Для отправки комментария вам необходимо. Преломление света. Законы преломления света. Полное внутреннее отражение. Ход лучей в линзе. Формула тонкой линзы Ход лучей в рассеивающей линзе

Темы кодификатора ЕГЭ: линзы, оптическая сила линзы

Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной толщиной и существенной кривизной своих сферических границ. Мы намеренно рисовали такие линзы - чтобы основные закономерности хода световых лучей проявились как можно более чётко.

Понятие тонкой линзы.

Теперь, когда эти закономерности достаточно ясны, мы рассмотрим очень полезную идеализацию, которая называется тонкой линзой .
В качестве примера на рис. 1 приведена двояковыпуклая линза; точки и являются центрами её сферических поверхностей, и - радиусы кривизны этих поверхностей. - главная оптическая ось линзы.

Так вот, линза считается тонкой, если её толщина очень мала. Нужно, правда, уточнить: мала по сравнению с чем?

Во-первых, предполагается, что и . Тогда поверхности линзы хоть и будут выпуклыми, но могут восприниматься как "почти плоские". Этот факт нам очень скоро пригодится.
Во-вторых, , где - характерное расстояние от линзы до интересующего нас предмета. Собственно, лишь в таком случае мы и
сможем корректно говорить о "расстоянии от предмета до линзы", не уточняя, до какой именно точки линзы берётся это самое расстояние.

Мы дали определение тонкой линзы, имея в виду двояковыпуклую линзу на рис. 1 . Это определение без каких-либо изменений переносится на все остальные виды линз. Итак: линза является тонкой , если толщина линзы много меньше радиусов кривизны её сферических границ и расстояния от линзы до предмета.

Условное обозначение тонкой собирающей линзы показано на рис. 2 .

Условное обозначение тонкой рассеивающей линзы показано на рис. 3 .

В каждом случае прямая - это главная оптическая ось линзы, а сами точки - её
фокусы. Оба фокуса тонкой линзы расположены симметрично относительно линзы.

Оптический центр и фокальная плоскость.

Точки и , обозначенные на рис. 1 , у тонкой линзы фактически сливаются в одну точку. Это точка на рис. 2 и 3 , называемая оптическим центром линзы. Оптический центр находится на Пересечении линзы с её главной оптической осью.

Расстояние от оптического центра до фокуса называется фокусным расстоянием линзы. Мы будем обозначать фокусное расстояние буквой . Величина , обратная фокусному расстоянию, есть оптическая сила - линзы:

Оптическая сила измеряется в диоптриях (дптр). Так, если фокусное расстояние линзы равно 25 см, то её оптическая сила:

Продолжаем вводить новые понятия. Всякая прямая, проходящая через оптический центр линзы и отличная от главной оптической оси, называется побочной оптической осью . На рис. 4 изображена побочная оптическая ось - прямая .

Плоскость , проходящая через фокус перпендикулярно главной оптической оси, называется фокальной плоскостью . Фокальная плоскость, таким образом, параллельна плоскости линзы. Имея два фокуса, линза соответственно имеет и две фокальных плоскости, расположенных симметрично относительно линзы.

Точка , в которой побочная оптическая ось пересекает фокальную плоскость, называется побочным фокусом. Собственно, каждая точка фокальной плоскости (кроме ) есть побочный фокус - мы ведь всегда сможем провести побочную оптическую ось, соединив данную точку с оптическим центром линзы. А сама точка - фокус линзы - в связи с этим называется ещё главным фокусом.

То, что на рис. 4 изображена собирающая линза, никакой роли не играет. Понятия побочной оптической оси, фокальной плоскости и побочного фокуса совершенно аналогично определяются и для рассеивающей линзы - с заменой на рис. 4 собирающей линзы на рассеивающую.

Теперь мы переходим к рассмотрению хода лучей в тонких линзах. Мы будем предполагать, что лучи являются параксиальными , то есть образуют достаточно малые углы с главной оптической осью. Если параксиальные лучи исходят из одной точки, то после прохождения линзы преломлённые лучи или их продолжения также пересекаются в одной точке. Поэтому изображения предметов, даваемые линзой, в параксиальных лучах получаются весьма чёткими.

Ход луча через оптический центр.

Как мы знаем из предыдущего раздела, луч, идущий вдоль главной оптической оси, не преломляется. В случае тонкой линзы оказывается, что луч, идущий вдоль побочной оптической оси, также не преломляется!

Объяснить это можно следующим образом. Вблизи оптического центра обе поверхности линзы неотличимы от параллельных плоскостей, и луч в данном случае идёт как будто через плоскопараллельную стеклянную пластинку (рис. 5 ).

Угол преломления луча равен углу падения преломлённого луча на вторую поверхность. Поэтому второй преломлённый луч выходит из плоскопараллельной пластинки параллельно падающему лучу . Плоскопараллельная пластинка лишь смещает луч, не изменяя его направления, и это смещение тем меньше, чем меньше толщина пластинки.

Но для тонкой линзы мы можем считать, что эта толщина равна нулю. Тогда точки фактически сольются в одну точку, и луч окажется просто продолжением луча . Вот поэтому и получается, что луч, идущий вдоль побочной оптической оси, не преломляется тонкой линзой (рис. 6 ).

Это единственное общее свойство собирающих и рассеивающих линз. В остальном ход лучей в них оказывается различным, и дальше нам придётся рассматривать собирающую и рассеивающую линзу по отдельности.

Ход лучей в собирающей линзе.

Как мы помним, собирающая линза называется так потому, что световой пучок, параллельный главной оптической оси, после прохождения линзы собирается в её главном фокусе (рис. 7 ).

Пользуясь обратимостью световых лучей, приходим к следующему выводу: если в главном фокусе собирающей линзы находится точечный источник света, то на выходе из линзы получится световой пучок, параллельный главной оптической оси (рис. 8 ).

Оказывается, что пучок параллельных лучей, падающих на собирающую линзу наклонно , тоже соберётся в фокусе - но в побочном. Этот побочный фокус отвечает тому лучу, который проходит через оптический центр линзы и не преломляется (рис. 9 ).

Теперь мы можем сформулировать правила хода лучей в собирающей линзе . Эти правила вытекают из рисунков 6-9 ,


2. Луч, идущий параллельно главной оптической оси линзы, после преломления пойдёт через главный фокус (рис. 10 ).

3. Если луч падает на линзу наклонно, то для построения его дальнейшего хода мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Вот через этот побочный фокус и пойдёт преломлённый луч (рис. 11 ).

В частности, если падающий луч проходит через фокус линзы, то после преломления он пойдёт параллельно главной оптической оси.

Ход лучей в рассеивающей линзе.

Переходим к рассеивающей линзе. Она преобразует пучок света, параллельный главной оптической оси, в расходящийся пучок, как бы выходящий из главного фокуса (рис. 12 )

Наблюдая этот расходящийся пучок, мы увидим светящуюся точку, расположенную в фокусе позади линзы.

Если параллельный пучок падает на линзу наклонно, то после преломления он также станет расходящимся. Продолжения лучей расходящегося пучка соберутся в побочном фокусе , отвечающем тому лучу, который проходит через через оптический центр линзы и не преломляется (рис. 13 ).

Этот расходящийся пучок создаст у нас иллюзию светящейся точки, расположенной в побочном фокусе за линзой.

Теперь мы готовы сформулировать правила хода лучей в рассеивающей линзе . Эти правила следуют из рисунков 6, 12 и 13 .

1. Луч, идущий через оптический центр линзы, не преломляется.
2. Луч, идущий параллельно главной оптической оси линзы, после преломления начнёт удаляться от главной оптической оси; при этом продолжение преломлённого луча пройдёт через главный фокус (рис. 14 ).

3. Если луч падает на линзу наклонно, то мы проводим побочную оптическую ось, параллельную этому лучу, и находим соответствующий побочный фокус. Преломлённый луч пойдёт так, словно он исходит из этого побочного фокуса (рис. 15 ).

Пользуясь правилами хода лучей 1–3 для собирающей и рассеивающей линзы, мы теперь научимся самому главному - строить изображения предметов, даваемые линзами.

11.2. Геометрическая оптика

11.2.2. Отражение и преломление световых лучей в зеркале, плоскопараллельной пластинке и призме

Формирование изображения в плоском зеркале и его свойства

Законы отражения, преломления и прямолинейного распространения света используются при построении изображений в зеркалах, рассмотрении хода световых лучей в плоскопараллельной пластинке, призме и линзах.

Ход световых лучей в плоском зеркале показан на рис. 11.10.

Изображение в плоском зеркале формируется за плоскостью зеркала на том же расстоянии от зеркала f , на каком находится предмет перед зеркалом d :

f = d .

Изображение в плоском зеркале является:

  • прямым;
  • мнимым;
  • равным по величине предмету: h = H .

Если плоские зеркала образуют между собой некоторый угол, то они формируют N изображений источника света, помещенного на биссектрису угла между зеркалами (рис. 11.11):

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах).

Примечание. Формула справедлива для таких углов γ, для которых отношение 2π/γ является целым числом.

Например, на рис. 11.11 показан источник света S , лежащий на биссектрисе угла π/3. Согласно приведенной выше формуле формируются пять изображений:

1) изображение S 1 формируется зеркалом 1;

2) изображение S 2 формируется зеркалом 2;

Рис. 11.11

3) изображение S 3 является отражением S 1 в зеркале 2;

4) изображение S 4 является отражением S 2 в зеркале 1;

5) изображение S 5 является отражением S 3 в продолжении зеркала 1 или отражением S 4 в продолжении зеркала 2 (отражения в указанных зеркалах совпадают).

Пример 8. Найти число изображений точечного источника света, полученных в двух плоских зеркалах, образующих друг с другом угол 90°. Источник света находится на биссектрисе указанного угла.

Решение . Выполним рисунок, поясняющий условие задачи:

  • источник света S расположен на биссектрисе угла между зеркалами;
  • первое (вертикальное) зеркало З1 формирует изображение S 1;
  • второе (горизонтальное) зеркало З2 формирует изображение S 2;
  • продолжение первого зеркала формирует изображение мнимого источника S 2, а продолжение второго зеркала - мнимого источника S 1; указанные изображения совпадают и дают S 3.

Число изображений источника света, помещенного на биссектрису угла между зеркалами, определяется формулой

N = 2 π γ − 1 ,

где γ - угол между зеркалами (в радианах), γ = π/2.

Число изображений составляет

N = 2 π π / 2 − 1 = 3 .

Ход светового луча в плоскопараллельной пластинке

Ход светового луча в плоскопараллельной пластинке зависит от оптических свойств среды, в которой находится пластинка.

1. Ход светового луча в плоскопараллельной пластинке, находящейся в оптически однородной среде (по обе стороны от пластинки коэффициент преломления среды одинаков), показан на рис. 11.12.

Световой луч, падающий на плоскопараллельную пластинку под некоторым углом i 1 , после прохождения плоскопараллельной пластинки:

  • выходит из нее под тем же углом:

i 3 = i 1 ;

  • смещается на величину x от первоначального направления (пунктир на рис. 11.12).

2. Ход светового луча в плоскопараллельной пластинке, находящейся на границе двух сред (по обе стороны от пластинки коэффициенты преломления сред различны), показан на рис. 11.13 и 11.14.

Рис. 11.13

Рис. 11.14

Световой луч после прохождения плоскопараллельной пластинки выходит из пластинки под углом, отличающимся от угла падения его на пластинку:

  • если показатель преломления среды за пластинкой меньше показателя преломления среды перед пластинкой (n 3 < n 1), то:

i 3 > i 1 ,

т.е. луч выходит под бо́льшим углом (см. рис. 11.13);

  • если показатель преломления среды за пластинкой больше показателя преломления среды перед пластинкой (n 3 > n 1), то:

i 3 < i 1 ,

т.е. луч выходит под меньшим углом (см. рис. 11.14).

Смещение луча - длина перпендикуляра между выходящим из пластинки лучом и продолжением луча, падающего на плоскопараллельную пластинку.

Смещение луча при выходе из плоскопараллельной пластинки, находящейся в оптически однородной среде (см. рис. 11.12), рассчитывается по формуле

где d - толщина плоскопараллельной пластинки; i 1 - угол падения луча на плоскопараллельную пластинку; n - относительный показатель преломления материала пластинки (относительно той среды, в которую помещена пластинка), n = n 2 /n 1 ; n 1 - абсолютный показатель преломления среды; n 2 - абсолютный показатель преломления материала пластинки.

Рис. 11.12

Смещение луча при выходе из плоскопараллельной пластинки может быть рассчитано с помощью следующего алгоритма (рис. 11.15):

1) вычисляют x 1 из треугольника ABC , пользуясь законом преломления света:

где n 1 - абсолютный показатель преломления среды, в которую помещена пластинка; n 2 - абсолютный показатель преломления материала пластинки;

2) вычисляют x 2 из треугольника ABD ;

3) рассчитывают их разность:

Δx = x 2 − x 1 ;

4) смещение находят по формуле

x = Δx  cos i 1 .

Время распространения светового луча в плоскопараллельной пластинке (рис. 11.15) определяется формулой

где S - путь, пройденный светом, S = | A C | ; v - скорость распространения светового луча в материале пластинки, v = c /n ; c - скорость света в вакууме, c ≈ 3 ⋅ 10 8 м/с; n - показатель преломления материала пластинки.

Путь, пройденный световым лучом в пластинке, связан с ее толщиной выражением

S = d  cos i 2 ,

где d - толщина пластинки; i 2 - угол преломления светового луча в пластинке.

Пример 9. Угол падения светового луча на плоскопараллельную пластинку равен 60°. Пластинка имеет толщину 5,19 см и изготовлена из материала с показателем преломления 1,73. Найти смещение луча при выходе из плоскопараллельной пластинки, если она находится в воздухе.

Решение . Выполним рисунок, на котором покажем ход светового луча в плоскопараллельной пластинке:

  • световой луч падает на плоскопараллельную пластинку под углом i 1 ;
  • на границе раздела воздуха и пластинки луч преломляется; угол преломления светового луча равен i 2 ;
  • на границе раздела пластинки и воздуха луч преломляется еще раз; угол преломления равен i 1 .

Указанная пластинка находится в воздухе, т.е. по обе стороны от пластинки среда (воздух) имеет одинаковый показатель преломления; следовательно, для расчета смещения луча можно применить формулу

x = d sin i 1 (1 − 1 − sin 2 i 1 n 2 − sin 2 i 1) ,

где d - толщина пластинки, d = 5,19 см; n - показатель преломления материала пластинки относительно воздуха, n = 1,73; i 1 - угол падения света на пластинку, i 1 = 60°.

Вычисления дают результат:

x = 5,19 ⋅ 10 − 2 ⋅ 3 2 (1 − 1 − (3 / 2) 2 (1,73) 2 − (3 / 2) 2) = 3,00 ⋅ 10 − 2 м = 3,00 см.

Cмещение луча света при выходе из плоскопараллельной пластинки равно 3 см.

Ход светового луча в призме

Ход светового луча в призме показан на рис. 11.16.

Грани призмы, через которые проходит луч света, называются преломляющими . Угол между преломляющими гранями призмы называется преломляющим углом призмы.

Световой луч после прохождения через призму отклоняется; угол между лучом, выходящим из призмы, и лучом, падающим на призму, называется углом отклонения луча призмой.

Угол отклонения луча призмой φ (см. рис. 11.16) представляет собой угол между продолжениями лучей I и II - на рисунке обозначены пунктиром и символом (I), а также пунктиром и символом (II).

1. Если световой луч падает на преломляющую грань призмы под произвольным углом , то угол отклонения луча призмой определяется формулой

φ = i 1 + i 2 − θ,

где i 1 - угол падения луча на преломляющую грань призмы (угол между лучом и перпендикуляром к преломляющей грани призмы в точке падения луча); i 2 - угол выхода луча из призмы (угол между лучом и перпендикуляром к грани призмы в точке выхода луча); θ - преломляющий угол призмы.

2. Если световой луч падает на преломляющую грань призмы под малым углом (практически перпендикулярно преломляющей грани призмы), то угол отклонения луча призмой определяется формулой

φ = θ(n − 1),

где θ - преломляющий угол призмы; n - относительный показатель преломления материала призмы (относительно той среды, в которую эта призма помещена), n = n 2 /n 1 ; n 1 - показатель преломления среды, n 2 - показатель преломления материала призмы.

Вследствие явления дисперсии (зависимость показателя преломления от частоты светового излучения) призма разлагает белый свет в спектр (рис. 11.17).

Рис. 11.17

Лучи различного цвета (различной частоты или длины волны) отклоняются призмой по-разному. В случае нормальной дисперсии (показатель преломления материала тем выше, чем больше частота светового излучения) призма наиболее сильно отклоняет фиолетовые лучи; наименее - красные.

Пример 10. Стеклянная призма, изготовленная из материала с коэффициентом преломления 1,2, имеет преломляющий угол 46° и находится в воздухе. Луч света падает из воздуха на преломляющую грань призмы под углом 30°. Найти угол отклонения луча призмой.

Решение . Выполним рисунок, на котором покажем ход светового луча в призме:

  • световой луч падает из воздуха под углом i 1 = 30° на первую преломляющую грань призмы и преломляется под углом i 2 ;
  • световой луч падает под углом i 3 на вторую преломляющую грань призмы и преломляется под углом i 4 .

Угол отклонения луча призмой определяется формулой

φ = i 1 + i 4 − θ,

где θ - преломляющий угол призмы, θ = 46°.

Для расчета угла отклонения светового луча призмой необходимо вычислить угол выхода луча из призмы.

Воспользуемся законом преломления света для первой преломляющей грани

n 1  sin i 1 = n 2  sin i 2 ,

где n 1 - показатель преломления воздуха, n 1 = 1; n 2 - показатель преломления материала призмы, n 2 = 1,2.

Рассчитаем угол преломления i 2:

i 2 = arcsin (n 1  sin i 1 /n 2) = arcsin(sin 30°/1,2) = arcsin(0,4167);

i 2 ≈ 25°.

Из треугольника ABC

α + β + θ = 180°,

где α = 90° − i 2 ; β = 90° − i 3 ; i 3 - угол падения светового луча на вторую преломляющую грань призмы.

Отсюда следует, что

i 3 = θ − i 2 ≈ 46° − 25° = 21°.

Воспользуемся законом преломления света для второй преломляющей грани

n 2  sin i 3 = n 1  sin i 4 ,

где i 4 - угол выхода луча из призмы.

Рассчитаем угол преломления i 4:

i 4 = arcsin (n 2  sin i 3 /n 1) = arcsin(1,2 ⋅ sin 21°/1,0) = arcsin(0,4301);

i 4 ≈ 26°.

Угол отклонения луча призмой составляет

φ = 30° + 26° − 46° = 10°.

1) Изображение может быть мнимое или действительное . Если изображение образовано самими лучами (т.е. в данную точку поступает световая энергия), то оно действительное, если же не самими лучами, а их продолжениями, то говорят, что изображение мнимое (световая энергия не поступает в данную точку).

2) Если верх и низ изображения ориентированы аналогично самому предмету, то изображение называется прямым . Если же изображение перевернуто, то его называют обратным (перевернутым) .

3) Изображение характеризуется приобретаемыми размерами: увеличенное, уменьшенное, равное.

Изображение в плоском зеркале

Изображение в плоском зеркале является мнимым, прямым, равным по размерам предмету, находится на таком же расстоянии за зеркалом, на каком предмет расположен перед зеркалом.

Линзы

Линза представляет собой прозрачное тело, ограниченное с двух сторон криволинейными поверхностями.

Различают шесть типов линз.

Собирающие: 1 - двояковыпуклая, 2 - плоско-выпуклая, 3 - выпукло-вогнутая. Рассеивающие: 4 - двояковогнутая; 5 - плосковогнутая; 6 - вогнуто-выпуклая.

Собирающая линза

Рассеивающая линза

Характеристики линз.

NN - главная оптическая ось - прямая линия, проходящая через центры сферических поверхностей, ограничивающих линзу;

O - оптический центр - точка, которая у двояковыпуклых или двояковогнутых (с одинаковыми радиусами поверхностей) линз находится на оптической оси внутри линзы (в её центре);

F - главный фокус линзы - точка, в которую собирается пучок света, распространяющийся параллельно главной оптической оси;

OF - фокусное расстояние;

N"N" - побочная ось линзы;

F" - побочный фокус;

Фокальная плоскость - плоскость, проходящая через главный фокус перпендикулярно главной оптической оси.

Ход лучей в линзе.

Луч, идущий через оптический центр линзы (О), не испытывает преломления.

Луч, параллельный главной оптической оси, после преломления проходит через главный фокус (F).

Луч, проходящий через главный фокус (F), после преломления идет параллельно главной оптической оси.

Луч, идущий параллельно побочной оптической оси (N"N"), проходит через побочный фокус (F").

Формула линзы.

При использовании формулы линзы следует верно использовать правило знаков: +F - линза собирающая; -F - линза рассеивающая; +d - предмет действительный; -d - предмет мнимый; +f - изображение предмета действительное; -f - изображение предмета мнимое.

Величина, обратная фокусному расстоянию линзы, называется оптической силой .

Поперечное увеличение - отношение линейного размера изображения к линейному размеру предмета.


Современные оптические устройства используют системы линз для улучшения качества изображений. Оптическая сила системы линз, сложенных вместе, равна сумме их оптических сил.

1 - роговица; 2 - радужная оболочка; 3 - белочная оболочка (склера); 4 - сосудистая оболочка; 5 - пигментный слой; 6 - желтое пятно; 7 - зрительный нерв; 8 - сетчатка; 9 - мышца; 10 - связки хрусталика; 11 - хрусталик; 12 - зрачок.

Хрусталик является линзоподобным телом и осуществляет настройку нашего зрения на различные расстояния. В оптической системе глаза фокусировка изображения на сетчатку называется аккомодацией . У человека аккомодация происходит за счет увеличения выпуклости хрусталика, осуществляемого с помощью мышц. При этом изменяется оптическая сила глаза.

Изображение предмета, попадающее на сетчатку глаза, является действительным, уменьшенным, перевернутым.

Расстояние наилучшего зрения должно быть около 25 см, а предел зрения (дальняя точка) находится на бесконечности.

Близорукость (миопия) - дефект зрения, при котором глаз видит расплывчато, а изображение фокусируется перед сетчаткой.

Дальнозоркость (гиперопия) - дефект зрения, при котором изображение фокусируется за сетчаткой.

Тема. Решение задач по теме "Линзы. Построение изображений в тонкой линзе. Формула линзы".


Цель:

  • - рассмотреть примеры решения задач на применение формулы тонкой линзы, свойства основных лучей и правила построения изображений в тонкой линзе, в системе двух линз.

Ход занятия

Прежде чем приступить к выполнению задания, необходимо повторить определения главной и побочной оптических осей линзы, фокуса, фокальной плоскости, свойства основных лучей при построении изображений в тонких линзах, формулу тонкой линзы (собирающей и рассеивающей), определение оптической силы линзы, увеличения линзы.

Для проведения занятия учащимся предлагается несколько расчетных задач с объяснением их решения и задачи для самостоятельной работы.

Качественные задачи

  1. С помощью собирающей линзы на экране получено действительное изображение предмета с увеличением Г 1 . Не изменяя положение линзы, поменяли местами предмет и экран. Каким окажется увеличение Г 2 в этом случае?
  2. Как надо расположить две собирающие линзы с фокусными расстояниями F 1 и F 2 , чтобы параллельный пучок света, пройдя через них, остался параллельным?
  3. Объясните, почему для того, чтобы получить четкое изображение предмета, близорукий обычно щурит глаза?
  4. Как изменится фокусное расстояние линзы, если ее температура повысится?
  5. На рецепте врача написано: +1,5 Д. Расшифруйте, какие это очки и для каких глаз?

Примеры решения расчетных задач


Задача 1. Заданы главная оптическая ось линзы NN , положение источника S и его изображения S ´. Найдите построением положение оптического центра линзы С и ее фокусов для трех случаев (рис. 1).

Решение:

Для нахождения положения оптического центра С линзы и ее фокусов F используем основные свойства линзы и лучей, проходящих через оптический центр, фокусы линзы или параллельно главной оптической оси линзы.

Случай 1. Предмет S и его изображение расположены по одну сторону от главной оптической оси NN (рис. 2).


Проведем через S и S ´ прямую (побочную ось) до пересечения с главной оптической осью NN в точке С . Точка С определяет положение оптического центра линзы, расположенной перпендикулярно оси NN . Лучи, идущие через оптический центр С , не преломляются. Луч SA , параллельный NN , преломляется и идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение S ´ в линзе является мнимым. Предмет S расположен между оптическим центром и фокусом линзы. Линза является собирающей.

Случай 2. Проведем через S и S ´ побочную ось до пересечения с главной оптической осью NN в точке С - оптическом центре линзы (рис. 3).


Луч SA , параллельный NN , преломляясь, идет через фокус F и изображение S ´, причем через S ´ идет продолжение луча SA . Это значит, что изображение мнимое, а линза, как видно из построения, рассеивающая.

Случай 3. Предмет S и его изображение лежат по разные стороны от главной оптической оси NN (рис. 4).


Соединив S и S ´, находим положение оптического центра линзы и положение линзы. Луч SA , параллельный NN , преломляется и через фокус F идет в точку S ´. Луч через оптический центр идет без преломления.

Задача 2. На рис. 5 изображен луч АВ , прошедший сквозь рассеивающую линзу. Постройте ход луча падающего, если положение фокусов линзы известно.


Решение:

Продолжим луч АВ до пересечения с фокальной плоскостью РР в точке F ´ и проведем побочную ось ОО через F ´ и С (рис. 6).


Луч, идущий вдоль побочной оси ОО , пройдет, не меняя своего направления, луч DA , параллельный ОО , преломляется по направлению АВ так, что его продолжение идет через точку F ´.

Задача 3. На собирающую линзу с фокусным расстоянием F 1 = 40 см падает параллельный пучок лучей. Где следует поместить рассеивающую линзу с фокусным расстоянием F 2 = 15 см, чтобы пучок лучей после прохождения двух линз остался параллельным?

Решение: По условию пучок падающих лучей ЕА параллелен главной оптической оси NN , после преломления в линзах он должен таковым и остаться. Это возможно, если рассеивающая линза расположена так, чтобы задние фокусы линз F 1 и F 2 совпали. Тогда продолжение луча АВ (рис. 7), падающего на рассеивающую линзу, проходит через ее фокус F 2 , и по правилу построения в рассеивающей линзе преломленный луч BD будет параллелен главной оптической оси NN , следовательно, параллелен лучу ЕА . Из рис. 7 видно, что рассеивающую линзу следует поместить на расстоянии d=F 1 -F 2 =(40-15)(см)=25 см от собирающей линзы.


Ответ: на расстоянии 25 см от собирающей линзы.

Задача 4. Высота пламени свечи 5 см. Линза дает на экране изображение этого пламени высотой 15 см. Не трогая линзы, свечу отодвинули на l = 1,5 см дальше от линзы и, придвинув экран, вновь получили резкое изображение пламени высотой 10 см. Определите главное фокусное расстояние F линзы и оптическую силу линзы в диоптриях.

Решение: Применим формулу тонкой линзы , где d - расстояние от предмета до линзы, f - расстояние от линзы до изображения, для двух положений предмета:

. (2)


Из подобных треугольников АОВ и A 1 OB 1 (рис. 8) поперечное увеличение линзы будет равно = , откуда f 1 = Γ 1 d 1 .

Аналогично для второго положения предмета после передвижения его на l : , откуда f 2 = (d 1 + l )Γ 2 .
Подставляя f 1 и f 2 в (1) и (2), получим:

. (3)
Из системы уравнений (3), исключив d 1 , находим

.
Оптическая сила линзы

Ответ: , дптр.

Задача 5. Двояковыпуклая линза, сделанная из стекла с показателем преломления n = 1,6, имеет фокусное расстояние F 0 = 10 см в воздухе (n 0 = 1). Чему будет равно фокусное расстояние F 1 этой линзы, если ее поместить в прозрачную среду с показателем преломления n 1 = 1,5? Определите фокусное расстояние F 2 этой линзы в среде с показателем преломления n 2 = 1,7.

Решение:

Оптическая сила тонкой линзы определяется формулой

,
где n л - показатель преломления линзы, n ср - показатель преломления среды, F - фокусное расстояние линзы, R 1 и R 2 - радиусы кривизны ее поверхностей.

Если линза находится в воздухе, то

; (4)
n 1:

; (5)
в среде с показателем преломления n :

. (6)
Для определения F 1 и F 2 выразим из (4):

.
Подставим полученное значение в (5) и (6). Тогда получим

см,

см.
Знак "-" означает, что в среде с показателем преломления большим, чем у линзы (в оптически более плотной среде) собирающая линза становится рассеивающей.

Ответ: см, см.

Задача 6. Система состоит из двух линз с одинаковыми по модулю фокусными расстояниями. Одна из линз собирающая, другая рассеивающая. Линзы расположены на одной оси на некотором расстоянии друг от друга. Известно, что если поменять линзы местами, то действительное изображение Луны, даваемое этой системой, сместится на l = 20 см. Найдите фокусное расстояние каждой из линз.

Решение:

Рассмотрим случай, когда параллельные лучи 1 и 2 падают на рассеивающую линзу (рис. 9).


После преломления их продолжения пересекаются в точке S , являющейся фокусом рассеивающей линзы. Точка S является "предметом" для собирающей линзы. Ее изображение в собирающей линзе получим по правилам построения: лучи 1 и 2, падающие на собирающую линзу, после преломления проходят через точки пересечения соответствующих побочных оптических осей ОО и O´O´ с фокальной плоскостью РР собирающей линзы и пересекаются в точке S ´ на главной оптической оси NN , на расстоянии f 1 от собирающей линзы. Применим для собирающей линзы формулу

, (7)
где d 1 = F + a .


Пусть теперь лучи падают на собирающую линзу (рис. 10). Параллельные лучи 1 и 2 после преломления соберутся в точке S (фокусе собирающей линзы). Падая на рассеивающую линзу, лучи преломляются в рассеивающей линзе так, что продолжения этих лучей проходят через точки пересечения К 1 и К 2 соответствующих побочных осей О 1 О 1 и О 2 О 2 с фокальной плоскостью РР рассеивающей линзы. Изображение S ´ находится в точке пересечения продолжений вышедших лучей 1 и 2 с главной оптической осью NN на расстоянии f 2 от рассеивающей линзы.
Для рассеивающей линзы

, (8)
где d 2 = a - F .
Из (7) и (8) выразим f 1 и -f 2:NN и луча SA после преломления идущего в направлении A S ´ по правилам построения (через точку К 1 пересечения побочной оптической оси ОО , параллельной падающему лучу SA , с фокальной плоскостью Р 1 Р 1 собирающей линзы). Если поставить рассеивающую линзу Л 2 , то луч A S ´ изменяет направление в точке К , преломляясь (по правилу построения в рассеивающей линзе) в направлении K S ´´. Продолжение K S ´´ проходит через точку К 2 пересечения побочной оптической оси 0 ´0 ´ с фокальной плоскостью Р 2 Р 2 рассеивающей линзы Л 2 .

По формуле для рассеивающей линзы

,
где d - расстояние от линзы Л 2 до предмета S ´, f - расстояние от линзы Л 2 до изображения S ´´.

Отсюда см.
Знак "-" указывает, что линза рассеивающая.

Оптическая сила линзы дптр.

Ответ: см, дптр.

Задачи для самостоятельной работы


  1. Касьянов В.А. Физика. 11 кл.: Учебн. для общеобразоват. учреждений. - 2-е изд., дополн. - М.: Дрофа, 2004. - С. 281-306.
  2. Элементарный учебник физики /Под ред акад. Г.С. Ландсберга. - Т. 3. - М.: Физматлит, 2000 и предшествующие издания.
  3. Бутиков Е.И., Кондратьев А.С. Физика. Т. 2. Электродинамика. Оптика. - М.: Физматлит: Лаборатория базовых знаний; СПб.: Невский диалект, 2001. - С. 308-334.
  4. Белолипецкий С.Н., Еркович О.С., Казаковцева В.А. и др. Задачник по физике. - М.: Физматлит, 2005. - С. 215-237.
  5. Буховцев Б.Б., Кривченков В.Д., Мякишев Г.Я., Сараева И.М. Задачи по элементарной физике. - М.: Физматлит, 2000 и предшествующие издания.

Взгляните ещё раз на рисунки линз из предыдущего листка: эти линзы обладают заметной толщиной и существенной кривизной своих сферических границ. Мы намеренно рисовали такие линзы чтобы основные закономерности хода световых лучей проявились как можно более чётко.

4.5.1 Понятие тонкой линзы

Теперь, когда эти закономерности достаточно ясны, мы рассмотрим очень полезную идеализацию, которая называется тонкой линзой. В качестве примера на рис. 4.24 приведена двояковыпуклая линза; точки O1 и O2 являются центрами её сферических поверхностей6 , R1 и R2 радиусы кривизны этих поверхностей.

Рис. 4.24. К определению тонкой линзы

Так вот, линза считается тонкой, если её толщина MN очень мала. Нужно, правда, уточнить: мала по сравнению с чем?

Во-первых, предполагается, что MN R1 и MN R2 . Тогда поверхности линзы хоть и будут выпуклыми, но могут восприниматься как ¾почти плоские¿. Этот факт нам очень скоро пригодится.

Во-вторых, MN a, где a характерное расстояние от линзы до интересующего нас предмета. Собственно, лишь в таком случае мы и сможем корректно говорить о ¾расстоянии от предмета до линзы¿, не уточняя, до какой именно точки линзы берётся это самое расстояние.

Мы дали определение тонкой линзы, имея в виду двояковыпуклую линзу на рис. 4.24 . Это определение без каких-либо изменений переносится на все остальные виды линз. Итак: линза является тонкой, если толщина линзы много меньше радиусов кривизны её сферических границ и расстояния от линзы до предмета.

Условное обозначение тонкой собирающей линзы показано на рис. 4.25 .

Рис. 4.25. Обозначение тонкой собирающей линзы

6 Напомним, что прямая O1 O2 называется главной оптической осью линзы.

Условное обозначение тонкой рассеивающей линзы показано на рис. 4.26 .

Рис. 4.26. Обозначение тонкой рассеивающей линзы

В каждом случае прямая F F это главная оптическая ось линзы, а сами точки F её фокусы. Оба фокуса тонкой линзы расположены симметрично относительно линзы.

4.5.2 Оптический центр и фокальная плоскость

Точки M и N, обозначенные на рис. 4.24 , у тонкой линзы фактически сливаются в одну точку. Это точка O на рис.4.25 и4.26 , называемая оптическим центром линзы. Оптический центр находится на пересечении линзы с её главной оптической осью.

Расстояние OF от оптического центра до фокуса называется фокусным расстоянием линзы. Мы будем обозначать фокусное расстояние буквой f. Величина D, обратная фокусному расстоянию, есть оптическая сила линзы:

D = f 1 :

Оптическая сила измеряется в диоптриях (дптр). Так, если фокусное расстояние линзы равно 25 см, то её оптическая сила:

D = 0; 1 25 = 4 дптр:

Продолжаем знакомиться с новыми понятиями. Всякая прямая, проходящая через оптический центр линзы и отличная от главной оптической оси, называется побочной оптической осью. На рис. 4.27 изображена побочная оптическая ось прямая OP .

P (побочный фокус)

(фокальная плоскость)

Рис. 4.27. Побочная оптическая ось, фокальная плоскость и побочный фокус

Плоскость, проходящая через фокус перпендикулярно главной оптической оси, называется фокальной плоскостью. Фокальная плоскость, таким образом, параллельна плоскости линзы. Имея два фокуса, линза соответственно имеет и две фокальных плоскости, расположенных симметрично относительно линзы.

Точка P , в которой побочная оптическая ось пересекает фокальную плоскость, называется побочным фокусом. Собственно, каждая точка фокальной плоскости (кроме F) есть побочный фокус мы ведь всегда сможем провести побочную оптическую ось, соединив данную точку с оптическим центром линзы. А сама точка F фокус линзы в связи с этим называется ещё

главным фокусом.

То, что на рис. 4.27 изображена собирающая линза, никакой роли не играет. Понятия побочной оптической оси, фокальной плоскости и побочного фокуса совершенно аналогично определяются и для рассеивающей линзы с заменой на рис.4.27 собирающей линзы на рассеивающую.

Теперь мы переходим к рассмотрению хода лучей в тонких линзах. Мы будем предполагать, что лучи являются параксиальными, то есть образуют достаточно малые углы с главной оптической осью. Если параксиальные лучи исходят из одной точки, то после прохождения линзы преломлённые лучи или их продолжения также пересекаются в одной точке. Поэтому изображения предметов, даваемые линзой, в параксиальных лучах получаются весьма чёткими.

4.5.3 Ход луча через оптический центр

Как мы знаем из предыдущего раздела, луч, идущий вдоль главной оптической оси, не преломляется. В случае тонкой линзы оказывается, что луч, идущий вдоль побочной оптической оси, также не преломляется!

Объяснить это можно следующим образом. Вблизи оптического центра O обе поверхности линзы неотличимы от параллельных плоскостей, и луч в данном случае идёт как будто через плоскопараллельную стеклянную пластинку (рис. 4.28 ).

Рис. 4.28. Ход луча через оптический центр линзы

Угол преломления луча AB равен углу падения преломлённого луча BC на вторую поверхность. Поэтому второй преломлённый луч CD выходит из плоскопараллельной пластинки параллельно падающему лучу AB. Плоскопараллельная пластинка лишь смещает луч, не изменяя его направления, и это смещение тем меньше, чем меньше толщина пластинки.

Но для тонкой линзы мы можем считать, что эта толщина равна нулю. Тогда точки B, O и C фактически сольются в одну точку, и луч CD окажется просто продолжением луча AB. Вот поэтому и получается, что луч, идущий вдоль побочной оптической оси, не преломляется тонкой линзой (рис. 4.29 ).

Рис. 4.29. Луч, идущий через оптический центр тонкой линзы, не преломляется

Это единственное общее свойство собирающих и рассеивающих линз. В остальном ход лучей в них оказывается различным, и дальше нам придётся рассматривать собирающую и рассеивающую линзу по отдельности.

4.5.4 Ход лучей в собирающей линзе

Как мы помним, собирающая линза называется так потому, что световой пучок, параллельный главной оптической оси, после прохождения линзы собирается в её главном фокусе (рис. 4.30 ).

Рис. 4.31. Преломление пучка, идущего из главного фокуса

Оказывается, что пучок параллельных лучей, падающих на собирающую линзу наклонно, тоже соберётся в фокусе но в побочном. Этот побочный фокус P отвечает тому лучу, который проходит через оптический центр линзы и не преломляется (рис. 4.32 ).

Рис. 4.32. Параллельный пучок собирается в побочном фокусе

Теперь мы можем сформулировать правила хода лучей в собирающей линзе. Эти правила вытекают из рисунков 4.29 –4.32 .

1. Луч, идущий через оптический центр линзы, не преломляется.