Кто такой астрофизик и чем он занимается

Астрофизика - область науки на стыке астрономии и физики, которая изучает физические процессы в космических масштабах. Что происходит внутри черных дыр? Что было во время Большого Взрыва? Что такое темная материя? Почему Вселенная расширяется? На эти и многие другие сложнейшие вопросы и пытается ответить астрофизика. Сфера действия астрофизиков захватывает воображение, будоражит ум и не обходится без смекалки и интуиции. Астрофизика - не просто отрасль науки, астрофизиками становятся биологи и химики, астронавты и инженеры. Это сложная смесь лучших умов человечества, которые пытаются ответить на фундаментальные ответы грандиознейшей из структур нашей жизни: Вселенной.

По данным астрономов большинство звезд медленно вращается вокруг галактических центров со скоростью не более 100 километров в секунду. Однако в этом правиле есть исключения. За последние несколько десятилетий ученые открыли в нашей галактике около 20 сверхскоростных звезд. Последним таким открытием является объект PSR J0002+6216. его движения составляет 1130 километров в секунду или более четырех миллионов километров в час. Вполне достаточно, чтобы за 6 минут добраться до той же Луны. По мнению астрономов из американской Национальной радиоастрономической обсерватории, которые его открыли, при сохранении такой динамики, в далеком будущем объект сбежит из нашей галактики.

Однажды моросящим утром астробиолог Шон Домагаль-Голдман сидел в кофейне в Сиэтле и не мигая смотрел на экран своего ноутбука, словно парализованный. Он запустил имитацию развивающейся планеты, как вдруг в атмосфере виртуальной планеты начал накапливаться кислород. Его концентрация выросла с нуля до пяти, а после и до десяти процентов.

Астрономия — это наука, которая изучает небесные тела, их движение, строение, а также системы, образованные ими. Это древнейшая область знания: истоки астрономии теряются в глубине веков.

Можно сказать, что она эволюционировала вместе с человечеством. И сегодня астрономия не стоит на месте. Пользуясь новейшими технологиями, ученые постоянно уточняют и дополняют уже сложившиеся теории. Самые громкие открытия последних лет часто бывали связаны с теми явлениями, что изучают астрофизики. На полную мощность используя достижения в области техники, астрономы неизбежно сталкиваются с ограниченностью человеческого разума. Астрофизика — раздел астрономии, пожалуй, чаще других сталкивающийся с фактами, которые пока невозможно объяснить. Ученые, работающие под ее знаменем, пытаясь найти ответы на все более сложные вопросы, тем самым стимулируют технический прогресс. О том, что изучают астрофизики, что им уже удалось узнать и какие загадки Вселенная им предлагает сегодня, и пойдет речь ниже.

Особенности

Астрофизика занимается определением физических характеристик и их взаимодействия. В своих теориях она опирается на знания о законах природы, накопленные наукой в процессе изучения свойств материи на Земле.
Ученые-астрофизики сталкиваются с существенными ограничениями в своей работе. В отличие от коллег, изучающих микромир или макрообъекты в условиях Земли, они не могут проводить эксперименты. Многие из сил, действующих в космосе, проявляют себя лишь на огромном расстоянии или при наличии гигантских по массе и объему объектов. В лаборатории такое взаимодействие не изучишь, поскольку невозможно создать необходимые условия. Общая астрофизика в основном имеет дело с результатами пассивного наблюдения.

В таких условиях трудно себе представить получение данных об объектах. Непосредственного измерения нужных параметров в силу невозможности экспериментов в этом разделе астрономии не существует. В таком случае что изучают астрофизики и на чем основывают свои выводы? Главный источник информации для ученых в подобных условиях — анализ электромагнитных волн, которые излучают небесные тела.

С чего все начиналось

Астрономия — это наука, которая изучает небесные тела с незапамятных времен, однако такой раздел, как астрофизика, был в ней далеко не всегда. Фактически свое становление он начал в 1859 году, когда Г. Кирхгоф и Р. Бунзен по завершении серии экспериментов установили, что любой химический элемент обладает уникальным линейчатым спектром. Это означало, что по спектру небесного тела можно судить о его химическом составе. Так зародился спектральный анализ, а вместе с ним появилась и астрофизика.

Значимость

В 1868 году только что созданный метод сделал возможным обнаружение нового химического элемента - гелия. Его открыли во время наблюдения полного солнечного затмения и изучения хромосферы светила.

Современная астрофизика также во многом базируется на данных Усовершенствованная технология позволяет получать сведения практически обо всех характеристиках небесных тел, а также межзвездного пространства: температуре, составе, поведении атомов, напряжении магнитных полей и так далее.

Невидимое излучение

Существенно расширило возможности астрофизики открытие радиоизлучения. Его регистрация позволила изучать холодный газ, наполняющий межзвездное пространство и испускающий невидимый для глаза свет, а также процессы, протекающие в далеких пульсарах и нейтронных звездах. Огромное значение для всей астрономии имело открытие ставшего подтверждением складывавшейся в это время теории большого взрыва.

Космическая эра подарила астрофизикам новые возможности. Стали доступными ультрафиолетовое, рентгеновское и гамма-излучение, путь к Земле которым преграждает атмосфера. Телескопы, созданные с учетом новых открытий, позволили обнаружить горячий газ в скоплениях галактик, нейтронных звезд, некоторые характеристики черных дыр.

Проблемы астрофизики

Современная наука шагнула далеко вперед по сравнению с тем состоянием, в котором она пребывала в конце 19 века. Сегодня астрофизики пользуются всеми новейшими достижениями в области регистрации электромагнитного излучения и получения на их основе данных об удаленных объектах. Однако нельзя сказать, что этот раздел астрономии абсолютно беспрепятственно движется по пути изучения Вселенной. Условия, складывающиеся в далеком космосе, подчас настолько трудны для регистрации и понимания, что интерпретация полученных данных о тех или иных объектах затруднительна.

В окрестностях черной дыры, недрах нейтронных звезд и их магнитных полях могут проявляться новые физические свойства материи. Невозможность даже приблизительно воспроизвести экстремальные или предельные условия, в которых происходят подобные космические процессы, формирует основные сложности астрофизики.

Модель Вселенной

Одна из важнейших задач современной астрономии — понять, как развивается необъятный космос. На сегодняшний день существует две основные версии: открытая и закрытая Вселенная. Первая подразумевает постоянное и неограниченное расширение. В этой модели расстояние между галактиками только увеличивается, и спустя какое-то время космос станет безжизненной пустыней с редкими островками твердой материи. Другой вариант предполагает, что на смену расширению, которое для большинства является бесспорным фактом, придет фаза сжатия Вселенной. Однозначного ответа на вопрос о том, какая теория верна, пока нет. Более того, появляются открытия, значительно усложняющие понимание будущего Вселенной и вносящие определенный хаос в, казалось бы, стройную картину. К ним относится, например, обнаружение и энергии.

Черные дыры, гамма-всплески

Среди всего того, что изучают астрофизики, есть ряд объектов с особым налетом таинственности. Они также относятся к основным проблемам этого раздела астрономии. В их число входят черные дыры, многие физические процессы в пространстве которых совершенно не изучены, и гамма-всплески. Последние представляют собой выброс огромного количества энергии, импульсы гамма-излучения. Природа их тоже до конца не ясна.

Понимание подобных объектов и явлений может существенно изменить наше представление об устройстве Вселенной и законах космоса. Именно постоянное соприкосновение с тайнами мироздания и делает астрофизику передним краем науки, одновременно высвечивающей ограниченность современных знаний и стимулирующей дальнейшее их развитие. Можно сказать, что этот раздел астрономии стал своеобразным маркером прогресса: каждое открытие знаменует собой победу человеческого разума над еще одной тайной.

— раздел астрономии, изучающий физическое состояние и химический состав небесных тел и их систем, межзвездной и межгалактической сред, а также происходящие в них процессы. Основные разделы астрофизики: физика планет и их спутников, физика Солнца, физика звездных атмосфер, межзвездной среды, теория внутреннего строения звезд и их эволюции. Проблемы строения сверхплотных объектов и связанных с ними процессов (захват вещества из окружающей среды, аккреционные диски и др.) и задачи космологии рассматривает релятивистская астрофизика.

Некоторые сведения по фотометрии

Слово фотометрия означает «измерение света». С помощью фотометрического метода можно измерить интенсивность света, приходящего от любого источника лучистой энергии, в том числе и от небесных тел.
Фотометрия подразделяется на точечную и поверхностную . Точечная фотометрия занимается измерением блеска звезд и других точечных источников света. Поверхностная фотометрия изучает яркость светящихся или освещенных поверхностей (поверхности Солнца, Луны, планет, комет, туманностей).
Основной величиной в фотометрии является световой поток — количество световой энергии, протекающей через данную площадку в единицу времени. Понятие световой энергии в данном случае означает лучистую энергию, ощущаемую человеческим глазом или иным заменяющим его приемником радиации (фотопластинкой, фотоэлементом). Световой поток представляет собой часть общего лучистого потока, образованного радиацией всех длин волн, испускаемых данным источником. Поскольку глаз, фотопластинка и фотоэлемент воспринимают излучение разных длин волн в различной степени и в ограниченном диапазоне, они называются селективными приемниками радиации. Световой поток характеризует мощность лучистого потока, оцененную с помощью селективного приемника радиации.
Приемники излучения непосредственно регистрируют следующие фотометрические величины: глаз — яркость и блеск, фотопластинка — освещенность, фотоэлемент — световой поток. Соответственно применяемому приемнику излучения фотометрия разделяется на визуальную , фотографическую и фотоэлектрическую фотометрию .

Понятие о спектре

Спектр – результат разложения луча электромагнитного излучения, при котором компоненты с различными длинами волн разрешены в пространстве и расположены в порядке увеличения или уменьшения длины волны. Полный спектр электромагнитного излучения охватывает в порядке уменьшения длин волн радио-, микроволновое, инфракрасное, видимое световое, ультрафиолетовое, рентгеновское и гамма-излучение.
Существует три основных типа спектров: непрерывный, эмиссионный линейчатый и линейчатый спектр поглощения.
Высокая температура и давление в недрах звезд приводят к тому, что в них вырабатывается лучистая энергия. При формировании звезды разогрев вещества вызывается постепенным сжатием под действием гравитационных сил. На более поздних стадиях эволюции звезда поддерживает свое излучение за счет термоядерных реакций, проходящих в ее глубоких слоях. В недрах большинства звезд происходит реакция превращения водорода в гелий. Вещество звезды непрозрачно. Слои звезды, из которых излучение может уходить беспрепятственно, называются ее атмосферой.
Излучение испускается как из внешних, так и из более глубоких частей атмосферы (фотосферы). У звезд типа Солнца фотосфера не слишком протяженная, поэтому край солнечного диска виден резко очерченным. Однако существуют звезды, у которых толщина фотосферы составляет заметную долю радиуса звезды и до нас доходит излучение, идущее с разных глубин фотосферы.
Проходя через внешние слои звезды, излучение испытывает поглощение, характер которого зависит как от химического состава, так и от физических условий, господствующих в звездной оболочке. Для определения этих условий излучение, доходящее к нам от звезды, подвергается спектральному анализу .

Изобретение спектрального анализа. (Кирхгоф и Бунзен)

Создание метода спектрального анализа представляет собой пример открытия, явившегося результатом длительной подготовительной работы многих ученых. Действительно, еще в оптических экспериментальных установках Ньютона можно найти основные элементы спектроскопа. Многие ученые XIX в. наблюдали так называемые «фраунгоферовы» линии в спектре Солнца. Идея о качественном спектральном анализе высказывалась Дж. Гершелем и У.-Г. Ф. Тальботом. Однако заслуга приведения в систему выполненных ранее наблюдений и строгого обоснования нового метода анализа вещества принадлежит двум немецким ученым: физику Г. Кирхгофу и химику Р. Бунзену. Особое значение имело и то обстоятельство, что работа над теоретическим обоснованием спектрального анализа привела Кирхгофа к открытию важнейшего закона теплового излучения , связавшего два раздела физики: оптику и термодинамику.
Широкую известность Бунзен получил как изобретатель научных приборов. Он усовершенствовал ледяной и паровой калориметры, изобрел гальванический элемент нового типа, разработал специальную газовую горелку, дававшую высокотемпературное и практически не светящееся пламя, и другие приборы. В сотрудничестве с английским химиком Г. Роско Бунзен исследовал фотохимические процессы, принял участие в экспедиции в Исландию, где изучал продукты извержения вулкана Гексла и гейзеры, внес вклад в медицину, открыв противоядие при отравлении мышьяком. Особенно много Бунзен работал над совершенствованием методов анализа газов. Достижения Бунзена в этой области были обобщены в классической монографии «Методы газометрии» (1857 г.).
В 1856 г. Бунзен начал работать над методом анализа газов, основанным на наблюдении окраски пламени. Когда он рассказал о своих изысканиях Кирхгофу, то Кирхгоф заметил, что метод анализа можно сделать более информативным, если наблюдать не просто окраску пламени, а спектр его излучения. Совместная разработка этой идеи привела к созданию спектрального анализа . С помощью нового метода Бунзен и Кирхгоф открыли в 1860 г. цезий, а в 1861г. — рубидий. Вслед за ними спектральный анализ стали применять и другие ученые, вследствие чего на протяжении последующих тридцати лет были открыты еще пять новых элементов. Методом спектрального анализа был открыт и гелий. Что интересно, первоначально он был обнаружен при изучении спектра Солнца (о чем говорит и его название) и лишь значительно позже он был обнаружен на Земле.
Кирхгоф много занимался исследованиями в области электричества. Результаты его исследований явились предвосхищением следствий теории электромагнитного поля Максвелла. Значителен его вклад в обобщение теории дифракции Френеля. Много занимался ученый теорией деформаций и равновесия упругих тел. Ряд работ Кирхгофа посвящен термодинамике растворов. Исследования спектров послужили началом работ Кирхгофа по теории теплового излучения. Еще до начала совместной работы Бунзена и Кирхгофа несколько ученых (Д. Брюстер, Л. Фуко, Дж. Г. Стокс) обратили внимание на близость положения в спектре Солнца темных (фраунгоферовых) D-линий и линий испускания в спектре натрия. Однако достаточно глубоко связь между линиями поглощения и испускания до Кирхгофа никто не исследовал. Он же в 1859 г. обнаружил интересное явление — обращение линий испускания в спектре натрия при пропускании через пламя солнечного света различной интенсивности. При пропускании через пламя ослабленного солнечного света линии в спектре натрия становились ярче. Когда же через пламя с парами натрия пропускался неослабленный солнечный свет, то на месте светлых линий испускания возникали отчетливые темные линии. Это наблюдение побудило Кирхгофа заняться анализом связи между процессами поглощения и излучения, что привело к открытию закона теплового излучения .
В 1862 г. Кирхгоф ввел понятие «абсолютно черное тело» и предложил его модель (полость с небольшим отверстием). С этого времени до начала ХХ в. проблема изучения черного тела рассматривалась как одна из самых актуальных в физике. Ее разработка в конечном итоге привела к созданию квантовой теории излучения .

Астрофизика - раздел астрономии, изучающий физическую природу небесных тел и их систем, их происхождение и эволюцию.

Как ясно из самого названия, астрофизика - это физика небесных тел. Космос является по существу большой физической «лабораторией», где возникают условия, часто совершенно недостижимые в земных физических лабораториях и представляющие поэтому исключительный интерес для науки. Астрофизические методы исследований имеют две существенные особенности, отличающие их от методов лабораторной физики. Во‑первых, в лаборатории физик сам ставит эксперименты, подвергает исследуемые тела различным воздействиям. В астрофизике возможны только пассивные наблюдения, так как пока нельзя проводить эксперименты, например, на звездах. Во‑вторых, если в лаборатории можно непосредственно измерять температуру, плотность, химический состав тел и т. д., то в астрофизике почти все данные о далеких небесных телах получают с помощью анализа приходящих от них электромагнитных волн - видимого света и других, невидимых глазом лучей.

Основу астрофизики составляют астрофизические наблюдения. При этом важнейший метод - спектральный анализ, т. е. исследование потока энергии приходящего на землю излучения в зависимости от длины электромагнитных волн. Электромагнитные волны несут информацию об условиях в веществе, где они зарождаются или где испытывают поглощение и рассеяние. Задача спектрального анализа - расшифровать эту информацию.

Появление спектрального анализа во второй половине XIX в. сразу позволило делать выводы о химическом составе небесных тел. Одним из первых блестящих достижений астрофизики, полученных с помощью этой экспериментальной методики, явилось открытие неизвестного ранее элемента - гелия - при изучении спектра хромосферы Солнца во время полного затмения в 1868 г. В дальнейшем, в результате развития экспериментальной и теоретической физики стало возможным с помощью спектрального анализа определять буквально все физические характеристики небесных тел и межзвездной среды. Спектры позволяют узнать температуру газа, его плотность, относительное содержание разных химических элементов, состояние атомов этих элементов, скорости движения газа, напряженности магнитных полей. По спектрам звезд можно также вычислить расстояние до них, узнать их скорости движения по лучу зрения, измерить вращение и выяснить многое другое.

В современных спектральных приборах, применяемых в телескопах, используют новейшие фотоэлектрические приемники излучения (см. Фотоэффект), которые гораздо точнее и чувствительнее, чем фотопластинка или человеческий глаз.

Бурное развитие техники и экспериментальной физики за последние десятилетия привело к созданию астрофизических инструментов, предназначенных для изучения невидимых глазом электромагнитных волн. Астрофизика стала «многоволновой». Это, конечно, неизмеримо расширило её возможности получать информацию о небесных телах. Еще в 30‑е гг. текущего столетия было открыто радиоизлучение нашей Галактики. В последующие годы построены гигантские радиотелескопы и сложные системы таких радиотелескопов. С помощью радиотелескопов наблюдают, например, холодный межзвездный газ, не излучающий видимого света, изучают движение электронов в межзвездных магнитных полях. Радиоизлучение приходит на Землю от далеких галактик, часто неся сведения о происходящих там бурных взрывных процессах. Радиоастрономия стала одним из основных способов изучения нейтронных звезд - пульсаров. Радиоволны несут сведения об остатках вспышек сверхновых звезд и о совершенно удивительных условиях в плотных газовых облаках. Наконец, радиоастрономия позволила открыть реликтовое излучение Вселенной - слабое электромагнитное излучение, заполняющее всю Вселенную и имеющее температуру около 3 K. Это излучение - остывший остаток (реликт) от прошлого состояния вещества в расширяющейся Вселенной, когда оно около 15 млрд лет назад было плотным и горячим (см. Космология, Материя, Пространство).

Много интересного узнали астрофизики с помощью инфракрасных лучей, которые свободно проходят сквозь облака пыли, поглощающие видимый свет (см. Инфракрасное излучение). Так, в инфракрасных лучах наблюдаются процессы в ядре нашей Галактики, а также «молодые» звезды, зарождающиеся в плотных газово-пылевых комплексах.

Особый интерес для астрономии имеет астрофизика высоких энергий, изучающая процессы бурного выделения энергии, часто связанные с катастрофическими явлениями в небесных телах. Возникающее при этом электромагнитное излучение имеет высокую частоту, соответственно короткую длину волны и относится к невидимым ультрафиолетовым, рентгеновским и гамма‑лучам (см. Рентгеновские лучи, Гамма-излучение). Эти виды излучений поглощаются земной атмосферой. Поэтому развитие данных разделов наблюдательной астрофизики стало возможно только с началом космической эры, после создания обитаемых и автоматических научных станций за пределами земной атмосферы.

Астрофизика высоких энергий привела ко многим удивительным открытиям. С помощью рентгеновских телескопов были открыты горячий газ в скоплениях галактик, импульсное рентгеновское излучение нейтронных звезд в двойных звездных системах. Наконец, было открыто излучение сильно нагретого плотного газа, по‑видимому, закручивающегося вихрем при падении в черную дыру. Гамма-телескопы позволили обнаружить в центре нашей Галактики процессы аннигиляции электронов и позитронов - превращения их при столкновении в гамма-излучение.

В последние годы начал развиваться новый раздел астрофизики - нейтринная астрономия. Нейтрино благодаря своей огромной проникающей способности представляет собой единственный вид излучения, которое может попадать на Землю из самих глубин Солнца и звезд и приносить информацию о протекающих там процессах. Уже первые данные о потоках солнечных нейтрино позволили сделать очень интересные гипотезы о процессах термоядерного синтеза в недрах Солнца; их предстоит проверить в будущих опытах.

Сейчас ведутся поиски нейтринных вспышек от сверхновых звезд в момент их гравитационного коллапса (т. е. сжатия под действием силы тяжести), в результате чего огромные количества энергии должны уноситься в виде нейтринного излучения. Расчеты показывают, что эти нейтринные вспышки могут быть зарегистрированы в подземных лабораториях (таких, например, как Баксанская нейтринная обсерватория Института ядерных исследований РАН), даже если вспыхнувшая сверхновая звезда оптически ненаблюдаема из‑за слишком больших расстояний.

На основе данных наблюдательной астрофизики, опираясь на законы физики, астрономы делают выводы об условиях в небесных телах, которые непосредственно не наблюдаются. Например, рассчитывают внутреннее строение звезд и Солнца с использованием наблюдательных данных об условиях на их поверхности. Теоретическая астрофизика позволяет также описать эволюцию Солнца, звезд и других небесных тел.

Как уже говорилось, при изучении астрофизических явлений астрономы часто встречаются с физическими условиями, совершенно недостижимыми в земных лабораториях. Так, плотность межзвездного газа в миллиарды раз меньше плотности воды, а плотность нейтронных звезд такая же, как и плотность атомных ядер; напряженность магнитного поля нейтронных звезд в тысячи миллиардов раз превышает напряженность магнитного поля Земли.

Не удивительно, что в столь необычных условиях возможно протекание новых, неизвестных процессов, а значит, и открытие новых физических закономерностей. В этом состоит значение астрофизики для физики, для всей фундаментальной науки, познающей окружающий мир.

МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ

«МОСКОВСКИЙ ЭНЕРГЕТИЧЕСКИЙ ИНСТИТУТ»

Гуманитарно-Прикладной Институт

Институт Лингвистики

«Современные проблемы астрофизики»

Студент группы ГП-01-13

Белоусова О.С.

Преподаватель: Курилов С.Н.

Оценка за реферат: « »

Москва, 2013

Астрофизика. 3

Цель астрофизики. 5

Современна астрофизика. 5

Астрофизика.

Наука астрофизика - часть астрономии, занимающаяся исследованием далеких космических объектов и явлений физическими методами. Один из основных методов астрофизики- спектральный анализ. Астрофизика нацелена на создание физической картины окружающего мира, объясняющей наблюдаемые явления, на изучение происхождения и эволюции как отдельных классов астрономических объектов, так и Вселенной как единого целого в рамках известных физических законов.

Поскольку прямые контакты научных приборов с изучаемыми объектами практически исключены, основу астрофизики, как и астрономии в целом, составляют наблюдения и анализ принимаемого излучения далеких источников. Непосредственные результаты наблюдений, как правило, сводятся к относительным или абсолютным измерениям энергии, приходящей от источника или его отдельных частей, в определенных интервалах спектра.

Саму астрофизику можно разделить на два вида:

    Наблюдательная астрофизика

    Теоритическая астрофизика

Наблюдательная астрофизика:

Основная часть данных в астрофизике получается по наблюдению объектов в электромагнитных лучах. Исследуются как прямые изображения, полученные на различных длинах волн, так и электромагнитные спектры принимаемого излучения.

Оптическая астрономия является старейшей областью астрофизики. На сегодняшний день основными инструментами являются телескопы с ПЗС-матрицами в качестве приёмников изображения. Так же часто производятся наблюдения с помощью спектрографов. Ограничение на наблюдения в оптическом диапазоне накладывает дрожание земной атмосферы, мешающее наблюдениям на больших телескопах. Для устранения этого эффекта и получения максимально чёткого изображения используются различные методы, такие как адаптивная оптика, спекл-интерферометрия, а также выведение телескопов в космическое пространство за пределы атмосферы. В этом диапазоне хорошо видны звёзды и планетарные туманности, что позволяет изучать в том числе их расположение и химическое строение.

Наблюдения также могут различаться по продолжительности. Большинство оптических наблюдений производятся с выдержками порядка минут или часов.

Теоритическая астрофизика:

Теоретическая астрофизика использует как аналитические методы так и численное моделирование для изучения различных астрофизических явлений, построения их моделей и теорий. Подобные модели, построенные из анализа наблюдательных данных, могут быть проверены с помощью сравнения теоретических предсказаний и вновь полученных данных. Также наблюдения могут помочь в выборе одной из нескольких альтернативных теорий.

Объектом исследований теоретической астрофизики являются, например:

    Физика межзвёздной среды

    Эволюция звёзд и их строение.

    Физика чёрных дыр

    Звёздная динамика

    Эволюция галактик

    Крупномасштабная структура Вселенной

    Магнитогидродинамика

    Космология

История астрофизики.

Исторически астрофизика выделилась в самостоятельное научное направление с появлением спектрального анализа (конец Х IX в.), который открыл возможность дистанционного исследования химического состава и физического состояния не только лабораторных, но и астрономических источников света.

Термин «астрофизика» появился в середине 60-х годов XIX века. «Крестным отцом» астрофизики был немецкий астроном Иоганн Карл Фридрих Целльнер (1834 – 1882), профессор Лейпцигского университета.

В отличие от небесной механики, год рождения, который точно известен (1687-й), назвать дату «появления на свет» астрофизики не так легко. Она зарождалась постепенно, в течение 1-ой половине XIX века.

Бурное развитие астрофизики за более чем столетний период ее существования было связано как с быстрым развитием различных направлений классической, квантовой и релятивистской физики. Очень важный, революционный скачек в астрофизических исследованиях произошел с началом изучения объектов за пределами оптического диапазона спектра, сначала в радио (конец 30-х годов ХХ в.), а затем, уже с помощью космической техники (60-80-е года ХХ в.). Параллельно с развитием методов практической астрофизики, благодаря прогрессу в физике и особенно созданию теории излучения и строения атома, развилась теоретическая астрофизика. Ее цель - интерпретация результатов наблюдений, постановка новых задач исследований, а также обоснование методов практической астрофизики.

Цель астрофизики.

Предметом астрофизики является исследование физических процессов во Вселенной. Задачей астрофизики является построение моделей, которые могут объяснить появление излучения различных космических объектов с наблюдаемым характеристиками: интенсивностью, спектром, поляризацией, временным профилем и т.д. Естественно, при решении этой задачи ученые-астрофизики исходят из известной картины физических процессов и законов, которые могут реализоваться или проявиться в тех или иных условиях, которые определяются, в основном, величиной температуры и плотности вещества, наличием магнитного поля и его величиной, возможным влиянием сил тяготения.

Современна астрофизика.

Современная астрофизика сформировалась после второй мировой войны. С точки зрения наблюдений, ее основная черта - расширение спектрального диапазона исследуемого излучения. Довоенная астрофизика использовала лишь результаты астрономических наблюдений в видимом свете - сравнительно узкой полосе спектра электромагнитных волн.

В настоящее время в астрономии используются практически все диапазоны, от радиоволн до гамма-излучения. Превращение астрономии во всеволновую обогатило знания об известных объектах и, что гораздо важнее, привело к открытию новых объектов, позволило зарегистрировать излучение из таких областей, где материя (то есть вещество и излучение) находятся в так называемых экстремальных (предельных) условиях. Этот термин обычно используется, чтобы подчеркнуть, что те или иные условия практически невозможно реализовать в лабораториях на Земле. В этих условиях материя нередко приобретает новые физические свойства. В качестве примеров экстремальных астрофизических условий можно указать высокие плотности вещества, реализующиеся на первых этапах развития Вселенной, в недрах нейтронных звезд и в ближайших окрестностях черных дыр; сильные гравитационные поля в окрестностях черных дыр; сильные магнитные поля белых карликов и нейтронных звезд. Именно в области исследования объектов, в которых реализуются те или иные экстремальные условия, по нашему мнению, сосредоточены основные проблемы современной астрофизики.

Необходимо подчеркнуть, что при нынешнем уровне развития земной техники макроскопические свойства материи в экстремальных условиях можно исследовать, только наблюдая астрофизические объекты, в которых эти условия реализуются. В этом смысле можно смело утверждать: современная астрофизика - это передний край науки, и она исследует наиболее фундаментальные явления и процессы, не доступные пока "земной" физике.

Начиная с 60-х гг. 20 в. при помощи аппаратуры, установленной на ИСЗ и AMC, были получены важные сведения о планетах Солнечной системы и их спутниках, в частности о физ. состоянии и хим. составе атмосфер и поверхностных слоев двух ближайших планет - Венеры и Марса, подробно исследован спутник Земли - Луна, существенно углублены представления о природе процессов, происходящих на поверхности и в недрах Солнца и др. звёзд, в межзвёздной среде и в мире галактик. Одна из важнейших проблем современной астрофизики - разработка теории гидромагнитного динамо с целью объяснения солнечного магнетизма, в т. ч. механизма генерации и усиления магнитного поля во внутренних слоях Солнца, механизмов формирования и поддерживания устойчивости солнечных пятен, колебания полярности с периодом в 22 года. В 60-х гг. на основе теории токовых слоев удалось сделать первые шаги в объяснении солнечных вспышек, динамики протуберанцев и солнечной короны в целом. Пока нельзя считать полностью решённой проблему солнечных нейтрино, а следовательно и внутреннего строения Солнца.

Располагающиеся на краях некоторых газовых туманностей источники мощного когерентного излучения в отдельных линиях молекул межзвёздного газа - космические мазеры - служат доказательством происходящих и в наше время процессов звездообразования в Галактике. С помощью быстродействующих ЭВМ удалось создать "сценарии" эволюции звёзд от начала сжатия фрагмента газопылевого облака (протозвезды) до её заключительной стадии - медленного сброса звездой оболочки (стадия планетарной туманности)и образования белого карлика или (при большой массе звезды) вспышки сверхновой с образованием нейтронной звезды (или чёрной дыры). Однако пока существует полная неясность относительно деталей процесса перемешивания вещества на конвективной стадии сжатия протозвезды, не исследована роль вращения и магнитных полей облака, окончательно не установлен верхний предел массы устойчивой нейтронной звезды. Не разработан в деталях механизм ускорения частиц в пульсарах. Пока нет объяснения активности ядер галактик, неясной остаётся природа квазаров. Требует уточнения вопрос о природе ядра нашей Галактики как двойной сверхмассивной системы (двойная чёрная дыра или чёрная дыра и компактное звёздное скопление), активно взаимодействующей с окружающими её звёздами.

В релятивистской астрофизике до конца не решены вопросы о барионной асимметрии Вселенной, о величине отношения числа ядер и электронов к числу фотонов, о роли нейтрино, а возможно, и других пока неизвестных частиц в образовании наблюдаемой структуры Вселенной, состояния вакуума и фазовых переходов в эволюции горячей Вселенной.

Так же проблемами современной астрофизики являются:

    детектирование «тёмной материи»

    проблема космических гамма-всплесков

    проблема поиска чёрных дыр и квазаров

    общая космологическая проблема.

Детектирование «Темной материи»

Тёмная материя в астрономии и космологии - форма материи, которая не испускает электромагнитного излучения и не взаимодействует с ним. Обнаружение природы тёмной материи поможет решить проблему скрытой массы, которая, в частности, заключается в аномально высокой скорости вращения внешних областей галактик.

Основная трудность при поиске частиц тёмной материи заключается в том, что все они электрически нейтральны. Имеются два варианта поиска:

  • косвенное

При прямом поиске изучаются следствия взаимодействия этих частиц с электронами или атомными ядрами с помощью наземной аппаратуры. Косвенные методы основаны на попытках обнаружения потоков вторичных частиц, которые возникают, например, благодаря аннигиляции солнечной или галактической тёмной материи.

Непосредственное изучение распределения тёмной материи в скоплениях галактик стало возможным после получения их высокодетализированных изображений в 1990-х годах. При этом изображения более удалённых галактик, проецирующихся на скопление, оказываются искажёнными или даже расщепляются из-за эффекта гравитационного линзирования. По характеру этих искажений становится возможным восстановить распределение и величину массы внутри скопления независимо от наблюдений галактик самого скопления. Таким образом, прямым методом подтверждается наличие скрытой массы и тёмной материи в галактических скоплениях.

Проблема космический гамма-всплесков

Космические гамма-всплески относятся к наиболее загадочным астрономическим явлениям, открытым в последние 25 лет, и до сих пор вызывают оживленный интерес ученых. Гамма-всплески были открыты случайно американскими спутниками серии Vela, предназначенными для обнаружения наземных ядерных взрывов. К настоящему времени различными космическими аппаратами зарегистрировано около 1500 всплесков. Они представляют собой импульсы гамма-излучения (энергии квантов от нескольких десятков килоэлектровольт до нескольких мегаэлектровольт) длительностью от десятков миллисекунд до нескольких минут.

Гамма-всплески наблюдаются довольно часто, в среднем один раз в 20 - 30 часов, однако невозможно заранее узнать, когда и в какой точке небосвода всплеск произойдет в следующий раз. Причиной проблемы гамма-всплесков является то, что распределение весьма изотропно, то есть не обнаружено концентрации источников к галактическому экватору, как для радиопульсаров или рентгеновских галактических источников. Не найдено концентрации ни к каким другим точкам или областям небесной сферы: к центру, антицентру или полюсам Галактики, к ближайшим галактикам Большому и Малому Магеллановым облакам, к туманности Андромеды (М31), ближайшим скоплениям галактик, сверхскоплениям и т.д. Непростая ситуация складывается с распределением всплесков по их яркости (или потоку рентгеновского излучения).

Общая космологическая проблема

Сегодня космология еще не в состоянии ответить на ряд принципиальных вопросов. Среди них основные: что было до начала наблюдаемого расширения? Будет ли Вселенная вечно расширяться или опять сожмется в точку? Но отсутствие ответов сейчас, не мешает физикам рассматривать самые ранние стадии расширения Вселенной. Некоторые теории оперируют с временами 10-35 секунды от начала. Есть теории, которые «заглядывают» в еще более ранние моменты времени. Тем более что скорости процессов, происходящих при «рождении» нашего Мира, в неизмеримое число раз превышают скорости любых известных сегодня взрывных процессов. Поэтому-то расширение Вселенной действительно можно уподобить «сверхвзрыву», Большому Взрыву.

Проблема возникновения нашего мира очень важна потому, что никакая космологическая модель, никакая теория невозможна без достаточно полного понимания начальных этапов развития Вселенной - ведь именно тогда закладывалось ее будущее, все последующие стадии ее формирования. И эти стадии нельзя понять, не зная, какой была ранняя, горячая Вселенная.

В какой-то мере проблема дальнейшей судьбы Вселенной проще, чем проблема начала. Здесь возможны только два варианта. Первый состоит в том, что Вселенная будет постоянно расширяться в течение неограниченного времени. Второй обрекает Вселенную на грандиозную катастрофу- сингулярность.

Выбор вариантов определяется значением средней плотности вещества во Вселенной. Эта цифра, несмотря на большое число наблюдательных данных, многочисленные теоретические оценки, известна не с очень высокой точностью. Если учесть только массу галактик, а затем усреднить ее по объему Вселенной, то получится значение средней плотности ρ = 3*10-31 г/см3. Но, кроме галактик, в космосе есть еще ионизированный газ, черные дыры, потухшие звезды и другие виды материи. Значение средней плотности галактик много меньше значений критической плотности, при котором фаза расширения обязательно должна смениться фазой сжатия.

Однако в астрофизике существует так называемая проблема скрытой массы - трудно наблюдаемых форм вещества в космосе. Эта масса может находиться как в скоплениях галактик, так и в пространстве между скоплениями. Оценки скрытой массы поднимают значение средней плотности вещества Вселенной почти до ее критического значения.

Список использованной литературы:

    http://www.pereplet.ru/obrazovanie/stsoros/571.html

    http://school.xvatit.com/index.php?title=Будущее_Вселенной

    http://www.spacephys.ru/proekty/astrofizika

    http://www.wikiznanie.ru/ru-wz/index.php/Астрофизика

    Засов А.В., Постнов К.А. Курс общей астрофизики (2-е изд.: Фрязино: Век 2, 2011)

    http://ru.wikipedia.org/wiki/Тёмная_материя

    http://biofile.ru/kosmos/2817.html