Что такое радиус атома в химии примеры. Атомные радиусы

В конце статьи, вы будете в состоянии описать- Определение радиуса атома, периодическая таблица тенденция, Самый большой атомный радиус, Атомный радиус диаграммы. Давайте начнем обсуждать один за другим.

Атомный радиус Определение

Общая картина атома в нашем сознании, что из сферы. Если это считается правильным, то это определение:

Однако, нет уверенности о точном положении электронов в любой момент времени. Теоретически, электрон, некогда, может быть очень близко к ядру, в то время как в другое время он может быть далеко от ядра. Также, Это невозможно измерить точное значение атомного радиуса атома элемента, так как атом очень много меньше в размерах.

Почему нет возможности точного определения?
A . Это не представляется возможным выделить один атом.
В. Это невозможно измерить точное расстояние атома не имеет четко определенную форму или границу и вероятность электрона равна нулю уровня, даже на большом расстоянии от ядра.
C.It может измениться из-за влияния окружающей среды и многие другие причины.

Однако, мы можем выразить различные формы атома в зависимости от характера связи атомов . Несмотря на указанные выше ограничения, Есть три оперативные концепции:


Ковалентная Радиус

В гомоатомных молекулах (содержащие один и тот же тип атомов) ковалентный радиус определяется как

Ван-дер-Ваальса радиус

На самом деле, ван-дер-Ваальса слабые силы их магнитуда(мощность) притяжения меньше, в газообразном, так и в жидком состоянии вещества. Поэтому радиус определяется в твердом состоянии, когда величина силы, как ожидается, до максимума.

  • Значение Ван-дер-Ваал больше, чем радиус ковалентной.
  • пример, Ван-дер-Ваал сила хлора 180 м, а радиус ковалентной является 99 вечера(пикометра).

Металлический радиус

поскольку металлическая связь слабее ковалентной связи межъядерное молекулярное расстояние между двумя атомами в металлической связи составляет более ковалентной связи.

  • Металлическая связь более чем ковалентная связь.

Периодическая Атомный радиус Таблица Trend

В ходе исследования, Ученые обнаружили самую маленькую частицу материи и назвали его в качестве атома. Различные атомы различных элементов показывают различные химические и физические свойства. Это можно увидеть, когда атомные изменения радиуса в периодической таблице тенденции. Изменение атомных радиусов имеет большое влияние на поведение атомов в процессе химической реакции. Это происходит потому, что она влияет на энергию ионизации, химическая реактивность, и многие другие факторы,.

Следует отметить, что атомный радиус последнего элемента в каждый период, который является довольно большой. Потому что благородные газы считаются ван-дер-радиус Ваала, который всегда имеет более высокую ценность, чем радиус ковалентной. Когда мы сравним три атомных радиусов порядок сил

  • Ван-дер-Ваал >Металлический радиус>Ковалентная

Атомный радиус Trend

В период, количество снарядов остается неизменным, но увеличивается ядерный заряд. Это следствие, увеличение силы притяжения к ядру, который вызывает сокращение размера.

  • Ядерный аттракцион α 1 / Атомные радиусы.
  • Основное квантовое число(N) α Атомные радиусы.
  • Скрининг эффект α Атомные радиусы.
  • Количество облигаций α 1 / Атомные радиусы.

Заметка: Атомный Радий это множественное число от радиуса атома.


В группе, по мере перехода от верхней части к нижней части в группе атомных радиусов возрастает с увеличением атомного номера, это связано с тем, что количество энергии оболочек возрастает.

Самый большой атомный радиус

  • Размер водорода является наименьшим.
  • Франций, имеющий атомный номер 87 имеет больший радиус ковалентные и Вандер-Ваальса, чем цезий.
  • Так как Франций является чрезвычайно нестабильным элементом. Так, Цезий имеет самый большой атомный номер.

Это все об основах Определение радиуса атома, периодическая таблица тенденция, Самый большой атомный радиус, Атомный радиус диаграммы.

Чтобы разобраться в вопросе, что в современной науке называется радиусом атома, вспомним, что из себя представляет сам атом. По классическим представлениям в центре атома находится ядро, состоящее из протонов и нейтронов, а вокруг ядра каждый на своей орбите вращаются электроны.

Поскольку в данной модели строения атома электроны являются пространственно ограниченными частицами, т. е. корпускулами, логично считать атомным радиусом (а. р.) расстояние от его ядра до самой дальней, или внешней, орбиты, по которой вращаются так называемые валентные электроны.

Однако по современным, квантовомеханическим представлениям , определить данный параметр нельзя так однозначно, как это делается в классической модели. Здесь электроны уже не представляются в виде частиц-корпускул, а получают свойства волн, т. е. пространственно-неограниченных объектов. В такой модели точно определить положение электрона просто невозможно. Здесь эта частица уже представляется в виде электронной орбитали, плотность которой меняется, в зависимости от расстояния до ядра атома.

Итак, в современной модели строения атома его радиус нельзя определить однозначно. Поэтому в квантовой физике, общей химии, физике твердого тела и других смежных науках эту величину сегодня определяют как радиус сферы, в центре которой находится ядро, внутри которой сосредоточено 90-98% плотности электронного облака. Фактически это расстояние и определяет границы атома.

Если рассмотреть Периодическую таблицу химических элементов (таблицу Менделеева), в которой приведены атомные радиусы, можно увидеть определенные закономерности, которые выражаются в том, что в пределах периода эти числа уменьшаются слева направо, а в пределах группы они увеличиваются сверху вниз. Такие закономерности объясняются тем, что внутри периода при движении слева направо заряд атома возрастает, что увеличивает силу притяжения им электронов, а при движении внутри группы сверху вниз все больше заполняется электронных оболочек.

Атомный радиус в химии и кристаллографии

Какие бывают виды

Данная характеристика сильно варьируется, в зависимости от того, в какой химической связи состоит атом. Поскольку все вещества в природе в подавляющем своем большинстве состоят из молекул, понятие а. р. используют для определения межатомных расстояний в молекуле. А данная характеристика зависит от свойств входящих в молекулу атомов, т. е. их положения в Периодической системе химических элементов. Обладая разными физическими и химическими свойствами, молекулы образуют все огромное разнообразие веществ.

По сути, эта величина очерчивает сферу действия силы электрического притяжения ядра атома и его внешних электронных оболочек. За пределами этой сферы в действие вступает сила электрического притяжения соседнего атома. Существует несколько типов химической связи атомов в молекуле:

  • ковалентная;
  • ионная;
  • металлическая;
  • ван-дер-ваальсова.

Соответственно этим связям таким же будет и атомный радиус .

Как зависит от типа химической связи

При ковалентной связи АР определяется как половина расстояния между соседними атомами в одинарной химической связи Х-Х, причем Х - это неметалл, ибо данная связь свойственна неметаллам. Например, для галогенов ковалентный радиус будет равен половине межъядерного расстояния Х-Х в молекуле Х2, для молекул селена Se и серы S - половине расстояния Х-Х в молекуле Х8, для углерода С он будет равен половине кратчайшего расстояния С-С в кристалле алмаза.

Данная химическая связь обладает свойством аддитивности , т. е. суммирования, что позволяет определять межъядерные расстояния в многоатомных молекулах. Если связь в молекуле двойная или тройная, то ковалентный АР уменьшается, т. к. длины кратных связей меньше одинарных.

При ионной связи, образующейся в ионных кристаллах, используют значения ионного АР для определения расстояния между ближайшими анионом и катионом, находящимися в узлах кристаллической решетки. Такое расстояние определяется как сумма радиусов этих ионов.

Существует несколько способов определения ионных радиусов , при которых отличаются значения у индивидуальных ионов. Но в результате эти способы дают примерно одинаковые значения межъядерных расстояний. Эти способы или системы были названы в честь ученых, проводивших в этой области соответствующие исследования:

  • Гольдшмидта;
  • Полинга;
  • Белова и Бокия;
  • других ученых.

При металлической связи, возникающей в кристаллах металлов, АР принимаются равными половине кратчайшего расстояния между ними. Металлический радиус зависит от координационного числа К. При К=12 его значение условно принимается за единицу. Для координационных чисел 4, 6 и 8 металлические радиусы одного и того же элемента соответственно будут равны 0.88, 0.96 и 0.98.

Если взять два разных металла и сравнить металлические радиусы их элементов, то близость этих значений друг к другу будет означать необходимое, но недостаточное условие взаимной растворимости этих металлов по типу замещения. Например, жидкие калий К и литий Li в обычных условиях не смешиваются и образуют два жидких слоя, потому что их металлические радиусы сильно различаются (0.236 нм и 0.155 нм соответственно), а калий К с цезием Cs образуют твердый раствор благодаря близости их радиусов (0.236 нм и 0.268 нм).

Ван-дер-ваальсовы АР используют для определения эффективных размеров атомов благородных газов, а также расстояний между ближайшими одноименными атомами, принадлежащими разным молекулам и не связанными химической связью (пример - молекулярные кристаллы). Если такие атомы сблизятся на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, между ними возникнет сильное межатомное отталкивание. Эти радиусы определяют минимально допустимые границы контакта двух атомов, принадлежащих соседним молекулам.

Кроме того, данные АР используют для определения формы молекул, их конформаций и упаковки в молекулярных кристаллах. Известен принцип «плотной упаковки», когда молекулы, образующие кристалл , входят друг в друга своими «выступами» и «впадинами». На основе этого принципа интерпретируются данные кристаллографии и предсказываются структуры молекулярных кристаллов.

Видео

Это полезное видео поможет вам понять, что такое радиус атома.

Не получили ответ на свой вопрос? Предложите авторам тему.

Определение атомных радиусов также связано с некоторыми проблемами. Во-первых, атом не является сферой со строго определенными поверхностью и радиусом. Напомним, что атом представляет собой ядро, окруженное облаком электронов. Вероятность обнаружения электрона по мере удаления от ядра постепенно возрастает до некоторого максимума, а затем постепенно уменьшается, но становится равной нулю только на бесконечно большом расстоянии. Во-вторых, если мы все же выберем некоторое условие для определения радиуса, такой радиус все равно нельзя будет измерить экспериментально.

Эксперимент позволяет определять только межъядерные расстояния, другими словами-длины связей (и то с определенными оговорками, приведенными в подписи к рис. 2.21). Для их определения используется рентгеноструктурный анализ или метод электронографии (основанный на дифракции электронов). Радиус атома полагают равным половине наименьшего межъядерного расстояния между одинаковыми атомами.

Вандерваальсовы радиусы . Для несвязанных между собой атомов половина наименьшего межъядерного расстояния называется вандерваальсовым радиусом. Это определение поясняет рис. 2.22.

Рис. 2.21. Длина связи. Вследствие того что молекулы непрерывно колеблются, межъядерное расстояние, или длина связи, не имеет фиксированного значения. Этот рисунок схематически изображает линейное колебание простой двухатомной молекулы. Колебания не позволяют определить длину связи просто как расстояние между центрами двух связанных атомов. Более точное определение выглядит так: длина связи это расстояние между связанными атомами, измеренное между центрами масс двух атомов и соответствующее минимуму энергии связи. Минимум энергии показан на кривой Морзе (см. рис. 2.1).


Таблица 2.6. Плотности аллотропов углерода и серы Таблица 2.7. Длина связей углерод - углерод

Ковалентные радиусы. Ковалентный радиус определяется как половина межъядерного расстояния (длины связи) между двумя одинаковыми атомами, связанными друг с другом ковалентной связью (рис. 2.22, б). В качестве примера возьмем молекулу хлора Cl2, длина связи в которой составляет 0,1988 нм. Ковалентный радиус хлора полагается равным 0,0944 нм.

Зная ковалентный радиус атома одного элемента, можно вычислить ковалентный радиус атома другого элемента. Например, экспериментально установленное значение длины связи С-Cl в CH3Cl равно 0,1767 нм. Вычитая из этого значения ковалентный радиус хлора (0,0994 нм), находим, что ковалентный радиус углерода равен 0,0773 нм. Такой метод вычисления основан на принципе аддитивности, согласно которому атомные радиусы подчиняются простому закону сложения. Таким образом, длина связи С-Cl представляет собой сумму ковалентных радиусов углерода и хлора. Принцип аддитивности применим только к простым ковалентным связям. Двойные и тройные ковалентные связи имеют меньшую длину (табл. 2.7).

Длина простой ковалентной связи зависит еще от ее окружения в молекуле. Например, длина связи С-H изменяется от 0,1070 нм у тризамещенного атома углерода до 0,115 нм в соединении CH3CN.

Металлические радиусы. Металлический радиус полагается равным половине межъядерного расстояния между соседними ионами в кристаллической решетке металла (рис. 2.22, в). Термин атомный радиус обычно относится к ковалентному радиусу атомов неметаллических элементов, а термин металлический радиус~к атомам металлических элементов.

Ионные радиусы. Ионный радиус-это одна из двух частей межъядерного расстояния между соседними одноатомными (простыми) ионами в кристаллическом ионном соединении (соли). Определение ионного радиуса тоже сопряжено с немалыми проблемами, поскольку экспериментально измеряют межионные расстояния, а не сами ионные радиусы. Межионные расстояния зависят от упаковки ионов в кристаллической решетке. На рис. 2.23 показаны три возможных способа упаковки ионов в кристаллической решетке. К сожалению, экспериментально измеренные межионные расстояния

Рис. 2.23. Ионные радиусы, с-анионы соприкасаются друг с другом, но катионы не соприкасаются с анионами; б-катионы соприкасаются с анионами, но анионы не соприкасаются друг с другом; в условно принятое расположение ионов, при котором катионы соприкасаются с анионами и анионы соприкасаются друг с другом. Расстояние а определяется экспериментально. Оно принимается за удвоенный радиус аниона. Это позволяет вычислить межионное расстояние b, представляющее собой сумму радиусов аниона и катиона. Зная межионное расстояние Ь, можно вычислить радиус катиона.

не позволяют судить о том, какой из этих трех способов упаковки действительно осуществляется в каждом конкретном случае. Проблема заключается в том, чтобы найти пропорцию, в которой следует разделить межионное расстояние на две части, соответствующие радиусам двух ионов, другими словами, решить, где же на самом деле кончается один ион и где начинается другой. Как показывает, например, рис. 2.12, этот вопрос не позволяют решить и карты электронной плотности солей. Для преодоления указанной трудности обычно предполагают, что: 1) межионное расстояние представляет собой сумму двух ионных радиусов, 2) ионы имеют сферическую форму и 3) соседние сферы соприкасаются друг с другом. Последнее предположение соответствует способу упаковки ионов, изображенному на рис. 2.23, е. Если известен один ионный радиус, другие ионные радиусы можно вычислить на основании принципа аддитивности.

Сопоставление радиусов различных типов. В табл. 2.8 указаны значения радиусов различных типов для трех элементов 3-го периода. Нетрудно видеть, что самые большие значения принадлежат анионным и вандерваальсовым радиусам. На рис. 11.9 сопоставлены размеры ионов и атомов для всех элементов 3-го периода, за исключением аргона. Размеры атомов определяются их ковалентными радиусами. Следует обратить внимание на то, что катионы имеют меньшие размеры, чем атомы, а анионы - большие размеры, чем атомы этих же элементов. Для каждого элемента из всех типов радиусов наименьшее значение всегда принадлежит катионному радиусу.

Таблица 2.8. Сопоставление атомных радиусов различных типов



Экспериментальное определение. Для определения формы простых молекул и многоатомных ионов, а точнее - длин связей и валентных углов (углов между связями), используются разнообразные экспериментальные методы. К ним относятся микроволновая спектроскопия, а также методы изучения дифракции рентгеновских лучей (рентгеноструктурный анализ), нейтронов (нейтронография) или электронов (электронография). В следующей главе подробно рассказывается о том, каким образом с помощью дифракции рентгеновских лучей можно определять кристаллическую структуру. Однако для определения формы простых молекул в газовой фазе обычно используется электронография (метод изучения дифракции электронов). Этот метод основан на использовании волновых свойств электронов. Пучок электронов пропускают сквозь образец исследуемого газа. Молекулы газа рассеивают электроны, и в результате возникает дифракционная картина. Анализируя ее, можно определить длины связей и валентные углы в молекулах. Этот метод аналогичен используемому при анализе дифракционной картины, образуемой при рассеянии рентгеновских лучей.

АТОМНЫЙ РАДИУС - характеристика атома, позволяющая приближённо оценивать межатомные (межъядерные) расстояния в молекулах и кристаллах. T. к. атомы не имеют чётких границ, при введении понятия "А. р." подразумевают, что 90-98% электронной атома заключено в сфере этого радиуса. А. р. имеют порядок 0,1 HM, однако даже небольшие различия в их значениях могут определять структуру построенных из них кристаллов, сказываются на равновесной геометрии молекул и т. д. Для мн. задач кратчайшие расстояния между атомами в молекулах и конденсированных средах можно считать суммой их А. р., однако такая аддитивность весьма приближённа и выполняется не во всех случаях. В зависимости от того, какие силы действуют между атомами (см. Межатомное взаимодействие) , различают металлические, ионные, ковалентные и ван-дер-ваальсовы А. р.

Металлич. радиусы считаются равными половине кратчайшего расстояния между атомами в кристаллич. структуре элемента-металла, они зависят от координац. числа К . Если принять А. р. при К=12 за единицу, то при К=8 , 6 и 4 А. р. того же элемента соотв. равны 0,98; 0,96; 0,88. Близость значений А. р. разных металлов - необходимое (хотя и недостаточное) условие взаимной растворимости металлов по типу замещения. Так, жидкие К и Li обычно не смешиваются и образуют два жидких слоя, а К с Rb и Cs образуют непрерывный ряд твёрдых растворов (А. р. Li, К, Pb и Cs равны соотв. 0,155; 0,236; 0,248; 0,268 HM). Аддитивность А. р. позволяет приближённо предсказывать параметры кристаллич. решёток интерметаллич. соединений.

Ионные радиусы используют для приближённых оценок межъядерных расстояний в ионных кристаллах. При этом считают, что расстояние между ближайшими катионом и анионом равно сумме их ионных радиусов. О точности, с к-рой выполняется указанная аддитивность А. р., можно судить на основании кратчайших межъядерных расстояний в кристаллах галогенидов щелочных металлов, приведённых ниже:

Разность А. р. ионов , полученная сравнением межъядерных расстояний в KF и NaF, составляет 0,035 нм (А. р. иона в кристаллах KF в NaF предполагаются одинаковыми), а для соединений KCl и NaCl она равна 0,033 HM, из соединений KBr и NaBr - 0,031 HM и из соединений KI и NaI - 0,030 HM. T. о., типичная погрешность определения межъядерных расстояний в ионных кристаллах по А. р.~ 0,001 нм.

Существует неск. систем ионных А. р., отличающихся значениями А. р. индивидуальных ионов, но приводящих к примерно одинаковым межъядерным расстояниям. Впервые работа по определению ионных А. р. была проделана в 20-х гг. 20 в. В. M. Гольдшмидтом (V. M. Goldschmidt), опиравшимся, с одной стороны, на межъядерные расстояния в кристаллах, измеренные методами рентгеновского структурного анализа, а с другой - на значения А. р. и , определённые методом рефрактометрии (соотв. 0,133 и 0,132 HM). Большинство др. систем также опирается на определённые . методами межъядерные расстояния в кристаллах и на нек-рое "реперное" значение А. р. определ. иона. В наиб. широко известной системе По-линга этим реперным значением является А. р. (0,140 HM). В системе Белова и Бокия, считающейся одной из наиб. надёжных, А. р. 0 2- принимается равным 0,136 HM. Ниже приведены значения радиусов нек-рых ионов:

в системе Гольдшмидта

в системе Полинга

в системе Гольдшмидта

в системе Полинга

Для ионных кристаллов, имеющих одинаковые координац. числа, ср. отклонение суммы А. р., вычисленной по приведённым выше А. р., от опытных значений кратчайших межъядерных расстояний в ионных кристаллах составляет 0,001-0,002 HM.

В 70-80-х гг. были сделаны попытки прямого определения А. р. ионов путём измерения электронной плотности методами рентгеновского структурного анализа при условии, что минимум электронной плотности на линии, соединяющей ядра, принимается за границу ионов. Дифракц. измерения для кристаллов галогенидов щелочных металлов позволили получить А. р. катионов Li + , Na + , К + , Rb + и Cs + , равные соотв. 0,094; 0,117; 0,149; 0,163; 0,186 нм, а А. р. анионов F - , Cl - , Br - , I - - равные соотв. 0,116; 0,164; 0,180; 0,205 HM. T. о. дифракц. измерения приводят к завышенным (по сравнению с традиционными, приведёнными выше) значениям А. р. катионов и к заниженным значениям А. р. анионов. А. р., найденные путём измерения распределения электронной плотности в кристалле, нельзя переносить от одного соединения к другому, а отклонения от их аддитивности слишком велики, поэтому такие А. р. не могут быть использованы для предсказания межъядерных расстояний.

Ковалентный радиус определяется как половина длины одинарной хим. связи X - X (где X - элемент-неметалл). Для галогенов ковалентный А. р.- это половина межъядерного расстояния X - X в молекуле X 2 , для S и Se - половина расстояния X - X в X 8 , для углерода - половина кратчайшего расстояния С - С в кристалле алмаза. Ковалентные А. р. F, Cl, Br, I, S, Se и С соотв. равны 0,064; 0,099; 0,114; 0,133; 0,104; 0,117 и 0,077 нм. Для атома H А. р. принимают равным 0,030 HM (хотя половина длины связи H - H в молекуле H 2 равна 0,037 HM). Аддитивность ковалентных А. р. позволяет предсказывать кратчайшие межъядерные расстояния (длины связей) в многоатомных молекулах. Так, согласно этому правилу длина связи C-Cl должна быть равной 0,176 HM, а экспериментально полученное для этой величины значение в молекуле CCl 4 равно 0,177 HM. Ниже приведены ковалентные А. р. для атомов нек-рых элементов, вычисленные на основании длин одинарных связей:

В молекулах, имеющих двойные или тройные хим. связи, используют уменьшенные значения ковалентных А. р., ибо кратные связи короче одинарных. Ниже приведены ковалентные радиусы атомов при образовании кратных связей:

Ван-дер-ваальсовы радиусы определяют эфф. размеры атомов благородных газов. Кроме того, ван-дер-ваальсовыми А. р. считают половину межъядерного расстояния между ближайшими одноимёнными атомами, не связанными между собой хим. связью и принадлежащими разным молекулам (напр., в молекулярных кристаллах). При сближении атомов на расстояние, меньшее суммы их ван-дер-ваальсовых радиусов, возникает сильное межатомное отталкивание. Поэтому ван-дер-ваальсовы А. р. характеризуют минимальные допустимые контакты атомов, принадлежащих разным молекулам. Ниже приведены значения ван-дер-ваальсовых атомных радиусов для нек-рых атомов:

Ван-дер-ваальсовы А. р. в ср. на 0,08 нм больше ковалентных А. р. Ионный А. р. для отрицательно заряженного иона (напр., Cl -) практически совпадает с ван-дер-ваальсовым радиусом атома в нейтральном состоянии.

Знание ван-дер-ваальсовых А. р. позволяет определять форму молекул, конформации молекул и их упаковку в молекулярных кристаллах. Согласно принципу плотной упаковки, молекулы, образуя кристалл, располагаются таким образом, что "выступы" одной молекулы входят во "впадины" другой. Пользуясь этим принципом, можно интерпретировать имеющиеся кристаллографические данные, а в ряде случаев и предсказывать структуру молекулярных кристаллов.

Лит.: Бокий Г. Б., Кристаллохимия, 3 изд., M., 1971; Полинг Л., Общая химия, пер. с англ., M., 1974; Кемпбел Д ж., Современная общая химия, пер. с англ., т. 1, M., 1975; Картмелл Э., Фоулз Г. В. А., Валентность и строение молекул, пер. с англ., M., 1979. В. Г. Дашевский .

Атомным ионам; имеют смысл радиусов сфер, представляющих эти атомы или ионы в молекулах или кристаллах. Атомные радиусы позволяют приближённо оценивать межъядерные (межатомные) расстояния в молекулах и кристаллах.

Электронная плотность изолированного атома быстро убывает по мере увеличения расстояния до ядра, так что радиус атома можно было бы определить как радиус той сферы, в которой сосредоточена основная часть (например, 99%) электронной плотности. Однако для оценки межъядерных расстояний оказалось удобнее интерпретировать атомные радиусы иначе. Это привело к появлению различных определений и систем атомных радиусов.

Ковалентный радиус атома Х определяют как половину длины простой химической связи Х—Х. Так, для галогенов ковалентные радиусы вычисляются из равновесного межъядерного расстояния в молекуле Х 2 , для серы и селена - в молекулах S 8 и Se 8 , для углерода - в кристалле алмаза. Исключение составляет атом водорода, для которого ковалентный атомный радиус принимается равным 30 пм, тогда как половина межъядерного расстояния в молекуле Н 2 равна 37 пм. Для соединений с ковалентным характером связи, как правило, выполняется принцип аддитивности (длина связи Х—Y примерно равна сумме атомных радиусов атомов Х и Y), что позволяет предсказывать длины связей в многоатомных молекулах.

Ионные радиусы определяют как величины, сумма которых для пары ионов (например, Х + и Y -) равна кратчайшему межъядерному расстоянию в соответствующих ионных кристаллах. Существует несколько систем ионных радиусов; системы различаются численными значениями для отдельных ионов в зависимости от того, какой радиус и какого иона принят за основу при вычислении радиусов других ионов. Например, по Полингу - это радиус иона О 2- , принятый равным 140 пм; по Шеннону - радиус того же иона, принятый равным 121 пм. Несмотря на эти различия, разные системы при вычислении межъядерных расстояний в ионных кристаллах приводят к примерно одинаковым результатам.

Металлические радиусы определяют как половину кратчайшего расстояния между атомами в кристаллической решётке металла. Для структур металла, различающихся типом упаковки, эти радиусы различны. Близость значений атомных радиусов различных металлов часто служит указанием на возможность образования этими металлами твёрдых растворов. Аддитивность радиусов позволяет предсказывать параметры кристаллических решёток интерметаллических соединений.

Ван-дер-ваальсовы радиусы определяют как величины, сумма которых равна расстоянию, на которое могут сблизиться два химически не связанных атома разных молекул или разных групп атомов одной и той же молекулы. В среднем ван-дер-ваальсовы радиусы примерно на 80 пм больше, чем ковалентные радиусы. Ван-дер-ваальсовы радиусы используют для интерпретации и предсказания стабильности конформаций молекул и структурного упорядочения молекул в кристаллах.

Лит.: Хаускрофт К., Констебл Э. Современный курс общей химии. М., 2002. Т. 1.