

    Эти положения на основании (10.9) и (10.10) можно записать в виде

    где знак «=» относится к обратимому циклу, а знак «<» - к необ­ратимому.

    Это выражение представляет собой количественную формули­ровку второго начала. Покажем, что ее следствием являются обе качественные формулировки, приведенные в начале параграфа.

    Допустим, что происходит теплообмен между двумя телами без совершения работы, т. е. Q l + Q 2 = 0. Тогда [см. (10.11)] Т 1 - Т 2 > 0 и T 1 > T 2 , что соответствует формулировке Клаузиуса: в самопро­извольном процессе теплота передается от тел с более высокой тем­пературой к телам с более низкой.

    В том случае, если тепловая машина полностью затрачивает всю полученную при теплообмене энергию на совершение работы и не отдает энергию холодильнику, Q 2 = 0 и из (10.11) имеем

    что невозможно, так как Т 1 и Т 2 положительны. Отсюда следует формулировка Томсона о невозможности вечного двигателя вто­рого рода. Преобразуем выражение (10.11):

    Отношение количества теплоты, полученного или отданного рабочим веществом, к температуре, при которой происходит теп­лообмен, называют приведенным количеством теплоты.

    Поэтому (10.12) можно сформулировать так алгебраическая сумма приведенных количеств теплоты за цикл не больше нуля (в обратимых циклах равна нулю, в необратимых - меньше нуля).

    Если состояние системы изменяется не по циклу Карно, а по некоторому произвольному циклу, то его можно представить в виде совокупности достаточно малых циклов Карно (рис. 10.8). Тогда выражение (10.12) преобразуется в сумму достаточно малых при­веденных количеств теплоты, что в пределе выразится интегралом

    Выражение (10.13) справедливо для любого необратимого (знак «<») или обратимого (знак «=») цикла; dQ/T - элементарная при­веденная теплота. Кружок на знаке интеграла означает, что интег­рирование проводится по замкнутому контуру, т. е. по циклу. 1 Рассмотрим обратимый цикл (см. рис. 10.5), состоящий из двух процессов аи б. Для него справедливо равенство:

    На основе (10.13) для обратимых циклов имеем

    И
    зменив пределы интегрирования по пути б, получим

    Последнее означает, что сумма приведенных количеств тепло­ты цри обратимом переходе системы из одного состояния в другое не зависит от процесса, а для данной массы газа определяется только начальным и конечным состояниями системы. На рис. 10.9 показаны графики различных обратимых процессов (а, б, в), общими для которых являются начальное 1 и конечное 2 состоя­ния. Количество теплоты и работа в этих процессах различны, но сумма приведенных количеств теплоты оказывается одинаковой.

    Физическую характеристику, не зависящую от процесса или перемещения, обычно выражают как разность двух значений не­которой функции, соответствующих конечному и начальному со­стояниям процесса или положениям системы. Так, например, не­зависимость работы силы тяжести от траектории позволяет выра­зить эту работу через разность потенциальных энергий в конечных точках траектории; независимость работы сил электро­статического поля от траекторий заряда позволяет связать эту ра­боту с разностью потенциалов точек поля, являющихся гранич­ными при его перемещении.

    Аналогично, сумму приведенных количеств теплоты для обра­тимого процесса можно представить как разность двух значений некоторой функции состояния системы, которую называют энт­ропией:

    где S 2 и S 1 - энтропия соответственно в конечном 2 и начальном 1 состояниях. Итак, энтропия есть функция состояния систе­мы, разность значений которой для двух состояний равна сумме приведенных количеств теплоты при обратимом переходе систе­мы из одного состояния в другое.

    Если процесс необратим, то равенство (10.15) не выполняется. Пусть дан цикл (рис. 10.10), состоящий из обратимого 2-б-1 и необратимого 1-а-2 процессов. Так как часть цикла необратима, то и весь цикл необратим, поэтому на основании (10.13) запишем

    Согласно (10.15), тогда вместо (10.16) получим, или

    Итак, в необратимом процессе сумма приведенных количеств теплоты меньше изменения энтропии. Объединяя правые части (10.15) и (10.17), получаем

    где знак «=» относится к обратимым, а знак «>» - к необрати­мым процессам.

    Соотношение (10.18) получено на основании (10.11) и поэтому также выражает второе начало термодинамики.

    Установим физический смысл энтропии.

    Формула (10.15) дает только разность энтропии, сама же энт­ропия определяется с точностью до произвольной постоянной:

    Если система перешла из одного состояния в другое, то независи­мо от характера процесса - обратимый он или необратимый - изме­нение энтропии вычисляется по формуле (10.15) для любого обрати­мого процесса, происходящего между этими состояниями. Это обус­ловлено тем, что энтропия является функцией состояния системы.

    Разность энтропии двух состояний легко вычисляется в обра­тимом изотермическом процессе:

    где Q - полное количество теплоты, полученное системой в про­цессе перехода из состояния 1 в состояние 2 при постоянной температуре Т. Последнюю формулу используют при вычислении изме­нения энтропии в таких процессах, как плавление, парообразова­ние и т. п. В этих случаях Q - теплота фазового превращения. Если процесс происходит в изолированной системе (dQ = 0), то [см. (10.18)] в обратимом процессе энтропия не изменяется: S 2 - S 1 = 0, S = const, а в необратимом - возрастает. Это можно проиллюстрировать на примере теплообмена между двумя тела­ми, образующими изолированную систему и имеющими темпера­туру Т 1 и Т 2 соответственно (Т 1 > Т 2). Если небольшое количество теплоты dQ переходит от первого тела ко второму, то при этом энтропия первого тела уменьшается на dS 1 = dQ/T 1 , а второго - увеличивается на dS 2 = dQ/T 2 . Так как количество теплоты неве­лико, то можно считать, что температуры первого и второго тел в процессе теплообмена не изменяются. Полное изменение энтро­пии системы положительно:

    следовательно, энтропия изолированной системы возрастает. Ес­ли бы в этой системе происходил самопроизвольный переход теп­лоты от тела с меньшей температурой к телу с большей темпера­турой, то энтропия системы при этом уменьшилась бы:

    а это противоречит (10.18). Таким образом, в изолированной сис­теме не могут протекать такие процессы, которые приво­дят к уменьшению энтропии системы (еще одна формулиров­ка второго начала термодинамики).

    Увеличение энтропии в изолированной системе не будет проис­ходить беспредельно. В рассмотренном выше примере температу­ры тел со временем выровняются, теплопередача между ними прекратится и наступит равновесное состояние (см. § 10.1). В этом состоянии параметры системы будут оставаться неизменными, а энтропия достигнет максимума.

    Согласно молекулярно-кинетической теории, энтропию наибо­лее удачно можно охарактеризовать как меру неупорядоченности расположения частиц системы. Так, например, при уменьшении объема газа его молекулы вынуждены занимать все более опреде­ленные положения одна относительно другой, что соответствует большему порядку в системе, при этом энтропия убывает. Ког­да газ конденсируется или жидкость кристаллизуется при постоянной температуре, то выделяется теплота, энтропия убывает. И в этом случае происходит увеличение порядка в расположении частиц.

    Неупорядоченность состояния системы количественно харак­теризуется термодинамической вероятностью W т ep . Для выясне­ния ее смысла рассмотрим систему, состоящую из четырех частиц газа: а, Ь, с, d (рис. 10.11). Эти частицы находятся в объеме, раз­деленном мысленно на две равные ячейки, и могут свободно в нем перемещаться.

    Состояние системы, определяемое числом частиц в первой и второй ячейках, назовем макросостоянием; состояние системы, определяемое тем, какие конкретно частицы находятся в каждой из ячеек, - микросостоянием. Тогда (рис. 10.11, а) макросостоя­ние - одна частица в первой ячейке и три частицы во второй - осуществляется четырьмя микросостояниями. Макросостояние, соответствующее размещению четырех частиц равномерно по две в каждой ячейке, осуществляется шестью микросостояниями (рис. 10.11,6).

    Термодинамической вероятностью называют число спосо­бов размещения частиц или число микросостояний, реали­зующих данное макросостояние.

    В рассмотренных примерах W т ep = 4 в первом случае и W т ep = 6 во втором. Очевидно, что равномерному распределению частиц по ячейкам (по две) соответствует большая термодинамическая веро­ятность. С другой стороны, равномерное распределение частиц от­вечает равновесному состоянию с наибольшей энтропией. Из те­ории вероятностей ясно, что система, предоставленная самой се­бе, стремится прийти к макросостоянию, которое реализуется наибольшим количеством способов, наибольшим количеством микросостояний, т. е. к состоянию с наибольшей термодинамиче­ской вероятностью.

    Заметим, что если газу предоставить возможность расширять­ся, его молекулы будут стремиться равномерно занять весь воз­можный объем, при этом процессе энтропия увеличивается. Об­ратный процесс - стремление молекул занять лишь часть объема, например половину комнаты, - не наблюдается, этому соответст­вовало бы состояние со значительно меньшей термодинамической вероятностью и меньшей энтропией.

    Отсюда можно сделать вывод о связи энтропии с термодинами­ческой вероятностью. Больцман установил, что энтропия линейно связана с логарифмом термодинамической вероятности:

    где k - постоянная Больцмана.

    Второе начало термодинамики - статистический закон, в отличие, например, от первого начала термодинамики или вто­рого закона Ньютона.

    Утверждение второго начала о невозможности некоторых процес­сов, по существу, является утверждением о чрезвычайно малой веро­ятности их, практически - невероятности, т. е. невозможности.

    В космических масштабах наблюдаются существенные откло­нения от второго начала термодинамики, а ко всей Вселенной, так же, как и к системам, состоящим из малого числа молекул, оно неприменимо.

    В заключение еще раз отметим, что если первый закон термо­динамики содержит энергетический баланс процесса, то вто­рой закон показывает его возможное направление. Аналогич­но тому, как второй закон термодинамики существенно дополня­ет первый закон, так и энтропия дополняет понятие энергии.