Импульс все формулы. Импульс тела: определение и свойства

Определение имеет вид:

Энциклопедичный YouTube

    1 / 5

    ✪ Импульс, момент импульса, энергия. Законы сохранения |

    ✪ Импульс тела Закон сохранения импульса

    ✪ Импульс тела

    ✪ Момент импульса

    ✪ Физика. Законы сохранения в механике: Импульс. Центр онлайн-обучения «Фоксфорд»

    Субтитры

История появления термина

Формальное определение импульса

Импульсом называется сохраняющаяся физическая величина, связанная с однородностью пространства (инвариант относительно трансляций).

Импульс электромагнитного поля

Электромагнитное поле, как и любой другой материальный объект, обладает импульсом, который легко можно найти, проинтегрировав вектор Пойнтинга по объёму :

p = 1 c 2 ∫ S d V = 1 c 2 ∫ [ E × H ] d V {\displaystyle \mathbf {p} ={\frac {1}{c^{2}}}\int \mathbf {S} dV={\frac {1}{c^{2}}}\int [\mathbf {E} \times \mathbf {H} ]dV} (в системе СИ).

Существованием импульса у электромагнитного поля объясняется, например, такое явление, как давление электромагнитного излучения .

Импульс в квантовой механике

Формальное определение

Модуль импульса обратно пропорционален длине волны λ {\displaystyle \lambda } :), модуль импульса равен p = m v {\displaystyle p=mv} (где m {\displaystyle m} - масса частицы), и

λ = h p = h m v {\displaystyle \lambda ={\frac {h}{p}}={\frac {h}{mv}}} .

Следовательно, длина волны де Бройля тем меньше, чем больше модуль импульса.

В векторном виде это записывается как:

p → = h 2 π k → = ℏ k → , {\displaystyle {\vec {p}}={\frac {h}{2\pi }}{\vec {k}}=\hbar {\vec {k}},} p → = ρ v → {\displaystyle {\vec {p}}=\rho {\vec {v}}} .

Изучив законы Ньютона, мы видим, что с их помощью можно решить основные задачи механики, если нам известны все силы, действующие на тело. Есть ситуации, в которых определить эти величины затруднительно или вообще невозможно. Рассмотрим несколько таких ситуаций. При столкновении двух биллиардных шаров или автомобилей мы можем утверждать о действующих силах, что это их природа, здесь действуют силы упругости. Однако ни их модулей, ни их направлений мы точно установить не сможем, тем более что эти силы имеют крайне малое время действия. При движении ракет и реактивных самолетов мы также мало что можем сказать о силах, приводящих указанные тела в движение. В таких случаях применяются методы, позволяющие уйти от решения уравнений движения, а сразу воспользоваться следствиями этих уравнений. При этом вводятся новые физические величины. Рассмотрим одну из этих величин, называемую импульсом тела

Стрела, выпускаемая из лука. Чем дольше продолжается контакт тетивы со стрелой (∆t), тем больше изменение импульса стрелы (∆), а следовательно, тем выше ее конечная скорость.

Два сталкивающихся шарика. Пока шарики находятся в контакте, они действуют друг на друга с равными по модулю силами, как учит нас третий закон Ньютона. Значит, изменения их импульсов также должны быть равны по модулю, даже если массы шариков не равны.

Проанализировав формулы, можно сделать два важных вывода:

1. Одинаковые силы, действующие в течение одинакового промежутка времени, вызывают одинаковые изменения импульса у различных тел, независимо от массы последних.

2. Одного и того же изменения импульса тела можно добиться, либо действуя небольшой силой в течение длительного промежутка времени, либо действуя кратковременно большой силой на то же самое тело.

Согласно второму закону Ньютона, можем записать:

∆t = ∆ = ∆ / ∆t

Отношение изменения импульса тела к промежутку времени, в течение которого это изменение произошло, равно сумме сил, действующих на тело.

Проанализировав это уравнение, мы видим, что второй закон Ньютона позволяет расширить класс решаемых задач и включить задачи, в которых масса тел изменяется с течением времени.

Если же попытаться решить задачи с переменной массой тел при помощи обычной формулировки второго закона Ньютона:

то попытка такого решения привела бы к ошибке.

Примером тому могут служить уже упоминаемые реактивный самолет или космическая ракета, которые при движении сжигают топливо, и продукты этого сжигаемого выбрасывают в окружающее пространство. Естественно, масса самолета или ракеты уменьшается по мере расхода топлива.

Несмотря на то что второй закон Ньютона в виде «равнодействующая сила равна произведению массы тела на его ускорение» позволяет решить довольно широкий класс задач, существуют случаи движения тел, которые не могут быть полностью описаны этим уравнением. В таких случаях необходимо применять другую формулировку второго закона, связывающую изменение импульса тела с импульсом равнодействующей силы. Кроме того, существует ряд задач, в которых решение уравнений движения является математически крайне затруднительным либо вообще невозможным. В таких случаях нам полезно использовать понятие импульса.

С помощью закона сохранения импульса и взаимосвязи импульса силы и импульса тела мы можем вывести второй и третий закон Ньютона.

Второй закон Ньютона выводится из соотношения импульса силы и импульса тела.

Импульс силы равен изменению импульса тела:

Произведя соответствующие переносы, мы получим зависимость силы от ускорения, ведь ускорение определяется как отношение изменения скорости ко времени, в течение которого это изменение произошло:

Подставив значения в нашу формулу, получим формулу второго закона Ньютона:

Для выведения третьего закона Ньютона нам понадобится закон сохранения импульса.

Векторы подчеркивают векторность скорости, то есть то, что скорость может изменяться по направлению. После преобразований получим:

Так как промежуток времени в замкнутой системе был величиной постоянной для обоих тел, мы можем записать:

Мы получили третий закон Ньютона: два тела взаимодействуют друг с другом с силами, равными по величине и противоположными по направлению. Векторы этих сил направлены навстречу друг к другу, соответственно, модули этих сил равны по своему значению.

Список литературы

  1. Тихомирова С.А., Яворский Б.М. Физика (базовый уровень) - М.: Мнемозина, 2012.
  2. Генденштейн Л.Э., Дик Ю.И. Физика 10 класс. - М.: Мнемозина, 2014.
  3. Кикоин И.К., Кикоин А.К. Физика - 9, Москва, Просвещение, 1990.

Домашнее задание

  1. Дать определение импульсу тела, импульсу силы.
  2. Как связаны импульс тела с импульсом силы?
  3. Какие выводы можно сделать по формулам импульса тела и импульса силы?
  1. Интернет-портал Questions-physics.ru ().
  2. Интернет-портал Frutmrut.ru ().
  3. Интернет-портал Fizmat.by ().

ЗАКОНЫ СОХРАНЕНИЯ ИМПУЛЬСА И МОМЕНТА

ИМПУЛЬСА

Учебная цель: добиться понимания физической сущности законов сохранения импульса и момент импульса. Привить навыки самостоятельного решения задач с применением этих законов.

Литература

Основная: Детлаф А. А., Яворский Б.М. Курс физики. – М.: Высшая школа, 1989.– Гл.5, § 5.1 – 5.3.

Дополнительная: Савельев И.В. Курс общей физики. – М.: Наука, 1987. – Т.1, гл.3, § 27 – 29.

Контрольные вопросы для подготовки к занятию

1. Что называется импульсом тела? Импульсом силы? Их единицы измерения.

2. Cформулируйте определение замкнутой системы тел.

3. Сформулируйте и запишите закон сохранения импульса для системы тел?

4. Что называется коэффициентом восстановления? От чего он зависит?

5. Что называется ударом, упругим ударом, неупругим ударом?

6. Что называется моментом импульса? Единица измерения в СИ.

7. Сформулируйте и запишите закон сохранения момента импульса для системы тел и одного тела. Для каких систем он справедлив?

Краткие теоретические сведения и основные формулы

Импульсом тела называется физическая векторная величина, равная произведению массы тела на его скорость и имеющая направление скорости

Импульс – это мера механического движения тела с заданной массой.

Для изменения импульса тела необходимо, чтобы на него подействовала сила. Изменение импульса будет зависеть не только от величины силы, но также и от времени её действия.

Импульсом силы называется векторная физическая величина равная произведению силы и времени её действия, т.е.
.

Понятием импульса силы широко пользуются при решении задач о движении нескольких взаимодействующих тел.

Мысленно выделенная совокупность материальных точек (тел), движущихся согласно законам классической механики и взаимодействующих друг с другом и с телами, не включёнными в состав этой совокупности, называется механической системой. Силы взаимодействия между телами механической системы называются внутренними. Силы, с которыми взаимодействуют тела, не входящие в систему, называются внешними.

Механическая система тел, на которую не действуют внешние силы
называется замкнутой, или изолированной. В изолированной системе геометрическая сумма импульсов входящих в неё тел, остаётся постоянной, то есть

Закон сохранения импульса нашёл широкое применение при ударе тел.

Ударом называется кратковременное взаимодействие тел, возникающее в результате их столкновения.

При соударении тел друг с другом они претерпевают деформацию. При этом кинетическая энергия, которой обладали тела перед ударом, частично или полностью переходит в потенциальную энергию упругой деформации и в так называемую внутреннюю энергию тел.

Для учёта потерь энергии вводится коэффициент восстановления, который зависит только от физических свойств материала тел. Он определяется отношением нормальной составляющей (по отношению к поверхности соударения) относительной скорости после удара
к её величине до удара
(рис.4.1):

Удар называется абсолютно упругим, если после удара возникшие в телах деформации полностью исчезают (кинетическая энергия тела до и после удара остаётся неизменной, k = 1).

Удар называется абсолютно неупругим, если после удара возникшие в телах деформации полностью сохраняются (k = 0). После абсолютно неупругого удара тела движутся с общей скоростью.

При неупругом центральном ударе двух тел с массами и общая скорость движение этих тел после удара может быть определена из закона сохранения импульса:

где - скорость первого тела до удара; - скорость второго тела до удара.

Часть кинетической энергии тел до удара пойдёт на работу деформации

При упругом центральном ударе тела после удара будут двигаться с различными скоростями. Скорость первого тела после удара

Скорость второго тела после удара

При решении задач механики в незамкнутых системах применить закон сохранения импульса можно, если:

а) внешние силы действуют, но результирующая этих сил равна нулю;

б) проекция суммы всех внешних сил на какое-то направление равна нулю, следовательно, проекция импульса на это направление сохраняется, хотя сам вектор импульса не остаётся постоянным.

Моментом импульса тела относительно неподвижной оси называется векторная физическая величина, равная произведению момента инерции тела относительно той же оси на угловую скорость тела:


Момент импульса системы тел есть векторная сумма моментов импульсов всех тел системы

Закон сохранения момента импульса: есть результирующий момент внешних сил, приложенных к системе, равен нулю
, то момент импульса системы есть величина постоянная, то есть

Для двух тел:

где J 1 , J 2 , , – момент инерции и угловые скорости тел до взаимодействия;
- те же величины после взаимодействия.

Для одного тела, момент инерции которого может меняться:

где J 1 и J 2 – начальное и конечное значение момента инерции; и – начальная конечная угловые скорости тела.

В задачах по общему курсу физики обычно рассматривают вращение твердого тела лишь вокруг неподвижной оси или оси, перемещающейся в пространстве параллельно самой себе. В этом случае физические величины, характеризующие вращательное движение тела
направлены вдоль оси вращения. Это позволяет упростить запись уравнений вращательного движения тела. Выбрав ось вращения за ось проекций, все уравнения можно записать в скалярной форме. При этом знаки величин, , М , L определяют следующим образом. Некоторое направление вращения (по часовой стрелке или против неё) выбирают за положительное. Величины , L , М берутся со знаком плюс, если их направление соответствует выбранному положительному направлению, в противном случае – со знаком минус. Знак величины всегда совпадает со знаком М .

При ускоренном вращении тела знаки всех четырёх величин совпадают; при замедленном движении две пары величин - , L и М , - имеют противоположные знаки.

Сопоставление основных величин и уравнений, определяющих вращательное движение тела вокруг неподвижной оси и его поступательное движение, подчёркивающее их аналогию, приведено в таб. 4.1.

Т а б л и ц а 4.1

Поступательное движение

Вращательное движение

Равнодействующая внешних сил

Основное уравнение динамики

Суммарный момент внешних сил – М

Основное уравнение динамики:

Задачи с движущимися телами в физике, когда скорость много меньше световой, решаются с помощью законов ньютоновской, или классической механики. В ней одним из важных понятий является импульс. Основные в физике приводятся в данной статье.

Импульс или количество движения?

Прежде чем приводить формулы импульса тела в физике, познакомимся с этим понятием. Впервые величину под названием impeto (импульс) использовал в описании своих трудов Галилей в начале XVII века. Впоследствии Исаак Ньютон для нее употребил другое название - motus (движение). Поскольку фигура Ньютона оказала большее влияние на развитие классической физики, чем личность Галилея, изначально принято говорить не об импульсе тела, а о количестве движения.

Под количеством движения понимают произведение скорости перемещения тела на инерционный коэффициент, то есть на массу. Соответствующая формула имеет вид:

Здесь p¯ - вектор, направление которого совпадает с v¯, но модуль в m раз больше, чем модуль v¯.

Изменение величины p¯

Понятие о количестве движения в настоящее время используют реже, чем об импульсе. И связан этот факт непосредственно с законами ньютоновской механики. Запишем его в форме, которая приводится в школьных учебниках по физике:

Заменим ускорение a¯ на соответствующее выражение с производной скорости, получим:

Перенося dt из знаменателя правой части равенства в числитель левой, получаем:

Мы получили интересный результат: помимо того, что действующая сила F¯ приводит к ускорению тела (см. первую формулу этого пункта), она также изменяет количество его движения. Произведение силы на время, которое стоит в левой части, называется импульсом силы. Он оказывается равным изменению величины p¯. Поэтому последнее выражение называют также формулой импульса в физике.

Заметим, что dp¯ - это тоже но направлена она в отличие от p¯ не как скорость v¯, а как сила F¯.

Ярким примером изменения вектора количества движения (импульса) является ситуация, когда футболист бьет по мячу. До удара мяч двигался к футболисту, после удара - от него.

Закон сохранения импульса

Формулы в физике, которые описывают сохранение величины p¯, могут быть приведены в нескольких вариантах. Прежде чем их записывать, ответим на вопрос о том, когда сохраняется импульс.

Обратимся к выражению из предыдущего пункта:

Оно говорит о том, что если сумма внешних сил, оказывающих воздействие на систему, равна нулю (закрытая система, F¯= 0), тогда dp¯= 0, то есть никакого изменения количества движения не будет происходить:

Это выражение является общим для импульса тела и закона сохранения импульса в физике. Отметим два важных момента, о которых следует знать, чтобы с успехом применять это выражение на практике:

  • Импульс сохраняется вдоль каждой координаты, то есть если до некоторого события значение p x системы составляло 2 кг*м/c, то после этого события оно будет таким же.
  • Импульс сохраняется независимо от характера столкновений твердых тел в системе. Известно два идеальных случая таких столкновений: абсолютно упругий и абсолютно пластичный удары. В первом случае сохраняется также кинетическая энергия, во втором часть ее расходуется на пластическую деформацию тел, однако импульс сохраняется все равно.

Упругое и неупругое взаимодействие двух тел

Частным случаем использования формулы импульса в физике и его сохранения является движение двух тел, которые сталкиваются друг с другом. Рассмотрим два принципиально разных случая, о которых упоминалось в пункте выше.

Если удар будет абсолютно упругим, то есть передача импульса от одного тела к другому осуществляется посредством упругой деформации, тогда формула сохранения p запишется так:

m 1 *v 1 + m 2 *v 2 = m 1 *u 1 + m 2 *u 2

Здесь важно помнить, что знак скорости должен подставляться с учетом ее направления вдоль рассматриваемой оси (противоположные скорости имеют разные знаки). Эта формула показывает, что при условии известного начального состояния системы (величины m 1 , v 1 , m 2 , v 2) в конечном состоянии (после столкновения) имеется две неизвестных (u 1 , u 2). Найти их можно, если воспользоваться соответствующим законом сохранения кинетической энергии:

m 1 *v 1 2 + m 2 *v 2 2 = m 1 *u 1 2 + m 2 *u 2 2

Если удар абсолютно неупругий или пластический, то после столкновения два тела начинают двигаться как единое целое. В этом случае имеет место выражение:

m 1 *v 1 + m 2 *v 2 = (m 1 + m 2)*u

Как видно, речь идет всего об одной неизвестной (u), поэтому для ее определения достаточно этого одного равенства.

Импульс тела во время движения по окружности

Все, что было сказано выше об импульсе, относится к линейным перемещениям тел. Как быть в случае вращения объектов вокруг оси? Для этого в физике введено другое понятие, которое аналогично линейному импульсу. Оно называется моментом импульса. Формула в физике для него принимает следующий вид:

Здесь r¯ - вектор, равный расстоянию от оси вращения до частицы с импульсом p¯, совершающей круговые движения вокруг этой оси. Величина L¯ - это тоже вектор, но рассчитать его несколько сложнее, чем p¯, поскольку речь идет о векторном произведении.

Закон сохранения L¯

Формула для L¯, которая приведена выше, является определением этой величины. На практике же предпочитают использовать несколько иное выражение. Не будем вдаваться в подробности его получения (это несложно, и каждый может проделать это самостоятельно), а приведем его сразу:

Здесь I - это момент инерции (для материальной точки он равен m*r 2), который описывает инерционные свойства вращающегося объекта, ω¯ - скорость угловая. Как можно заметить, это уравнение аналогично по форме записи такового для линейного импульса p¯.

Если на вращающую систему не действуют никакие внешние силы (в действительности момент сил), то произведение I на ω¯ будет сохраняться независимо от процессов, происходящих внутри системы. То есть закон сохранения для L¯ имеет вид:

Примером его проявления является выступление спортсменов в фигурном катании, когда они совершают вращения на льду.