Как влияет эл ток на организм человека. Влияние электрического тока на человека

Чем опасен электрический ток? Как электрический ток действует на человека

Факт действия электрического тока на человека был установлен в последней четверти XVIII века. Опасность этого действия впервые установил изобретатель электрохимического высоковольтного источника напряжения В. В. Петров. Описание первых промышленных электротравм появилось значительно позже: в 1863 г. - от постоянного тока и в 1882 г. - от переменного.

Электрический ток, электротравмы и электротравматизм

Под электротравмой понимают травму, вызванную действием электрического тока или электрической дуги .

Электротравматизм характеризуют такие особенности: защитная реакция организма появляется только после попадания человека под напряжение, т. е. когда электрический ток уже протекает через его организм; электрический ток действует не только в местах контактов с телом человека и на пути прохождения через организм, но и вызывает рефлекторное действие, проявляющееся в нарушении нормальной деятельности сердечно-сосудистой и нервной системы, дыхания и т. д. Электротравму человек может получить как при непосредственном контакте с токоведущими частями, так и при поражении напряжением прикосновения или шага, через электрическую дугу.

Электротравматизм по сравнению с другими видами производственного травматизма составляет небольшой процент, однако по числу травм с тяжелым, и особенно летальным, исходом занимает одно из первых мест. Наибольшее число электротравм (60-70 %) происходит при работе на электроустановках напряжением до 1000 В. Это объясняется широким распространением таких электроустановок и сравнительно низким уровнем электротехнической подготовки лиц, эксплуатирующих их. Электроустановок напряжением свыше 1000 В в эксплуатации значительно меньше, и обслуживает их , что и обусловливает меньшее количество электротравм.

Причины поражения человека электрическим током следующие: прикосновение к неизолированным токоведущим частям; к металлическим частям оборудования, оказавшимся под напряжением вследствие повреждения изоляции; к неметаллическим предметам, оказавшимся под напряжением; поражение током напряжения шага и через дугу.

Виды поражений человека электрическим током

Электрический ток , протекающий через организм человека, воздействует на него термически, электролитически и биологически. Термическое действие характеризуется нагревом тканей, вплоть до ожогов; электролитическое - разложением органических жидкостей, в том числе и крови; биологическое действие электрического тока проявляется в нарушении биоэлектрических процессов и сопровождается раздражением и возбуждением живых тканей и сокращением мышц.

Различают два вида поражения организма электрическим током: электрические травмы и электрические удары.

Электрические травмы - это местные поражения тканей и органов: электрические ожоги, электрические знаки и электрометаллизация кожи.

Электрические ожоги возникают в результате нагрева тканей человека протекающим через него электрическим током силой более 1 А. Ожоги могут быть поверхностные, когда поражаются кожные покровы, и внутренние - при поражении глубоколежащих тканей тела. По условиям возникновения различают контактные, дуговые и смешанные ожоги.

Электрические знаки представляют собой пятна серого или бледно-желтого цвета в виде мозоли на поверхности кожи в месте контакта с токоведущими частями. Электрические знаки, как правило, безболезненны и с течением времени сходят.

Электрометаллизация кожи - это пропитывание поверхности кожи частицами металла при его разбрызгивании или испарении под действием электрического тока. Пораженный участок кожи имеет шероховатую поверхность, окраска которой определяется цветом соединений металла, попавшего на кожу. Электрометаллизация кожи не представляет собой опасности и с течением времени исчезает, как и электрические знаки. Большую опасность представляет металлизация глаз.

К электрическим травмам, кроме того, относятся механические повреждения в результате непроизвольных судорожных сокращений мышц при протекании тока (разрывы кожи, кровеносных сосудов и нервов, вывихи суставов, переломы костей), а также электроофтальмия - воспаление глаз в результате действия ультрафиолетовых лучей электрической дуги.

Электрический удар представляет собой возбуждение живых тканей электрическим током, сопровождающееся непроизвольным судорожным сокращением мышц. По исходу электрические удары условно разделяют на пять групп: без потери сознания; с потерей сознания, но без нарушения сердечной деятельности и дыхания; с потерей сознания и нарушением сердечной деятельности или дыхания; клиническая смерть и электрический шок.

Клиническая, или «мнимая», смерть - это переходное состояние от жизни к смерти. В состоянии клинической смерти сердечная деятельность прекращается и дыхание останавливается. Длительность клинической смерти 6...8 мин. По истечении этого времени происходит гибель клеток коры головного мозга, жизнь угасает и наступает необратимая биологическая смерть. Признаки клинической смерти: остановка или фибрилляция сердца (и, как следствие, отсутствие пульса), отсутствие дыхания, кожный покров синеватый, зрачки глаз резко расширены из-за кислородного голодания коры головного мозга и не реагируют на свет.

Электрический шок - это тяжелая нервнорефлекторная реакция организма на раздражение электрическим током. При шоке возникают глубокие расстройства дыхания, кровообращения, нервной системы и других систем организма. Сразу после действия тока наступает фаза возбуждения организма: появляется реакция на боль, повышается артериальное давление и др. Затем наступает фаза торможения: истощается нервная система, снижается артериальное давление, ослабевает дыхание, падает и учащается пульс, возникает состояние депрессии. Шоковое состояние может длиться от нескольких десятков минут до суток, а затем может наступить выздоровление или биологическая смерть.

Пороговые значения электрического тока

Электрический ток различной силы оказывает различное действие на человека. Выделены пороговые значения электрического тока: пороговый ощутимый ток - 0,6...1,5 мА при переменном токе частотой 50 Гц и 5... 7 мА при постоянном токе; пороговый неотпускающий ток (ток, вызывающий при прохождении через человека непреодолимые судорожные сокращения мышц руки, в которой зажат проводник) - 10...15 мА при 50 Гц и 50...80 мА при постоянном токе; пороговый фибрилляционный ток (ток, вызывающий при прохождении через организм фибрилляцию сердца) - 100 мА при 50 Гц и 300 мА при постоянном электрическом токе.

От чего зависит степень действия электрического тока на организм человека

Исход поражения также зависит от длительности протекания тока через человека. С увеличением длительности нахождения человека под напряжением эта опасность увеличивается.

Индивидуальные особенности организма человека значительно влияют на исход поражения при электротравмах. Например, неотпускающий ток для одних людей может быть пороговым ощутимым для других. Характер действия тока одной и той же силы зависит от массы человека и его физического развития. Установлено, что для женщин пороговые значения тока примерно в 1,5 раза ниже, чем для мужчин.

Степень действия тока зависит от состояния нервной системы и всего организма. Так, в состоянии возбуждения нервной системы, депрессии, болезни (особенно болезней кожи, сердечно-сосудистой системы, нервной системы и др.) и опьянения люди более чувствительны к протекающему через них току.

Значительную роль играет и «фактор внимания». Если человек подготовлен к электрическому удару, то степень опасности резко снижается, в то время как неожиданный удар приводит к более тяжелым последствиям.

Существенно влияет на исход поражения путь тока через тело человека. Опасность поражения особенно велика, если ток, проходя через жизненно важные органы - сердце, легкие, головной мозг, - действует непосредственно на эти органы. Если ток не проходит через эти органы, то его действие на них только рефлекторное и вероятность поражения меньше. Установлены наиболее часто встречающиеся пути тока через человека, так называемые «петли тока». В большинстве случаев цепь тока через человека возникает по пути правая рука - ноги. Однако утрату трудоспособности более чем на три рабочих дня вызывает протекание тока по пути рука - рука - 40 %, путь тока правая рука - ноги - 20 %, левая рука - ноги - 17 %, остальные пути встречаются реже.

Что опаснее - переменный или постоянный электрический ток?

Опасность переменного тока зависит от частоты этого тока. Исследованиями установлено, что токи в диапазоне от 10 до 500 Гц практически одинаково опасны. С дальнейшим увеличением частоты значения пороговых токов повышаются. Заметное снижение опасности поражения человека электрическим током наблюдается при частотах более 1000 Гц.

Постоянный ток менее опасен и пороговые значения его в 3 - 4 раза выше, чем переменного тока частотой 50 Гц. Однако при разрыве цепи постоянного тока ниже порогового ощутимого возникают резкие болевые ощущения, вызываемые током переходного процесса. Положение о меньшей опасности постоянного тока по сравнению с переменным справедливо при напряжениях до 400 В. В диапазоне 400...600 В опасности постоянного и переменного тока частотой 50 Гц практически одинаковы, а с дальнейшим увеличением напряжения относительная опасность постоянного тока увеличивается. Это объясняется физиологическими процессами действия на живую клетку.

Следовательно, действие электрического тока на организм человека многообразно и зависит от многих факторов.

Электромагнитная волна , распространяясь от источника в неограниченном пространстве со скоростью света, создает электромагнитное поле (ЭМП), способное воздействовать на заряженные частицы и токи, в результате чего происходит превращение энергии поля в другие виды энергии.

Действующим началом колебаний диапазона от единиц до нескольких тысяч Гц являются протекающие токи соответствующей частоты через тело как хороший проводник.

Для диапазона частот от нескольких тысяч до 30 мГц характерно быстрое возрастание поглощения энергии, а следовательно, и поглощенной мощности телом с увеличением частоты колебаний. Особенностью диапазона от 30 мГц до 10 гГц является “резонансное” поглощение. У человека такой характер поглощения возникает при действии ЭМП с частотами от 70 до 100 мГц. Для диапазонов от 10 до 200 гГц и от 200 до 3000 гГц характерно максимальное поглощение энергии поверхностными тканями, преимущественно кожей.

С уменьшением длины волны и увеличением частоты глубина проникновения электромагнитных волн в ткани уменьшается. Эта тенденция наблюдается до тех пор, пока длина волны в данном организме существенно превышает размеры клетки. На очень высоких частотах проницаемость тканей для электромагнитного излучения вновь начинает возрастать, например, для рентгеновского и гамма-излучения.

Различие диэлектрических свойств тканей приводит к неравномерности их нагрева, возникновению макро- и микротепловых эффектов со значительным перепадом температур.

Электромагнитные поля промышленной частоты

Длительное воздействие электромагнитных полей промышленной частоты (50 Гц) приводит к расстройствам в головном мозге и центральной нервной системе . В результате у человека наблюдаются головная боль в височной и затылочной областях, вялость, ухудшение памяти, боли в области сердца, угнетенное настроение, апатия, своеобразная депрессия с повышенной чувствительностью к яркому свету и интенсивному звуку, расстройство сна, сердечно-сосудистой системы, органов пищеварения, дыхания, повышенная раздражительность, а также наблюдаются функциональные нарушения в центральной нервной системе, изменения в составе крови.

Согласно санитарным правилам и нормам СанПиН 2.2.4.1191-03 “Электромагнитные поля в производственных условиях” пребывание в электромагнитных полях промышленной частоты напряженностью до 5 кВ/м допускается в течение всего рабочего дня.

Электростатические поля

Электростатическое поле (ЭСП) образует электростатические заряды, возникающие на поверхностях некоторых материалов как жидких, так и твердых, вследствие электризации.

Электризация возникает при трении двух диэлектрических или диэлектрического и проводящего материалов, если последний изолирован от земл и. При разделении двух диэлектрических материалов происходит разделение электрических зарядов. Материал, имеющий большую диэлектрическую проницаемость, заряжается положительно, а меньшую — отрицательно.

Кроме трения, причиной образования статических зарядов является электрическая индукция, в результате которой изолированные от земли тела во внешнем электрическом поле приобретают электрический заряд.

Воздействие ЭСП на человека связано с протеканием через него слабого тока. При этом электротравм не бывает. Однако вследствие рефлекторной реакции на раздражение анализаторов на коже человек отстраняется от заряженного тела, что может привести к механической травме от удара о рядом расположенные элементы конструкций, падение с высоты, испуг с возможной потерей сознания.

Электростатическое поле большой напряженности (несколько десятков киловольт) способно изменять и прерывать клеточное развитие, вызывать катаракту с последующим помутнением хрусталика.

К воздействию электростатического поля наиболее чувствительны центральная нервная и сердечно-сосудистая системы, анализаторы. Люди жалуются на раздражительность, головную боль, нарушение сна, снижение аппетита и др. Длительное пребывание человека в условиях, когда напряженность ЭСП имеет величину более 1 кВ/м, вызывает нервно-эмоциональное напряжение, утомление, снижение работоспособности, нарушение суточного биоритма, снижение адаптационных резервов организма.

Предельно допустимое значение напряженности ЭСП устанавливается СанПиН 2.2.4.1191-03 в зависимости от времени его воздействия на работника за смену, равным 60 кВ/м в течение 1 ч. При напряженности ЭСП менее 20 кВ/м время пребывания в поле не регламентируется.

При напряженности ЭСП, превышающей 60 кВ/м, работа без применения средств защиты не допускается.

Электромагнитные поля радиочастот

Электромагнитные поля радиочастот большой интенсивности вызывают в организме человека тепловой эффект, который может выразиться в нагреве тела, либо отдельных его тканей или органов . Воздействие электромагнитного поля особенно вредно для органов и тканей, недостаточно хорошо снабженных кровеносными сосудами (глаза, мозг, почки, желудок, мочевой и желчный пузырь). Наиболее чувствительны к воздействию радиоволн центральная нервная и сердечно-сосудистая системы. У человека возникают головная боль, повышенная утомляемость, изменение артериального давления, нервно-психические расстройства, а также могут наблюдаться выпадение волос, ломкость ногтей, снижение веса.

Нормирование ЭМП радиочастотного диапазона в производственных условиях проводится СанПиН 2.2.4.1191-03, согласно которым оценка воздействия ЭМП радиочастот на людей осуществляется по интенсивности излучения и энергетической экспозиции.

Предельно допустимые уровни (ПДУ) напряженности электрического и магнитного полей (ЕПДУ, НПДУ) диапазона частот от 10 до 30 кГц при воздействии в течение всей рабочей смены составляют 500 В/м и 50 А/м соответственно. ПДУ напряженности электрического и магнитного полей при продолжительности воздействия до 2 часов за смену равны 1 000 В/м и 100 А/м соответственно.

Способы защиты от вредного воздействия электромагнитных полей

Защита человека от опасного воздействия электромагнитного облучения осуществляется следующими способами: уменьшением излучения от источника; экранированием источника излучения и рабочего места; установлением санитарно-защитной зоны; поглощением или уменьшение образования зарядов статического электричества; устранением зарядов статического электричества; применением средств индивидуальной защиты.

Уменьшение мощности излучения от источника реализуется применением поглотителей электромагнитной энергии; блокированием излучения.

Поглощение электромагнитных излучений осуществляется поглотительным материалом путем превращения энергии электромагнитного поля в тепловую. В качестве такого материала применяют каучук, поролон, пенополистерол, ферромагнитный порошок со связывающим диэлектриком.

Экранирование источника излучения и рабочего места производится специальными экранами. При этом различают отражающие и поглощающие экраны. Первые изготавливают из материала с низким электросопротивлением — металлы и их сплавы (медь, латунь, алюминий, сталь, цинк). Они могут быть сплошные и сетчатые. Экраны должны быть заземлены для обеспечения стекания в землю образующихся на них зарядов.

Поглощающие экраны выполняют из радиопоглощающих материалов: эластичных или жестких пенопластов, резиновых ковриков, листов поролона или волокнистой древесины, обработанной специальным составом, а также из ферромагнитных пластин.

Для устранения зарядов статического электричества используют заземление частей оборудования, увлажнение воздуха.

Электрический ток

Опасность поражения людей электрическим током на производстве и в быту появляется при несоблюдении мер безопасности, а также при отказе или неисправности электрического оборудования и бытовых приборов. По сравнению с другими видами производственного травматизма электротравматизм составляет небольшой процент, однако по числу травм с тяжелым и особенно летальным исходом занимает одно из первых мест . На производстве из-за несоблюдения правил электробезопасности происходит 75% электропоражений.

Действие электрического тока на живую ткань носит разносторонний и своеобразный характер. Проходя через организм человека, электроток производит термическое, электролитическое, механическое, биологическое, световое воздействие.

Термическое воздействие тока характеризуется нагревом кожи и тканей до высокой температуры вплоть до ожогов.

Электролитическое воздействие заключается в разложении органической жидкости, в том числе крови, и нарушении ее физико-химического состава.

Механическое действие тока приводит к расслоению, разрыву тканей организма в результате электродинамического эффекта, а также мгновенного взрывоподобного образования пара из тканевой жидкости и крови. Механическое действие связано с сильным сокращением мышц вплоть до их разрыва.

Биологическое действие проявляется в раздражении и возбуждении живых тканей и сопровождается судорожными сокращениями мышц.

Световое действие приводит к поражению слизистых оболочек глаз.

Виды поражения организма человека электрическим током

Электротравмы — это травмы, полученные от воздействия электрического тока на организм, которые условно разделяют на общие (электрический удар), местные и смешанные.

Электрический удар

Электрический удар представляет собой возбуждение живых тканей организма проходящим через него электрическим током, сопровождающееся резкими судорожными сокращениями мышц, в том числе мышцы сердца, что может привести к остановке сердца .

Под местными электротравмами понимается повреждение кожи и мышечной ткани, а иногда связок и костей. К ним можно отнести электрические ожоги, электрические знаки, металлизацию кожи, механические повреждения.

Электрические ожоги

Электрические ожоги — наиболее распространенная электротравма, возникает в результате локального воздействия тока на ткани. Ожоги бывают двух видов — контактный и дуговой.

Контактный ожог является следствием преобразования электрической энергии в тепловую и возникает в основном в электроустановках напряжением до 1 000 В.

Электрический ожог - это как бы аварийная система, защита организма, так как обуглившиеся ткани в силу большей сопротивляемости, чем обычная кожа, не позволяют электричеству проникнуть вглубь, к жизненно важным системам и органам. Иначе говоря, благодаря ожогу ток заходит в тупик.

Когда организм и источник напряжения соприкасались неплотно, ожоги образуются на местах входа и выхода тока . Если ток проходит по телу несколько раз разными путями, возникают множественные ожоги.

Множественные ожоги чаще всего случаются при напряжении до 380 В из-за того, что такое напряжение “примагничивает” человека и требуется время на отсоединение. Высоковольтный ток такой “липучестью” не обладает. Наоборот, он отбрасывает человека, но и такого короткого контакта достаточно для серьезных глубоких ожогов. При напряжении свыше 1 000 В случаются электротравмы с обширными глубокими ожогами, поскольку в этом случае температура поднимается по всему пути следования тока.

При напряжении свыше 1 000 В в результате случайных коротких замыканий может возникнуть и дуговой ожог.

Электрические знаки и электрические метки

Электрические знаки или электрические метки представляют собой четко очерченные пятна серого или бледно-желтого цвета на поверхности кожи человека, подвергнувшегося действию тока. Обычно электрические знаки имеют круглую или овальную форму с углубленным в центре размером от 1 до 5 мм.

Металлизация кожи

Металлизация кожи — это выпадение мельчайших частичек расплавленного металла на открытые поверхности кожи . Обычно такое явление происходит при коротких замыканиях, производстве электросварочных работ. На пораженном участке возникает боль от ожога и наличия инородных тел.

Механические повреждения

Механические повреждения — следствие судорожных сокращений мышц под действием тока, проходящего через человека, приводящее к разрыву кожи, мышц, сухожилий . Это происходит при напряжении ниже 380 В, когда человек не теряет сознания и пытается самостоятельно освободиться от источника тока.

Факторы, определяющие исход воздействия электрического тока на человека

Согласно ГОСТу 12.1.019 “ССБТ. Электробезопасность. Общие требования” степень опасного и вредного воздействия на человека электрического тока зависит от силы тока, напряжения, рода тока, частоты электрического тока и пути прохождения через тело человека, продолжительности воздействия и условий внешней среды.

Сила тока — главный фактор, от которого зависит исход поражения: чем больше сила тока, тем опаснее последствия. Сила тока (в амперах) зависит от приложенного напряжения (в вольтах) и электрического сопротивления организма (в омах).

По степени воздействия на человека различают три пороговых значения тока: ощутимый, неотпускающий и фибрилляционный.

Ощутимый

Ощутимым называют электрический ток, который при прохождении через организм вызывает ощутимое раздражение. Минимальная величина, которую начинает ощущать человек при переменном токе с частотой 50 Гц, составляет 0,6-1,5 мА.

Неотпускающий

Неотпускающим считают ток, при котором непреодолимые судорожные сокращения мышц руки, ноги или других частей тела не позволяют пострадавшему самостоятельно оторваться от токоведущих частей (10,0-15,0 мА).

Фибрилляционный ток

Фибрилляционный — ток, вызывающий при прохождении через организм фибрилляцию сердца — быстрые хаотические и разновременные сокращения волокон сердечной мышцы, приводящие к его остановке (90,0-100,0 мА). Через несколько секунд происходит остановка дыхания. Чаще всего смертельные исходы наступают от напряжения 220 В и ниже. Именно низкое напряжение заставляет беспорядочно сокращаться сердечные волокна и приводит к моментальному сбою в работе желудочков сердца.

Безопасный ток

Допустимым следует считать ток, при котором человек может самостоятельно освободиться от электрической цепи. Его величина зависит от скорости прохождения тока через тело человека: при длительности действия более 10 с — 2 мА, а при 120 с и менее — 6 мА.

Безопасным напряжением считают 36 В (для светильников местного стационарного освещения, переносных светильников и т. д.) и 12 В (для переносных светильников при работе внутри металлических резервуаров, котлов). Но при определенных ситуациях и такие напряжения могут представлять опасность.

Безопасные уровни напряжения получают из осветительной сети, используя для этого понижающие трансформаторы. Распространить применение безопасного напряжения на все электрические устройства невозможно.

В производственных процессах используются два рода тока — постоянный и переменный. Они оказывают различное воздействие на организм при напряжениях до 500 В. Опасность поражения постоянным током меньше, чем переменным. Наибольшую опасность представляет ток частотой 50 Гц, которая является стандартной для отечественных электрических сетей.

Путь, по которому электрический ток проходит через тело человека, во многом определяет степень поражения организма. Возможны следующие варианты направлений движения тока по телу человека:
  • человек обеими руками дотрагивается до токоведущих проводов (частей оборудования), в этом случае возникает направление движения тока от одной руки к другой, т. е. “рука-рука”, эта петля встречается чаще всего;
  • при касании одной рукой к источнику путь тока замыкается через обе ноги на землю “рука-ноги”;
  • при пробое изоляции токоведущих частей оборудования на корпус под напряжением оказываются руки работающего, вместе с тем стекание тока с корпуса оборудования на землю приводит к тому, что и ноги оказываются под напряжением, но с другим потенциалом, так возникает путь тока “руки-ноги”;
  • при стекании тока на землю от неисправного оборудования земля поблизости получает изменяющийся потенциал напряжения, и человек, наступивший обеими ногами на такую землю, оказывается под разностью потенциалов, т. е. каждая из этих ног получает разный потенциал напряжения, в результате возникает шаговое напряжение и электрическая цепь “нога-нога”, которая случается реже всего и считается наименее опасной;
  • прикосновение головой к токоведущим частям может вызвать в зависимости от характера выполняемой работы путь тока на руки или на ноги — “голова-руки”, “голова-ноги”.

Все варианты различаются степенью опасности. Наиболее опасными являются варианты “голова-руки”, “голова-ноги”, “руки-ноги” (петля полная). Это объясняется тем, что в зону поражения попадают жизненно важные системы организма — головной мозг, сердце.

Продолжительность воздействия тока влияет на конечный исход поражения. Чем дольше воздействуeт электрический ток на организм, тем тяжелее последствия.

Условия внешней среды , окружающей человека в ходе производственной деятельности, могут повысить опасность поражения электрическим током. Увеличивают опасность поражения током повышенная температура и влажность, металлический или другой токопроводящий пол.

По степени опасности поражения человека током все помещения делятся на три класса: без повышенной опасности, с повышенной опасностью, особо опасные.

Защита от воздействия электрического тока

Для обеспечения электробезопасности необходимо точное соблюдение правил технической эксплуатации электроустановок и проведение мероприятий по защите от электротравматизма.

ГОСТ 12.1.038-82 устанавливает предельно допустимые напряжения и токи, протекающие через тело человека при нормальном (неаварийном) режиме работы электроустановок производственного и бытового назначения постоянного и переменного тока частотой 50 и 400 Гц. Для переменного тока 50 Гц допустимое значение напряжения прикосновения составляет 2 В, а силы тока — 0,3 мА, для тока частотой 400 Гц — соответственно 2 В и 0,4 мА; для постоянного тока — 8В и 1,0 мА (эти данные приведены для продолжительности воздействия не более 10 мин в сутки).

Мерами и способами обеспечения электробезопасности служат:
  • применение безопасного напряжения;
  • контроль изоляции электрических проводов;
  • исключение случайного прикосновения к токоведущим частям;
  • устройство защитного заземления и зануления;
  • использование средств индивидуальной защиты;
  • соблюдение организационных мер обеспечения электробезопасности.

Одним из аспектов может быть применение безопасного напряжения — 12 и 36 В. Для его получения используют понижающие трансформаторы, которые включают в стандартную сеть с напряжением 220 или 380 В.

Для защиты от случайного прикосновения человека к токоведущим частям электроустановок используют ограждения в виде переносных щитов, стенок, экранов.

Защитное заземление — это преднамеренное электрическое соединение с землей или ее эквивалентом (металлоконструкция зданий и др.) металлических нетоковедущих частей, которые могут оказаться под напряжением. Цель защитного заземления — устранение опасности поражения человека электрическим током в случае прикосновения его к металлическому корпусу электрооборудования, который в результате нарушения изоляции оказался под напряжением.

Зануление — преднамеренное электрическое соединение с нулевым защитным проводником металлических нетоковедущих частей, которые могут оказаться под напряжением. Нулевой защитный проводник — это проводник, соединяющий зануляемые части с глухозаземленной нейтральной точкой обмотки источника тока или его эквивалентом.

Защитное отключение — это система защиты, обеспечивающая безопасность путем быстрого автоматического отключения электроустановки при возникновении в ней опасности поражения током. Продолжительность срабатывания защитного отключения составляет 0,1- 0,2 с. Данный способ защиты используют как единственную защиту или в сочетании с защитным заземлением и занулением.

Применение малых напряжений. К малым относят напряжение до 42В, его применяют при работе с переносными электроинструментами, использовании переносных светильников.

Контроль изоляции . Изоляция проводов со временем теряет свои диэлектрические свойства. Поэтому необходимо периодически проводить контроль сопротивления изоляции проводов с целью обеспечения их электробезопасности.

Средства индивидуальной защиты — подразделяются на изолирующие, вспомогательные, ограждающие. Изолирующие защитные средства обеспечивают электрическую изоляцию от токоведущих частей и земли. Они подразделяются на основные и дополнительные. К основным изолирующим средствам в электроустановках до 1000 В относят диэлектрические перчатки, инструмент с изолированными ручками. К дополнительным средствам — диэлектрические галоши, коврики, диэлектрические подставки.

В повседневной жизни каждый из нас сталкивается с электричеством. Это могут быть как электроприборы, так и некоторые процедуры. Однако иногда ток может воздействовать на человеческое тело. Стоит разобраться, что такое ток и каково действие электрического тока на организм человека.

Что такое ток?

Современное понятие электрического тока определяет его как направленное движение заряженных частиц. Такими частицами могут быть электроны и ионы, хотя в некоторых случаях ток может возникать под действием изменения магнитного поля во времени.

Ток может быть постоянным и переменным. Постоянный ток имеет неизменные показатели направления и времени, тогда как переменная его форма является нестабильной по данным показателям. Выделяют также форму квазистационарного тока, который является переменным, но его изменения во времени и по направлению настолько малы, что он подчиняется законам постоянного тока.

Все частицы, движущиеся при возникновении тока, имеют свой определенный заряд и направление движения.

Следует определить, какими могут быть виды воздействия электрического тока на организм.

По каноническим законам, движение тока происходит согласно направлению положительных зарядов в среде. В некоторых случаях ток может быть обратно направленным, когда его движение происходит в обратную сторону от направления положительных векторов (может быть обусловлено отрицательными зарядами). Так как же действует ток?

Действие электрического тока на человека и виды поражений

При попадании человеческого организма под действие электрического тока возможно несколько видов их взаимодействия.

Биологическое воздействие тока на организм. Может оказать влияние на работу мышечных волокон и органов, поспособствовать проведению импульса и, наоборот, приостановить его распространение.

Электролитическое действие электрического тока на организм человека предполагает образование некоторых веществ в организме человека и на его поверхности.

Термическое влияние направлено на искажение процессов теплообразования и теплоотдачи.

Формально каждый из данных видов воздействия имеет место при влиянии тока на организм, разница состоит лишь в том, в какой степени проявляется каждый из данных эффектов.

Регулируя силу тока, можно перевести его отрицательное влияние в положительный эффект. Главное - уметь контролировать сам процесс преобразования зарядов. Стоит остановиться поподробнее на каждом из видов воздействия.

Биологический эффект

Биологическое действие электрического тока на организм человека замыкается на некоторых процессах, проходящих в мышцах и нервной системе.

Наибольшую опасность обычно представляет переменный ток. Если схватиться за оголенный провод во время прохождения электрического тока по нему, могут развиться следующие эффекты.

  • Нарушение электропроводимости нервных импульсов. Такой ток влияет на проводящую систему сердца, перевозбуждая все водители ритма. В результате этого имеют место аритмии, фибрилляции.
  • Мышечный спазм. Основан на блокировке током синапсов с преобладанием спастического эффекта. Именно из-за этого невозможно отпустить провод.

Однако если имеется возможность контролировать силу тока, его направление и напряжение, то его можно использовать и в полезных целях. Например, воздействие электрического тока на организм человека фиксированными количествами импульсов определенной силы и напряжения используется в физиотерапии для лечения мышечных спазмов и торакоалгий. Используется подобная методика и при лечении больных с периферическими параличами.

Термическое действие

Локальное влияние электрического тока на организм человека способно оставить электрические ожоги. Такое часто наблюдается при касании к оголенным проводам, при ударе молнии. Не всегда человек умирает непосредственно от самого удара электрическим током, чаще всего к смерти приводят осложнения, вызванные воздействием тока на процессы, проходящие в органах.

Электрические ожоги почти всегда протекают совместно с электролитическими процессами. Часто воздействие электрического тока на организм человека приводит к появлению электрических знаков, меток, металлизации кожи.

Данные последствия не несут сильных повреждений, если длительность удара током была короткой, а его напряжение и сила - слабыми. Гораздо опаснее протекает электрический удар, так как именно он способствует сжиганию внутренних органов. Наблюдается это при длительном прохождении переменного тока через организм человека.

Электролитическое действие

Как было сказано, ток приводит к появлению на коже меток, знаков, металлизации. Что же это за процессы?

Электрические знаки появляются из-за непосредственного локального действия. Представляют собой овальные участки кожи, безболезненные при касании к ним, проходящие самостоятельно через некоторое время.

Металлизация как локальное действие электрического тока на организм человека представляет собой процесс электролиза. Под влиянием электричества происходит отделение ионов металлов (например проводника при контакте с ним) и проникновение их в вышележащие слои кожи. В месте действия тока кожа темнеет, становится плотной и болезненной.

Электроофтальмия. Поражение глаз развивается не за счет непосредственного действия тока, а при воздействии ультрафиолета, отходящего от электрической дуги. Характеризуется воспалением оболочки за счет нарушения ионных процессов в оболочке глаза.

Последствия электрического поражения

Все вышеперечисленные эффекты негативного воздействия тока требуют оказания медицинской помощи. Если действие электрического тока на организм человека было непродолжительным, поражения и нарушения работы внутренних органов не развиваются. Если же действие электрического тока на человека заняло больше времени, обязательно будут иметь место поражения внутренних органов и нарушения функций.

Проявления внутренних нарушений могут давать о себе знать как непосредственно после получения электротравмы, так и в отдаленном периоде. Тяжесть данных осложнений зависит от того, под какой силой тока и каким напряжением они были получены.

Степень действия электрического тока на организм человека определяется также и состоянием внутреннего сопротивления. У каждого человека оно различно: одному даже сильный ток не нанесет никаких повреждений, а другой под действием такого же напряжения может моментально погибнуть. Сопротивление обусловлено состоянием внутренней среды организма и внешними условиями.

Основные мероприятия неотложной помощи

Что же делать, если развилось электрическое поражение, и какие мероприятия должна включать в себя первая помощь?

В первую очередь следует помнить, как действует электрический ток на организм человека. Если по проводнику идет переменный ток, человек не может его отпустить, сам становится его проводником. Поэтому ни в коем случае нельзя пытаться помочь разжать руки попавшему под действие тока человеку. Первым мероприятием должно стать отключение Только после этого нужно начинать основные лечебные мероприятия. Обязательно сразу же вызвать скорую помощь.

Неотложная помощь включает в себя проведение сердечно-легочной реанимации (при отсутствии дыхания или сердцебиения). После прихода человека в сознание рекомендуется уложить его на бок и укрыть одеялом или одеждой с целью профилактики переохлаждения. Остальные мероприятия должна проводить бригада скорой помощи либо непосредственно на месте, либо по дороге в стационар.

Неотложная помощь при нарушениях ритма сердца

Как говорилось выше, наибольшую опасность действие электрического тока на человека представляет для его проводящей системы сердца.

К ней относятся основные структуры, так называемые водители ритма, обеспечивающие сердечные сокращения и прокачку крови к внутренним органам и от них. При сбое в формировании электрических импульсов нарушается координация сердечной деятельности, что чревато последствиями.

К таким последствиям относятся аритмии, фибрилляции и трепетания предсердий и желудочков. Они характеризуются неправильным, учащенным сердечным ритмом, который не способен обогащать органы кровью. Из-за этого нарастают тяжелые последствия в иных органах. Кроме того, это опасно и для самого сердца.

Для того чтобы восстановить правильный сердечный ритм, проводят кардиоверсию. Она может осуществляться как за счет препаратов (антиаритмики), так и при воздействии тока определенной силы и напряжения. Кардиоверсию необходимо начинать сразу же после срыва ритма.

Профилактика электрических поражений

Для того чтобы предотвратить поражающее действие электрического тока на организм человека, следует помнить об элементарных правилах техники безопасности.

Ни в коем случае не стоит прикасаться голыми руками к проводам. Любые манипуляции с ними должны проводиться только при наличии спецодежды (резиновые сапоги, перчатки с изолирующим покрытием и т.д.).

При обнаружении лежащих на земле проводов сразу же следует вызвать электриков. Ни в коем случае не стоит пытаться вернуть их на место своими силами.

Ремонт электроприборов и розеток запрещено проводить своими силами (разрешается только при наличии соответствующего образования и необходимых для этого инструментов).

Если все же случилось так, что вы или ваши близкие были поражены электричеством, ни в коем случае не нужно паниковать, а нужно начинать неотложную помощь. В данной ситуации чем раньше ее начать, тем больше вероятность того, что осложнения не разовьются.

Электрический ток оказывает на человека термическое, электролитическое, биологическое и механическое воздействие.

Термическое воздействие тока проявляется ожогами отдель-ных участков тела, нагревом до высокой температуры орга-нов, что вызывает в них значительные функциональные рас-стройства.

Электролитическое воздействие в разложении различных жидкостей организма (воды, крови, лимфы) на ионы, в результатечего происходит нарушение их физико-химического состава и свойств.

Биологическое действие тока проявляется в виде раздраже-ния и возбуждения тканей организма, судорожного сокраще-ния мышц, а также нарушения внутренних биологических процессов.

Механическое воздействие приводит к расслоению, разрыву тканей организма.

Действие электрического тока на человека приводит к трав-мам или гибели людей.

Электрические травмы разделяются на общие (электрические удары) и местные электротравмы (рис. 2.26).

Наибольшую опасность представляют электрические удары.

Электрический удар — это возбуждение живых тканей про-ходящим через человека электрическим током, сопровождаю-щееся судорожными сокращениями мышц; в зависимости от исхода воздействия тока различают четыре степени электриче-ских ударов:

I — судорожное сокращение мышц без потери сознания;

II — судорожное сокращение мышц с потерей сознания, но с сохранившимися дыханием и работой сердца;

III — потеря сознания и нарушение сердечной деятельности или дыхания (или того и другого вместе);

IV — клиническая смерть, т. е. отсутствие дыхания и крово-обращения.

Кроме остановки сердца и прекращения дыхания причиной смерти может быть электрический шок — тяжелая нервно-реф-лекторная реакция организма на сильное раздражение электрическим током. Шоковое состояние длится от нескольких десят-ков минут до суток, после чего может наступить гибель или выздоровление в результате интенсивных лечебных мероприятий.

Рис. 2.26. Классификация электрических травм

Местные электротравмы — это местные нарушения целостно-сти тканей организма. К местным электротравмам относятся:

- электрический ожог — бывает токовым и дуговым; токовый ожог связан с прохождением тока через тело человека и яв-ляется следствием преобразования электрической энергии в тепловую (как правило, возникает при относительно не-высоких напряжениях электрической сети); при высоких напряжениях электрической сети между проводником тока и телом человека может образоваться электрическая дуга, возникает более тяжелый ожог — дуговой, т. к. электриче-ская дуга обладает очень большой температурой — свы-ше 3500 °С;


- электрические знаки — пятна серого или бледно-желтого цвета на поверхности кожи человека, образующиеся в мес-те контакта с проводником тока; как правило, знаки име-ют круглую или овальную форму с размерами 1-5 мм; эта травма не представляет серьезной опасности и достаточно
быстро проходит;

- металлизация кожи проникновение в верхние слои кожи мельчайших частичек металла, расплавившегося под действием электрической дуги; в зависимости от места поражения травма может быть очень болезненной, с тече-нием времени пораженная кожа сходит; поражение же глаз может закончиться ухудшением или даже потерей зрения;

- электроофтальмия — воспаление наружных оболочек глаз под действием потока ультрафиолетовых лучей, испускае-мых электрической дугой; по этой причине нельзя смот-реть на сварочную электродугу; травма сопровождается сильной болью и резью в глазах, временной потерей зрения, при сильном поражении лечение может быть слож-ным и длительным; на электрическую дугу без специальных защитных очков или масок смотреть нельзя;

- механические повреждения возникают в результате резких судорожных сокращений мышц под действием проходяще-го через человека тока, при непроизвольных мышечных сокращениях могут произойти разрывы кожи, кровенос-ных сосудов, а также вывихи суставов, разрывы связок идаже переломы костей; кроме того, при испуге и шоке че-ловек может упасть с высоты и получить травму.

Как видим, электрический ток очень опасен и обращение с ним требует большой осторожности и знания мер обеспечения электробезопасности.

Параметры, определяющие тяжесть поражения электриче-ским током (рис. 2.27). Основными факторами, определяющими степень поражения электрическим током, являются: сила тока, протекающего через человека, частота тока, время воздействия и путь протекания тока через тело человека.

Сила тока. Протекание через организм переменного тока промышленной частоты (50 Гц), широко используемого в про-мышленности и в быту, человек начинает ощущать при силе тока 0,6... 1,5 мА (мА — миллиампер равен 0,001 А). Этот ток на-зывают пороговым ощутимым током.

Большие токи вызывают у человека болезненные ощущения, которые с увеличением тока усиливаются. Например, при токе 3...5 мА раздражающее действие тока ощущается всей кистью, при 8... 10 мА — резкая боль охватывает всю руку и сопровожда-ется судорожными сокращениями мышц кисти и предплечья.

При 10... 15 мА судороги мышц руки становятся настолько сильными, что человек не может их преодолеть и освободиться от проводника тока. Такой ток называется пороговым неотпускающим током.


При токе величиной 25...50 мА происходят нарушения в ра-боте легких и сердца, при длительном воздействии такого тока может произойти остановка сердца и прекращение дыхания.

Рис. 2.27. Параметры, определяющие тяжесть поражения электрическим током

Начиная с величины 100 мА протекание тока через человека вызывает фибрилляцию сердца — судорожные неритмичные со-кращения сердца; сердце перестает работать как насос, перекачи-вающий кровь. Такой ток называется пороговым фибрилляционным током. Ток более 5А вызывает немедленную остановку сердца, минуя состояние фибрилляции.

Частота тока. Наиболее опасен ток промышленной часто-ты — 50 Гц. Постоянный ток и ток больших частот менее опа-сен, и пороговые значения для него больше.

Так, для постоян-ного тока:

Пороговый ощутимый ток — 5...7 мА;

Пороговый неотпускающий ток — 50...80 мА;

Фибрилляционный ток — 300 мА.

Путь протекания тока . Опасность поражения электрическим током зависит от пути протекания тока через тело человека, так как путь определяет долю общего тока, которая проходит через сердце. Наиболее опасен путь «правая рука—ноги» (как раз пра-вой рукой чаще всего работает человек). Затем по степени сни-жения опасности идут: «левая рука—ноги», «рука—рука», «но-ги—ноги». На рис. 2.28 изображены возможные пути протекания тока через человека.

Рис. 2.28. Характерные пути тока в теле человека: 1 — рука-рука; 2 — правая рука-ноги; 3 — левая рука-ноги; 4 — правая рука-правая нога; 5 — правая рука-левая нога; 6 — левая рука-левая нога; 7 — левая рука-правая нога; 8 — обе руки-обе ноги; 9 — нога-нога; 10 — голова-руки; 11 — голова-ноги; 12 — голова-правая рука: 13 — голова-левая рука; 14 — голова-правая нога; 15 — голова-левая нога

Время воздействия электрического тока. Чем продолжитель-нее протекает ток через человека, тем он опаснее. При протекании электрического тока через человека в месте контакта с про-водником верхний слой кожи (эпидермис) быстро разрушается, электрическое сопротивление тела уменьшается, ток возрастает, и отрицательное действие электротока усугубляется. Кроме того, с течением времени растут (накапливаются) отрицательные по-следствия воздействия тока на организм.

Определяющую роль в поражающем действии тока играет ве-личина силы электрического тока, протекающего через организм человека. Электрический ток возникает тогда, когда создается замкнутая электрическая цепь, в которую оказывается включен-ным человек. По закону Ома сила электрического тока /равна электрическому напряжению U, деленному на сопротивление электрической цепи R: 1= U/R.

Таким образом, чем больше напряжение, тем больше и опас-нее электрический ток. Чем больше электрическое сопротивле-ние цепи, тем меньше ток и опасность поражения человека.

Электрическое сопротивление цепи равно сумме сопротивле-ний всех участков, составляющих цепь (проводников, пола, обу-ви и др.). В общее электрическое сопротивление обязательно входит и сопротивление тела человека.

Электрическое сопротивление тела человека при сухой, чис-той и неповрежденной коже может изменяться в довольно ши-роких пределах — от 3 до 100 кОм (1 кОм = 1000 Ом), а иногда и больше. Основной вклад в электрическое сопротивление челове-ка вносит наружный слой кожи — эпидермис , состоящий из ороговевших клеток. Сопротивление внутренних тканей тела не-большое — всего лишь 300...500 Ом.

Поэтому при нежной, влаж-ной и потной коже или повреждении эпидермиса (ссадины, раны) электрическое сопротивление тела может быть очень не-большим. Человек с такой кожей наиболее уязвим для электри-ческого тока. У девушек более нежная кожа и тонкий слой эпи-дермиса, нежели у юношей; у мужчин, имеющих мозолистые руки, электрическое сопротивление тела может достигать очень больших величин, и опасность их поражения электротоком сни-жается. В расчетах на электробезопасность обычно принимают величину сопротивления тела человека, равную 1000 Ом.

Электрическое сопротивление изоляции проводников тока, если она не повреждена, составляет, как правило, 100 и более килоом.

Электрическое сопротивление обуви и основания (пола) зависит от материала, из которого сделано основание и подошва обуви, и их состояния — сухие или мокрые (влажные). Например, сухая подошва из кожи имеет сопротивление примерно 100 кОм, влажная подошва — 0,5 кОм; из резины соответственно 500 и 1,5 кОм. Сухой асфальтовый пол имеет сопротивление около 2000 кОм, мокрый — 0,8 кОм; бетонный соответственно 2000 и 0,1 кОм; деревянный — 30 и 0,3 кОм; земляной — 20 и 0,3 кОм; из керамической плитки — 25 и 0,3 кОм. Как видим, при влаж-ных или мокрых основаниях и обуви значительно возрастает электроопасность.

Поэтому при пользовании электричеством в сырую погоду, осо-бенно на воде, необходимо соблюдать особую осторожность и при-нимать повышенные меры обеспечения электробезопасности.

Для освещения, бытовых электроприборов, большого коли-чества приборов и оборудования на производстве, как правило, используется напряжение 220 В. Существуют электросети на 380, 660 и более вольт; во многих технических устройствах при-меняются напряжения в десятки и сотни тысяч вольт. Такие технические устройства представляют исключительно высокую опасность. Но и значительно меньшие напряжения (220, 36 и даже 12 В) могут быть опасными в зависимости от условий и электрического сопротивления цепи R..

Значительное влияние на исход поражения при электротравмах оказывают индивидуальные особенности человека.

Характер воздействия тока (табл.) зависит от массы человека и его фи-зического состояния. Здоровые и физически крепкие люди легче переносят электрические удары. Повышенная восприимчивость к электрическому току отмечена у лиц, страдающих болезнями кожи, сердечно-сосудистой системы, органов внутренней секре-ции, нервными и др.

Табл. Характер воздействия тока

Ток, прохо-дящий через тело чело-века, мА Переменный (50 Гц) ток Постоянный ток
0,5 -1,5 Начало ощущений: слабый зуд, пощи-пывание кожи Не ощущается
2-4 Ощущение распространяется на запя-стье; слегка сводит мышцы Не ощущается
5-7 Болевые ощущения усиливаются во всей кисти; судороги; слабые боли во всей руке до предплечья Начало ощущений: сла-бый нагрев кожи под электродами
8-10 Сильные боли и судороги во всей руке, включая предплечье. Руки трудно оторвать от электродов Усиление ощущения на-грева кожи
10 - 15 Едва переносимые боли во всей руке. Руки невозможно оторвать от электро-дов. С увеличением продолжительно-сти протекания тока усиливаются Значительный нагрев под электродами и в приле-гающей области кожи
20-25 Сильные боли. Руки парализуются мгновенно, оторвать их от электродов невозможно. Дыхание затруднено Ощущение внутреннего нагрева, незначительное сокращение мышц рук
25 -50 Очень сильная боль в руках и в груди. Дыхание крайне затруднено. При дли-тельном воздействии может наступить остановка дыхания или ослабление сердечной деятельности с потерей сознания Сильный нагрев, боли и судороги в руках. При отрыве рук от электродов возникают сильные боли
50-80 Дыхание парализуется через несколько секунд, нарушается работа сердца. При длительном воздействии может насту-пить фибрилляция сердца Очень сильный поверхно-стный и внутренний на-грев. Сильные боли в руке и в области груди. Руки невозможно ото-рвать от электродов из-за, сильных болей при отры-ве
80-100 Фибрилляция сердца через 2-3 с; еще через несколько секунд - остановка дыхания То же действие, выра-женное сильнее. При длительном действии остановка дыхания
То же действие за меньшее время Фибрилляция сердца через 2-3 с; еще через несколько секунд оста-новка дыхания
более 5000 Фибрилляция сердца не наступает; возможна временная остановка его в период протекания тока. При протекании тока в течение не-скольких секунд тяжелые ожоги и разрушение тканей

Более уязвимы к воздействию электрического тока люди, име-ющие повышенную потливость. Повышенная температура окружа-ющей среды и высокая влажность не единственная причина высо-кой потливости, интенсивное потоотделение часто наблюдается при вегетативных расстройствах нервной системы, а также в ре-зультате испуга, волнения.

В состоянии возбуждения нервной системы, депрессии, утом-ления, опьянения и после него люди более чувствительны к про-текающему току.

Предельно допустимые напряжения прикосновения и токи для человека устанавливаются ГОСТ 12.1.038—82* (табл. 2.14) при аварийном режиме работы электроустановок постоянного тока частотой 50 и 400 Гц. Для переменного тока частотой 50 Гц до-пустимое значение напряжения прикосновения составляет 2 В, а силы тока — 0,3 мА, для тока частотой 400 Гц соответственно — 2 В и 0,4 мА; для постоянного тока — 8 В и 1 мА. Указан-ные данные приведены для продолжительности воздействия тока не более 10 мин в сутки.

Таблица 2.14. Предельно допустимые уровни напряжения и токов

Род тока Нормируемая величина Предельно допустимые уровни, не более, при продолжительности воздей-ствия тока U а, с
0,01...0,08 0,1 0,2 0,3 0,4 0,5 0,6 0.7 0,8 0,9 1,0 Св. 1,0
Перемен-ный, 50 Гц U а, В I а, мА 36 6
Перемен-ный, 400 Гц U а, В I а, мА 36 8
Постоянный U а, В I а, мА 40 15

Анализ схем включения человека в электрическую цепь

Так как от сопротивления электрической цепи R существен-но зависит величина электрического тока, проходящего через человека, то тяжесть поражения во многом определяется схемой включения человека в цепь. Схемы образующихся при контакте человека с проводником цепей зависят от вида применяемой системы электроснабжения.

Наиболее распространены электрические сети, в которых ну-левой провод заземлен, т. е. накоротко соединен проводником с землей. Прикосновение к нулевому проводу практически не представляет опасности для человека, опасен только фазный провод. Однако разобраться, какой из двух проводов нулевой, сложно — по виду они одинаковы. Разобраться можно используя специальный прибор — определитель фазы.

На конкретных примерах рассмотрим возможные схемы включения человека в электрическую цепь при прикосновении к проводникам.

Двухфазное включение в цепь. Наиболее редким, но и наиболее опасным, является прикосновение человека к двум фазным про-водам или проводникам тока, соединенным с ними (рис. 2.29).

В этом случае человек окажется под действием линейного напряжения. Через человека потечет ток по пути «рука—рука», i. е. сопротивление цепи будет включать только сопротивление тела (Я).

а)

Рис. 2.29. Двухфазное включение в цепь: а — изолированная нейтраль; б — за-земленная нейтраль

Если принять сопротивление тела в 1 кОм, а электрическую сеть напряжением 380/220 В, то сила тока, проходящего через че-ловека, будет равна

I ч = U л /R ч = 380 В / 1000 Ом = 0,38 А = 380 мА.

Это смертельно опасный ток. Тяжесть электротравмы или даже жизнь человека будет зависить прежде всего от того, как быстро он освободится от контакта с проводником тока (разо-рвет электрическую цепь), ибо время воздействия в этом случае является определяющим.

Значительно чаще встречаются случаи, когда человек одной рукой соприкасается с фазным проводом или частью прибора, аппарата, который случайно или преднамеренно электрически соединен с ним. Опасность поражения электрическим током в этом случае зависит от вида электрической сети (с заземленной или изолированной нейтралью).

Однофазное включение в цепь в сети с заземленной нейтралью (рис. 2.30). В этом случае ток проходит через человека по пути «рука—ноги» или «рука—рука», а человек будет находиться под фазным напряжением.

В первом случае сопротивление цепи будет определяться со-противлением тела человека (R ч, обуви (R o 6), основания (R oc), на котором стоит человек, сопротивлением заземления нейтрали (R н), и через человека потечет ток

I ч = U ф /(R ч + R o б + R 0 C + R н).

Сопротивление нейтрали R H невелико, и им можно принебречь по сравнению с другими сопротивлениями цепи. Для оцен-ки величины протекающего через человека тока примем напряжение сети 380/220 В. Если на человеке надета изолирующая сухая обувь (кожаная, резиновая), он стоит на сухом деревянном иолу, сопротивление цепи будет большим, а сила тока по закону Ома небольшой.

Например, сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм. Ток, проходящий через человека

I ч = 220 В / (30 000 + 100 000 + 1000) Ом = = 0,00168 А = 1,68 мА.

Этот ток близок к пороговому ощутимому току. Человек по-чувствует протекание тока, прекратит работу, устранит неис-правность.

Если человек стоит на влажной земле в сырой обуви или боси-ком, через тело будет проходить ток

I Ч = 220 В / (3000 + 1000) Ом = 0,055 А = 55 мА.

Этот ток может вызвать нарушение в работе легких и сердца, а при длительном воздействии и смерть.

Если человек стоит на влажной почве в сухих и целых резино-вых сапогах, через тело проходит ток

I ч = 220 В / (500 000 + 1000) Ом = 0,0004 А = 0,4 мА.

Воздействие такого тока человек может даже не почувство-вать. Однако даже небольшая трещина или прокол на подошве сапога может резко уменьшить сопротивление резиновой по-дошвы и сделать работу опасной.

Перед тем как приступить к работе с электрическими устройствами (особенно длительное время не находящимися в эксплуатации), их необходи-мо тщательно осмотреть на предмет отсутствия повреждений изоляции. Электрические устройства необходимо протереть от пыли и, если они влажные — просушить. Мокрые электрические устройства эксплуатиро-вать нельзя! Электрический инструмент, приборы, аппаратуру лучше хра-нить в полиэтиленовых пакетах, чтобы исключить попадание в них пыли или влаги. Работать надо в обуви. Если надежность электрического уст-ройства вызывает сомнения, надо подстраховаться — подложить под ноги сухой деревянный настил или резиновый коврик. Можно использовать рези-новые перчатки.

Рис. 2.30. Однофазное прикосновение в сети с заземленной нейтралью: а — нор-мальный режим работы; б — аварийный режим работы (повреждена вторая фаза)

Второй путь протекания тока возникает тогда, когда второй рукой человек соприкасается с электропроводящими предмета-ми, соединенными с землей (корпусом заземленного станка, металлической или железобетонной конструкцией здания, влажной деревянной стеной, водопроводной трубой, отопительной бата-реей и т. п.). В этом случае ток протекает по пути наименьшего электрического сопротивления. Указанные предметы практиче-ски накоротко соединены с землей, их электрическое сопротив-ление очень мало. Поэтому сопротивление цепи равно сопро-тивлению тела и через человека потечет ток

I ч = U Ф / R Ч = 220 В / 1000 Ом = 0,22 А = 220 мА.

Эта величина тока смертельно опасна .

При работе с электрическими устройствами не прикасайтесь второй рукой к предметам, которые могут быть электрически соединены с землей. Работа в сырых помещениях, при наличии вблизи от человека хорошо прово-дящих предметов, соединенных с землей, представляет исключительно вы-сокую опасность и требует соблюдения повышенных мер электрической безопасности.

В аварийном режиме (рис. 2.30, б), когда одна из фаз сети (другая фаза сети, отличная от фазы, к которой прикоснулся че-ловек) оказалась замкнутой на землю, происходит перераспреде-ление напряжения, и напряжение исправных фаз отличается от фазного напряжения сети. Прикасаясь к исправной фазе, чело-век попадает под напряжение, которое больше фазного, но меньше линейного. Поэтому при любом пути протекания тока этот случай более опасен.

Однофазное включение в цепь в сети с изолированной нейтра-лью (рис. 2.31). На производстве для электроснабжения силовых электроустановок находят применение трехпроводные электри-ческие сети с изолированной нейтралью. В таких сетях отсутст-вует четвертый заземленный нулевой провод, а имеются только три фазных провода. На этой схеме прямоугольниками условно показаны электрические сопротивления г А, г в, г с изоляции про-вода каждой фазы и емкости С А, С в, С с каждой фазы относи-тельно земли. Для упрощения анализа примем r A = r B =r c =r, л С А = С £ = С с = С


б)

Рис. 2.31. Однофазное прикосновение в сети с изолированной нейтралью: а — нормальный режим работы; б — аварийный режим работы (повреждена вторая фаза)

Если человек прикоснется к одному из проводов или к како-му-нибудь предмету, электрически соединенному с ним, ток по-течет через человека, обувь, основание и через изоляцию и ем-кость проводов будет стекать на два других провода. Таким образом, образуется замкнутая электрическая цепь, в которую, в отличие от ранее рассмотренных случаев, включено сопротивле-ние изоляции фаз. Так как электрическое сопротивление ис-правной изоляции составляет десятки и сотни килоом, то общее электрическое сопротивление цепи значительно больше сопро-тивления цепи, образующейся в сети с заземленным нулевым проводом. Т. е. ток через человека в такой сети будет меньше, и прикосновение к одной из фаз сети с изолированной нейтралью безопаснее.

Ток через человека в этом случае определяется по следую-щей формуле:

где R ич = R ч + R об + R ос — электрическое сопротивление цепи че-ловека, ω = 2π f — круговая частота тока, рад/с (для тока про-мышленной частоты f = 50 Гц, поэтому ω = 100π).

Если емкость фаз невелика (это имеет место для непротя-женных воздушных сетей), можно принять С ≈ 0. Тогда выраже-ние для величины тока через человека примет вид:

Например, если сопротивление пола 30 кОм, кожаной обуви 100 кОм, сопротивление человека 1 кОм, а сопротивление изоляции фаз 300 кОм, ток, который проходит через человека (для сети 380/220 В), будет равен

I ч = 3 ? 220 В / Ом = = 0,00095 А = 0,95 мА.

Такой ток человек может даже не почувствовать .

Даже если не учитывать сопротивление цепи человека (человек стоит на влажной земле в сырой обуви), проходящий через человека ток будет безопасен:

I ч = 3 ? 220 В / 300 000 Ом = 0,0022 А = 2,2 мА.

Таким образом, хорошая изоляция фаз является залогом обеспечения безопасности. Однако при разветвленных электри-ческих сетях добиться этого нелегко. У протяженных и разветв-ленных сетей с большим числом потребителей сопротивление изоляции мало, и опасность возрастает.

Для протяженных электрических сетей, особенно кабельных линий, емкостью фаз нельзя пренебрегать (С≠0). Даже при очень хорошей изоляции фаз (r = ∞) ток потечет через человека через емкостное сопротивление фаз, и его величина будет опре-деляться по формуле:

I ч =

Таким образом, протяженные электрические цепи промыш-ленных предприятий, обладающие высокой емкостью, обладают высокой опасностью, даже при хорошей изоляции фаз.

При нарушении же изоляции какой-либо фазы прикоснове-ние к сети с изолированной нейтралью становится более опас-ным, чем к сети с заземленным нулевым проводом. В аварийном режиме работы (рис. 2.31, б) ток, проходящий через человека, прикоснувшегося к исправной фазе, будет стекать по цепи за-мыкания на земле на аварийную фазу, и его величина будет оп-ределяться формулой:

I ч = U л / (R ич +R з).

Так как сопротивление замыкания R з аварийной фазы на земле обычно мало, то человек будет находиться под линейным напряжением, а сопротивление образовавшейся цепи будет рав-но сопротивлению цепи человека R з , что очень опасно.

По этим соображениям, а также из-за удобства использова-ния (возможность получения напряжения 220 и 380 В) четырехпроводные сети с заземленным нулевым проводом на напряже-ние 380/220 В получили наибольшее распространение.

Мы рассмотрели далеко не все возможные схемы электриче-ских сетей и варианты прикосновения. На производстве вы мо-жете иметь дело с более сложными схемами электроснабжения, находящимися под значительно большими напряжениями, а значит, и более опасными. Однако основные выводы и рекомен-дации для обеспечения безопасности практически такие же.

Еще в 18 веке было доказано, что электрический ток способен оказывать сильное негативное влияние на человеческий организм. Но только спустя около века были сделаны первые описания электротравм, получаемых от воздействия постоянного тока (1863 г.) и переменного (1882 г.).

Что такое электротравма и электротравматизм?

Электротравма – повреждение человеческого организма электрическим током (электрической дугой).

Явление электротравматизма объясняется последовательностью следующих особенностей: в организме человека, случайно оказавшегося под воздействием напряжения, возникает защитная реакция. Иными словами, противостояние электрическому току начинает происходить в момент его непосредственного протекания через наше тело. В таких ситуациях происходит непросто сильное воздействие токов на организм человека, но и нарушение кровообращения, дыхания, сердечно-сосудистой и нервной системы и т. п.

Электротравму предугадать нелегко, поскольку ее получение происходит не только при непосредственном контакте с токоведущими элементами, но и при взаимодействии с электрической дугой и шаговым напряжением.

Электротравматизм хоть и случается реже других видов производственных травм, но при этом находится на первых местах среди тех повреждений, которые оцениваются тяжелыми и приводящими к летальному исходу. Наибольший процент травм, вызванных влиянием электрического тока, происходит в процессе работы на электрических установках высокого напряжения (до 1000 В). Главной причиной электротравм служит частое использование именно таких типов электрических установок, а также недостаточная квалификация работников. Безусловно, существуют агрегаты с более высоким показателем напряжения (свыше 1000 В), но, как ни странно, в их эксплуатации поражения током редки. Такая закономерность объясняется высоким профессионализмом и компетентностью обслуживающего высоковольтные установки персонала.

Самыми распространенными причинами поражения током являются:

  • прямой телесный контакт с неизолированными токоведущими частями;
  • прикосновение к деталям электрического оборудования, изготовленным из металла;
  • прикосновение к неметаллическим элементам, находящимся под сильным напряжением;
  • взаимодействие с током шагового напряжения или с электрической дугой.

Классификация поражений электрическим током

Воздействие электрического тока при протекании через человеческий организм бывает термическим , электролитическим и биологическим .

    • Термическое воздействие– сильный нагрев тканей, что нередко сопровождается ожогами.
    • Электролитическое воздействие– разложение органических жидкостей, к которым относится и кровь.
    • Биологическое воздействие – нарушение биоэлектрических процессов, раздражение и возбуждение живых тканей, частое и беспорядочное сокращение мышц.

Поражения электротоком делятся на два основных вида:

  • Электротравмы – локальные поражения тканей или органов (ожоги, знаки, электрометаллизация).
    • Электрический ожог – итог сильного нагрева током (свыше одного ампера) тканей человека. Ожог, поражающий только кожный покров, называется поверхностным; повреждающий глубокие ткани тела является внутренним. Также электрические ожоги делятся по принципу возникновения: контактные, дуговые, смешанные.
    • Электрический знак внешне выглядит как серое или бледно-желтое пятно, напоминающее мозоль. Возникает данная травма в области контакта с токоведущим элементом. В основном, знаки не сопровождаются сильной болью и по прошествии небольшого количества времени сходят.
    • Электрометаллизация – явление, при котором кожа человека пропитывается металлическими микрочастицами. Это происходит в момент, когда металл под влиянием тока испаряется и разбрызгивается. Пораженная кожа приобретает цвет, соответствующий проникшим соединениям металла, и становится шероховатой. Процесс электрометаллизации не опасен, а эффект после него по истечении некоторого времени пропадает аналогично электрическим знакам. Куда более серьезные последствия имеет металлизация органов зрения.

Помимо ожогов, знаков и электрометаллизации в число электротравм также входит электроофтальмия и различные механические повреждения . Последние являются итогом непроизвольных сокращений мышц в момент протекания тока. К ним относятся сильные разрывы кожного покрова, кровеносных сосудов, нервов, а также вывихи и переломы. Электроофтальмия – явление, представляющее собой сильное воспаление глазных яблок после воздействия УФ-лучей электрической дуги.


  • Электрический удар выражается в форме сильного возбуждения живых тканей после воздействия на них электрического тока. Как правило, данное явление сопровождается беспорядочным судорожным сокращением мышц. Исход электроударов бывает разным, на основе чего они и делятся на пять видов :
    • без потери сознания;
    • с потерей сознания, сопровождающееся нарушением функционирования сердца и дыхания;
    • с потерей сознания, но без сбоев в работе сердечно-сосудистой системы и без нарушения дыхания;
    • клиническая смерть;
    • электрический шок.

Два последних вида стоит рассмотреть более подробно.

Клиническая смерть иначе называется также «мнимой» смертью, характеризующаяся длительностью в 6-8 минут. Данное явление считается переходным состоянием от жизни к смерти, которое сопровождается прекращением работы сердца и приостановлением дыхания. По прошествии вышеуказанного периода времени начинается необратимый процесс гибели клеток коры головного мозга, что заканчивается биологической смертью.

Распознать мнимую смерть можно по следующим признакам:

    • фибрилляция сердца (т.е. разрозненное сокращение его мышечных волокон, сопровождающееся нарушением синхронной деятельности и насосной функции) или его полная остановка;
    • отсутствие пульса и дыхания;
    • синеватый цвет кожи;
    • расширенные зрачки без реагирования на свет, как следствие недостатка кислорода в коре головного мозга.

Электрический шок представляет собой тяжелую нервнорефлекторную реакцию человеческого организма на воздействие тока. Данное явление сопровождается сильными расстройствами дыхания, функционирования кровеносной и нервной системы и др.

Организм моментально реагирует на влияние электрического тока, вступая в фазу сильного возбуждения. В этот период происходит полная реакция на причинение боли, сопровождающаяся повышением артериального давления и другими процессами. Фаза возбуждения сменяется фазой торможения, которой свойственно истощение нервной системы, слабое дыхание, попеременное падение и учащение пульса, снижение артериального давления. Все перечисленные признаки приводят о рганизм в состояние глубокой депрессии. Электрический шок может длиться как несколько десятков минут, так и несколько суток. Итог может быть полярно разным: либо полное выздоровление, либо необратимая биологическая смерть.


Предельные значения действия тока на человека

От показателя силы тока напрямую зависит его влияние на организм человека:

  • 0,6-1,5 мА при переменном токе (50Гц) и 5-7 мА при постоянном токе – ощутимый ток;
  • 10-15 мА при переменном токе (50Гц) и 50-80 мА при постоянном токе – не отпускающий ток, который в момент прохождения через организм провоцирует сильные судорожные сокращения мышц той руки, которая сжимает проводник;
  • 100 мА при переменном (50Гц) и 300 мА при постоянном токе – фибрилляционный ток, который приводит к фибрилляции сердца.
Влияние различных факторов на степень воздействия тока

Итог влияния электрического тока на организм человека также напрямую зависит от следующих факторов:

  • длительность протекания тока. То есть, чем дольше человек находился под воздействием, тем выше опасность и серьезней нанесенные травмы;
  • специфические особенности каждого организма в данный момент: масса тела, физическое развитие, состояние нервной системы, наличие каких-либо заболеваний, алкогольное или наркотическое опьянение и др.;
  • «фактор внимания», т.е. подготовленность к возможности получения электрического удара;
  • путь тока сквозь человеческое тело. Например, более серьезную опасность несет прохождение тока через сердце, легкие, мозг. В случае, если ток обошел жизненно важные органы, риск серьезных поражений резко снижается. На сегодняшний день зафиксирован самый популярный путь прохождения тока, который называется «петлей тока» - правая рука-ноги. Петли, отнимаемые работоспособность человека более чем на трое суток, представляют собой пути рука-рука (40%), правая рука-ноги (20%), левая рука-ноги (17%).

Знание влияния электрического тока на человеческий организм крайне необходимо. Это поможет Вам в чрезвычайных ситуациях оказать правильную пострадавшему.

Торговая сеть "Планета Электрика" обладает широким ассортиментом различных средств защиты при различных работах, с которым более подробно можно ознакомиться