Микросомальные ферменты это. Лекарственные взаимодействия, снижающие концентрацию лекарств Мелипрамин таблетки - официальная* инструкция по применению

Биотрансформация (метаболизм) - изменение химической структуры лекар­ственных веществ и их физико-химических свойств под действием ферментов организма.

Основной направленностью этого процесса является превращение липофильных веществ, которые легко реабсорбируются в почечных канальцах, в гидрофильные полярные соединения, которые быстро выводятся почками (не реабсорбируются в почечных канальцах).

Различают два основных вида метаболизма лекарственных веществ:

несинтетические реакции (метаболическая трансформация ) - окисление, восстановление, гидролиз;

синтетические реакции (конъюгация ) - ацетилирование, метилирование, образование соединений с глюкуроновой кислотой и др.).

Соответственно, продукты превра­щений называют метаболитами и конъюгатами. Обычно вещество подвергается сначала метаболической трансформации, а затем конъ­югации. Метаболиты, как правило, менее активны, чем исходные соединения, но иногда оказываются активнее исход­ных веществ. Например, эналаприл является неактивным ЛВ (пролекарство, prodrug). Фармакологическое действие оказывает его метаболит – эналаприлат.

Конъюгаты обычно малоактивны.

Некоторые ЛС не биотрансформируются (например, бензилпенициллин выводится через почки в неизмененном виде).

Большинство лекарственных веществ подвергается биотрансфор­мации в печени под влиянием ферментов, локализованных в эндоплазматическом ретикулуме клеток печени и называемых микросомальными ферментами (в основном изоферменты цитохрома Р-450).

Эти ферменты действуют на липофильные неполярные веще­ства, превращая их в гидрофильные полярные соединения, кото­рые легче выводятся из организма. Активность микросомальных ферментов зависит от пола, возраста, заболеваний печени, действия некоторых лекарственных средств.

Так, у мужчин активность микросомальных ферментов несколь­ко выше, чем у женщин (синтез этих ферментов стимулируется мужскими половыми гормонами). Поэтому мужчины более устой­чивы к действию многих фармакологических веществ.

У новорожденных система микросомальных ферментов несовер­шенна, поэтому ряд лекарственных веществ (например, хлорамфеникол) в первые недели жизни назначать не рекомендуют в связи с их выраженным токсическим действием.

Активность микросомальных ферментов печени снижается в пожилом возрасте, поэтому многие лекарственные препараты ли­цам старше 60 лет назначают в меньших дозах по сравнению с ли­цами среднего возраста.

При заболеваниях печени активность микросомальных фермен­тов может снижаться, замедляется биотрансформация лекарствен­ных средств, усиливается и удлиняется их действие.



Известны лекарственные вещества, индуцирующие синтез мик­росомальных ферментов печени, например, фенобарбитал, гризеофульвин, рифампицин. Их называют индукторы микросомальных ферментов печени . Индукция синтеза микросомальных фермен­тов при применении указанных ЛВ развивается постепенно (примерно в течение 2 недель). При одновременном назна­чении с ними других препаратов (например, глюкокортикоидов, противозачаточных средств для приема внутрь) действие последних может ослабляться.

Некоторые лекарственные вещества (циметидин, хлорамфеникол и др.) снижают активность микросомальных ферментов печени (ингибиторы микросомальных ферментовпечени ) и поэтому могут усиливать действие других препаратов.

  • 6.2. Вяжущие, обволакивающие и адсорбирующие средства
  • Глава 7 средства, стимулирующие окончания афферентных нервов
  • 7.1. Раздражающие средства
  • Глава 8 средства, действующие на холинергические синапсы
  • 8.1. Средства, стимулирующие холинергические синапсы
  • 8.1.1. Холиномиметики
  • 8.1.2. Антихолинэстеразные средства
  • 8.2. Средства, блокирующие холинергические синапсы
  • 8.2.1. М-холиноблокаторы
  • 8.2.2. Ганглиоблокаторы
  • 8.2.3. Средства, блокирующие нервно-мышечные синапсы
  • 8.2.4. Средства, уменьшающие выделение ацетилхолина
  • Глава 9 средства, действующие на адренергические синапсы
  • 9.1. Средства, стимулирующие адренергические синапсы
  • 9.1.1. Адреномиметики
  • 9.1.2. Симпатомиметические средства (симпатомиметики, адреномиметики непрямого действия)
  • 9.2. Средства, блокирующие адренергические синапсы
  • 9.2.1. Адреноблокаторы
  • 9.2.2. Симпатолитики
  • Глава 10 средства для наркоза (общие анестетики)
  • 10.1 Средства для ингаляционного наркоза
  • 10.2. Средства для неингаляционного наркоза
  • Глава 11 снотворные средства
  • 11.1. Снотворные средства с ненаркотическим типом действия
  • 11.1.1. Агонисты бензодиазепиновых рецепторов
  • 11.1.2. Блокаторы н1-рецепторов
  • 11.1.3. Агонисты мелатониновых рецепторов
  • 11.2. Снотворные средства с наркотическим типом действия
  • 11.2.1. Производные барбитуровой кислоты (барбитураты)
  • 11.2.2. Алифатические соединения
  • Глава 12 противоэпилептические средства
  • 12.1. Средства, повышающие эффект γ-аминомасляной кислоты
  • 12.2. Блокаторы натриевых каналов
  • 12.3. Блокаторы кальциевых каналов т-типа
  • Глава 13 противопаркинсонические средства
  • 13.1. Средства, стимулирующие дофаминергическую передачу
  • 13.2. Средства, угнетающие холинергическую
  • Глава 14 анальгезирующие средства (анальгетики)
  • 14.1. Средства преимущественно центрального действия
  • 14.1.1. Опиоидные (наркотические) анальгетики
  • 14.1.2. Неопиоидные препараты с анальгетической активностью
  • 14.1.3. Анальгетики со смешанным механизмом действия (опиоидный и неопиоидный компоненты)
  • 14.2. Анальгезирующие средства преимущественно периферического действия (нестероидные противовоспалительные средства)
  • Глава 15 психотропные средства
  • 15.1. Антипсихотические средства
  • 15.2. Антидепрессанты
  • 15.3. Нормотимические средства (соли лития)
  • 15.4. Анксиолитические средства (транквилизаторы)
  • 15.5. Седативные средства
  • 15.6. Психостимуляторы
  • 15.7. Ноотропные средства
  • Глава 16 аналептики
  • Глава 17 средства, влияющие на функции органов дыхания
  • 17.1. Стимуляторы дыхания
  • 17.2. Противокашлевые средства
  • 17.3. Отхаркивающие средства
  • 17.4. Средства, применяемые при бронхиальной
  • 17.5. Препараты сурфактантов
  • Глава 18 антиаритмические средства
  • 18.1. Класс I - блокаторы натриевых каналов
  • 18.2. Класс II - β-адреноблокаторы
  • 18.3. Класс III - блокаторы калиевых каналов
  • 18.4. Класс IV - блокаторы кальциевых каналов
  • 18.5. Другие средства, применяемые при тахиаритмиях и экстрасистолии
  • Глава 19 средства, применяемые при недостаточности коронарного кровообращения
  • 19.1. Средства, применяемые при стенокардии (антиангинальные средства)
  • 19.2. Средства, применяемые при инфаркте миокарда
  • Глава 20 средства, применяемые при артериальной гипертензии (антигипертензивные средства)
  • 20.1. Антигипертензивные средства нейротропного действия
  • 20.1.1. Средства, понижающие тонус вазомоторных центров
  • 20.1.2. Ганглиоблокаторы
  • 20.1.3. Симпатолитики
  • 20.1.4. Средства, блокирующие адренорецепторы
  • 20.2. Средства, снижающие активность ренин-ангиотензиновой системы
  • 20.2.1. Ингибиторы ангиотензинпревращающего фермента
  • 20.2.2. Блокаторы ангиотензиновых рецепторов 1 типа
  • 20.3. Антигипертензивные средства миотропного действия
  • 20.3.1. Блокаторы кальциевых каналов
  • 20.3.2. Активаторы калиевых каналов
  • 20.3.3. Донаторы оксида азота
  • 20.3.4. Разные миотропные препараты
  • 20.4. Мочегонные средства (диуретики)
  • Глава 21 средства, повышающие артериальное давление (гипертензивные средства)
  • Глава 22 средства, увеличивающие сократимость миокарда. Средства, применяемые при сердечной недостаточности
  • 22.1. Кардиотонические средства
  • 22.2. Средства, применяемые при сердечной недостаточности
  • Глава 23 средства, применяемые при нарушении мозгового кровообращения
  • 23.1. Блокаторы кальциевых каналов
  • 23.2. Производные алкалоидов барвинка
  • 23.3. Производные алкалоидов спорыньи
  • 23.4. Производные никотиновой кислоты
  • 23.5. Производные ксантина
  • 23.6. Средства, применяемые при мигрени
  • Глава 24 средства, применяемые при атеросклерозе
  • 24.1. Гиполипидемические средства (антигиперлипопротеинемические средства)
  • Глава 25 ангиопротекторы
  • 26.1. Средства, влияющие на эритропоэз
  • 26.2. Средства, влияющие на лейкопоэз
  • Глава 27 средства, влияющие на гемостаз и тромбообразование
  • 27.1. Средства, снижающие агрегацию тромбоцитов (антиагреганты)
  • 27.2. Средства, влияющие на свертывание крови
  • 27.2.1. Средства, понижающие свертываемость крови (антикоагулянты)
  • 27.2.2. Средства, повышающие свертываемость крови
  • 27.3. Средства, влияющие на фибринолиз
  • 27.3.1. Фибринолитические (тромболитические) средства
  • 27.3.2. Антифибринолитические средства
  • Глава 28 мочегонные средства (диуретики)
  • 28.1. Средства, влияющие на функцию эпителия почечных канальцев
  • 28.2. Антагонисты альдостерона
  • 28.3. Осмотические диуретики
  • 28.4. Другие диуретики
  • Глава 29 средства, влияющие на тонус и сократительную активность миометрия
  • 29.1. Средства, повышающие тонус и сократительную активность миометрия
  • 29.2. Средства, снижающие тонус
  • Глава 30 средства, влияющие на функции органов пищеварения
  • 30.1. Средства, влияющие на аппетит
  • 30.2. Рвотные и противорвотные средства
  • 30.3. Антацидные средства и средства, понижающие секрецию пищеварительных желез (антисекреторные средства)
  • 30.4. Гастроцитопротекторы
  • 30.5. Средства, используемые при нарушении экскреторной функции желудка, печени и поджелудочной железы
  • 30.6. Ингибиторы протеолиза
  • 30.7. Желчегонные средства
  • 30.8. Гепатопротекторные средства
  • 30.9. Холелитолитические средства
  • 30.10. Стимуляторы моторики желудочнокишечного тракта и прокинетические средства
  • 30.11. Слабительные средства
  • 30.12. Антидиарейные средства
  • 30.13. Средства, восстанавливающие нормальную микрофлору кишечника
  • 31.1. Гормональные препараты белково-пептидной
  • 31.1.1. Препараты гормонов гипоталамуса и гипофиза
  • 31.1.2. Препараты гормонов эпифиза
  • 31.1.3. Препараты гормонов, регулирующих обмен кальция
  • 31.1.4. Тиреоидные гормоны и антитиреоидные средства
  • 31.1.5. Препараты гормонов поджелудочной железы
  • 31.1.6. Синтетические противодиабетические средства для приема внутрь
  • 31.2. Гормональные средства стероидной структуры
  • 31.2.1. Препараты гормонов коры надпочечников, их синтетические заменители и антагонисты
  • 31.2.2. Препараты половых гормонов, их синтетических заменителей и антагонистов
  • 31.2.2.1. Препараты женских половых гормонов
  • 31.2.2.2. Препараты мужских половых гормонов (андрогенные препараты)
  • 17-Алкиландрогены
  • 31.2.2.3. Анаболические стероиды
  • 31.2.2.4. Антиандрогенные препараты
  • Глава 32 витамины
  • 32.1. Препараты жирорастворимых витаминов
  • 32.2. Препараты водорастворимых витаминов
  • 32.3. Витаминоподобные вещества
  • 32.4. Растительные витаминные препараты
  • 32.5. Витаминные препараты животного происхождения
  • 32.6. Поливитаминные препараты
  • 32.7. Цитамины
  • 33.1. Стероидные противовоспалительные средства
  • 33.2. Нестероидные противовоспалительные
  • 33.3. Медленно действующие противоревматоидные средства
  • Глава 34 средства, применяемые при подагре (противоподагрические средства)
  • Глава 35 средства, регулирующие иммунные процессы (иммунотропные средства)
  • 35.1. Иммуностимулирующие средства (иммуностимуляторы)
  • 35.2. Противоаллергические средства
  • Глава 36 антисептические и дезинфицирующие средства
  • Глава 37 антибактериальные химиотерапевтические средства
  • 37.1. Антибиотики
  • 37.2. Синтетические антибактериальные средства
  • 37.3. Противосифилитические средства
  • 37.4. Противотуберкулезные средства
  • 10 Мг). Глава 38 противогрибковые средства
  • Глава 39 противовирусные средства
  • Глава 40 средства для лечения протозойных инфекций
  • 40.1. Противомалярийные средства
  • 40.2. Препараты для лечения трихомониаза, лейшманиоза, амебиаза и других протозойных инфекций
  • Глава 41 противоглистные (антигельминтные) средства
  • 41.1. Противонематодозные препараты
  • 41.2. Противоцестодозные препараты
  • 41.3. Препараты, применяемые при внекишечных гельминтозах
  • 42.1. Цитотоксические средства
  • 42.2. Гормональные и антигормональные средства
  • 42.3. Цитокины
  • 42.4. Ферментные препараты
  • Глава 43 общие принципы лечения отравлений
  • Глава 44 плазмозамещающие и дезинтоксикационные средства
  • Глава 45 различные средства аптечного ассортимента
  • 45.1. Гомеопатические средства
  • 45.2. Биологически активные добавки к пище
  • 45.3. Корректоры метаболизма костной и хрящевой ткани
  • IV. Комбинированные препараты
  • II. Стимуляторы синтеза гликозаминогликанов матрикса хрящевой ткани:
  • Глава 46 основные лекарственные формы
  • 1.4. Биотрансформация лекарственных веществ

    Биотрансформация (метаболизм) - изменение химической струк- туры и физико-химических свойств ЛВ под действием ферментов организма. Основная направленность этого процесса - удаление чужеродных соединений, в том числе ЛВ, из организма путем пре- вращения неполярных липофильных веществ в полярные гидрофильные соединения. Так как полярные гидрофильные вещества в отличие от липофильных не реабсорбируются в почечных канальцах, они быстро выводятся почками, а некоторые из них выводятся с желчью в просвет кишечника.

    Биотрансформация липофильных ЛВ в основном происходит под действием ферментов печени, локализованных в мембране эндо- плазматического ретикулума гепатоцитов. Эти ферменты называются микросомальными, так как они оказываются связанными с мелкими субклеточными фрагментами гладкого эндоплазматическо- го ретикулума(микросомами), которые образуются при гомогенизации печеночной ткани или тканей других органов и могут быть выделены центрифугированием (осаждаются в так называемой «микросомальной» фракции). Основное место локализации микросомальных фер- ментов - гепатоциты, но обнаружены они также и в других органах (кишечнике, почках, легких, головном мозге).

    В плазме крови, а также в печени, стенке кишечника, почках, лег- ких, коже, слизистых оболочках и других тканях имеются н е м и к - росомальные ферменты, локализованные в цитозоле или митохондриях.

    Различают два основных вида метаболизма ЛВ:

    несинтетические реакции (метаболическая трансформация);

    биосинтетические реакции (конъюгация).

    Большинство ЛВ сначала метаболизируется при участии реакций метаболической трансформации с образованием реакционноспо- собных метаболитов, затем вступающих в реакции конъюгации.

    При конъюгации к ЛВ или их метаболитам присоединяются остатки эндогенных соединений (глюкуроновой кислоты и др.) или химичес- кие группировки (ацетильные, метильные), поэтому реакции конъюгации обозначают термином«биосинтетическая трансформация».

    Метаболическая трансформация

    Реакции метаболической трансформации включают окисление, восстановление, гидролиз.

    Окисление. Многие липофильные соединения подвергаются окислению в печени под действием микросомальной системы ферментов, известных как оксидазы смешанных функций (или монооксигеназы), основным компонентом которой является цитохром Р-450 (гемопротеин, связывающий ЛВ и кислород в своем активном центре). Реакция протекает при участии цитохром Р-450 редуктазы и НАДФН, который является донором электронов. В результате после восстановления молекулярного кислорода происходит присоединение одного атома кислорода к субстрату (ЛВ) с образованием окисленного метаболита и включение другого атома кислорода в молекулу воды.

    RH + O 2 + НАДФН + H + → ROH + H 2 O + НАДФ + ,

    где RH - лекарственное вещество, а ROH - метаболит.

    Кислород может быть включен в молекулу субстрата в составе гид- роксильной группы (реакция гидроксилирования), эпоксидной группы (реакция эпоксидации), может замещать аминогруппу (реакция дезаминирования) или атом серы. В реакциях дезалкилирования метаболиты образуются при включении кислорода в алкильную группу, которая отделяется от молекулы субстрата. Примеры реакций микросомаль- ного окисления приведены в табл. 1-1.

    Реакции биотрансформации Лекарственные вещества

    Микросомальное окисление

    Фенобарбитал, фенитоин, пропранолол, варфарин

    Алифатическое гидроксилирование

    Толбутамид, ибупрофен, дигитоксин, барбитураты

    N-окисление

    Морфин, хинидин, парацетамол

    S-окисление

    Хлорпромазин, циметидин

    Дезаминирование

    Диазепам, амфетамин, эфедрин

    Дезалкилирование

    Морфин, кодеин, кофеин, теофиллин

    Немикросомальное окисление

    Окислительное дезаминирование

    Норэпинефрин, серотонин

    Ароматическое гидроксилирование

    Аллопуринол

    Декарбоксилирование

    Леводопа

    Восстановление

    Нитрогруппы

    Хлорамфеникол, нитразепам

    Карбонильной группы

    Налоксон

    Дегалогенирование

    Гидролиз

    Сложных эфиров

    Прокаин, ацетилсалициловая кислота, эналаприл, суксаметония бромид

    Амидов Прокаинамид, индометацин

    Биосинтетические реакции

    Конъюгация с остатком глюкуроновой кислоты (образование эфиров, тиоэфиров или амидов глюкуроновой кислоты)

    Парацетамол, хлорамфеникол, диазепам, морфин, дигоксин, салициловая кислота

    Конъюгация с остатком серной кислоты (образование сульфатов)

    Парацетамол, стероиды

    Конъюгация с глицином

    Салициловая кислота

    Конъюгация с глутатионом

    Этакриновая кислота, доксорубицин

    Ацетилирование

    Сульфаниламиды, изониазид

    Метилирование

    Катехоламины, каптоприл

    го состава, объединены в семейства и обозначаются арабскими цифрами (CYP1, CYP2, CYP3 и т. д.). Подсемейства, обозначаемые латинскими буквами, объединяют изоформы с идентичностью аминокислотного

    состава более 55% (CYP2D, CYP3A и т.д.) Отдельные изоферменты обозначают арабскими цифрами, следующими за латинскими буквами (CYP1A2, CYP2D6, CYP3A4). ЛВ могут быть субстратами двух и более изоферментов, при этом различные изоферменты способны метаболизировать одно вещество в различных участках его молекулы. В табл. 1-2 приведены основные изоферменты цитохрома Р-450 печени человека, принимающие участие в метаболизме ЛС, и примеры ЛВ, являющихся субстратами этих изоферментов. Наибольшее количество ЛВ метаболизируется при участии CYP3A4.

    Окисление некоторых ЛВ происходит при участии немикросомальных ферментов, локализованных в цитозоле, митохондриях, лизосомах и цитоплазматических мембранах клеток. Для этих ферментов характерна субстратная специфичность. Так, моноаминоксидаза типа А (МАО-А) осуществляет окислительное дезаминирование катехоламинов (норадреналина, адреналина, серотонина и др.), под действием алкогольдегидрогеназы этанол окисляется до ацетальдегида, под действием ксантиноксидазы происходит гидроксилирование пуриновых соединений (аллопуринола, теофиллина).

    Восстановление лекарственных веществ заключается в присоединении к его молекуле атома водорода или удалении атома кислорода. Эти реакции могут протекать при участии микросомальных (восстановление хлорамфеникола) и немикросомальных (восстановление хлоралгидрата) ферментов. Некоторые ЛВ (например, месалазин) восстановливаются в кишечнике под действием редуктаз, продуцируемых кишечными бактериями.

    Гидролиз большинства ЛВ осуществляют немикросомальные фер- менты (эстеразы, амидазы, фосфатазы) в плазме крови и тканях (в основном в печени). Вследствие присоединения воды происходит разрыв эфирных, амидных и фосфатных связей в молекулах ЛВ. Гидролизу подвергаются сложные эфиры (суксаметоний, прокаин, бензокаин, ацетилсалициловая кислота) и амиды (прокаинамид, индометацин). Некоторые ЛВ гидролизуются под действиеммикросомальных ферментов, например амидаз (местные анестетики из группы амидов). Микросомальный фермент эпоксидгидролаза гидролизует высокореактивные метаболиты, образующиеся при микросомальном окислении некоторых ЛВ (например, карбамазепина) с образованием неактивных соединений.

    Изоферменты

    Субстраты

    Индукторы

    Ингибиторы

    Кофеин, теофиллин, парацетамол, варфарин, тамоксифен, кломипрамин

    Фенобарбитал, омепразол, рифампицин, вещества, содержащиеся в сигаретном дыме и жареной пище (бензопирены, метилхолантрены), броколли, брюссельская капуста

    Ципрофлоксацин, циметидин, кларитромицин, эритромицин

    Ибупрофен, фенитоин, толбутамид, варфарин

    Рифампицин, фенобарбитал

    Диклофенак, сульфаниламиды циметидин, этанол (однократно)

    Диазепам, напроксен, пропранолол, омепразол

    Рифампицин, фенобарбитал

    Омепразол, флуоксетин

    Кодеин, клозапин, омепразол, метопролол, тимолол, галоперидол, трициклические антидепрессанты

    Не известны

    Амиодарон, галоперидол, флуоксетин, хини- дин, циметидин

    Этанол, парацетамол, галотан, энфлуран

    Этанол (хронический прием), изониазид

    Дисульфирам, ритонавир

    Амиодарон, варфарин, верапамил, диазепам, дилтиазем, кетоконазол, кортикостероиды, кокаин ловастатин, лидокаин, лозартан, макролиды, мидазолам, нифедипин, прогестерон, ритонавир, спиронолактон, сульфаметоксазол, тестостерон, циклоспорин, хинидин, этинилэстрадиол

    Барбитураты, рифампицин, фенитоин, карбамазепин, глюкокортикоиды, фенилбутазон, трава зверобоя

    Кетоконазол, метронидазол, омепразол, циметидин, хинидин, ципрофлоксацин, эритромицин, кларитромицин, хинидин, фуранокумарины сока грейпфрута

    литы, образуемые в результате несинтетических реакций, могут обладать такой же, а иногда и более высокой активностью, чем исходные соединения. Образование активных метаболитов обеспечивает длительное действие некоторых ЛВ (например, диазепама). Примером ЛВ, неактивных в исходном состоянии и активируемых в процессе метаболизма, являются предшественники лекарств (пролекарства). Например, антигипертензивные средства из группы ингибиторов ангиотен-превращающего фермента (эналаприл, фозиноприл) гидролизуются в организме с образованием активных соединений. С помощью пролекарств могут решаться проблемы с доставкой ЛВ к месту его действия. Так, предшественник дофамина леводопа в отличие от дофамина проникает в ЦНС, где под влиянием ДОФА-декарбоксилазы превращается в дофамин.

    В некоторых случаях в процессе метаболической трансформации образуются токсичные соединения. Примером является образование промежуточного токсичного метаболита (N-ацетил-пара-бензохино- нимина) при микросомальном окислении анальгетика парацетамола. Инактивация этого метаболита происходит в результате связывания с глутатионом, однако при истощении запасов глутатиона (в основном вследствие передозировки препарата) он оказывает токсическое действие на печень.

    Биосинтетическая трансформация

    В процессе б и о с и н т е т и ч е с к и х р е а к ц и й к функциональным группировкам (аминогруппам, гидроксильным, карбоксильным группам) молекул ЛВ или их метаболитов присоединяются остатки эндогенных соединений (глюкуроновой или серной кислоты, глутатиона, глицина др.) или высокополярные химические группы (ацетильные, метильные). Эти реакции протекают при участии ферментов (в основном, трансфераз) печени, а также ферментов других тканей (легких, почек). Содержатся ферменты в эндоплазматическом ретикулуме гепатоцитов (микросомальные ферменты) или в цитозольной фракции.

    Наиболее общей реакцией является конъюгация с глюкуроновой кислотой. Присоединение остатков глюкуроновой кислоты (образование глюкуронидов) происходит при участии микросомального фермента уридилдифосфат-глюкуронилтрансферазы (цитохром Р-450-содержащий фермент), обладающего низкой субстратной специфичностью, вследствие чего этот фермент метаболизирует многие ЛВ

    и их метаболиты (а также некоторые эндогенные вещества, например билирубин).

    В реакцию конъюгации с глутатионом вступают некоторые реакционноспособные вещества (эпоксиды, хиноны), в том числе проме- жуточные метаболиты, образующиеся в результате микросомального окисления (например, парацетамола), в результате чего резко снижается их токсичность.

    В процессе конъюгации образуются высокополярные гидрофильные соединения, которые быстро выводятся почками или с желчью в просвет кишечника. Конъюгаты, как правило, менее активны и ток- сичны, чем исходные ЛВ или их метаболиты.

    Факторы, влияющие на биотрансформацию лекарственных веществ

    Активность ферментов, метаболизирующих ЛВ, а следовательно, скорость их биотрансформации зависит от пола, возраста, состояния организма, одновременного назначения других ЛС, а также от некоторых веществ, содержащихся в продуктах питания.

    У мужчин активность микросомальных ферментов выше, чем у женщин, так как синтез этих ферментов стимулируется мужскими половыми гормонами. Такие вещества, как этанол, эстрогены, бензодиазепины, салицилаты метаболизируются быстрее у мужчин, чем у женщин.

    В эмбриональном периоде отсутствует большинство ферментов метаболизма ЛВ. У новорожденных в первые 2-4 нед жизни активность многих ферментов (в частности, ферментов, участвующих в реакциях конъюгации) снижена и достигает достаточного уровня лишь через 1-6 мес. Поэтому детям в первые недели жизни не рекомендуется назначать такие ЛВ, как хлорамфеникол, так как вследствие недостаточной активности микросомальных ферментов, замедлены процессы конъюгации его токсичного метаболита.

    В старческом возрасте снижается активность некоторых микросомальных ферментов, печеночный кровоток и масса печени, вследствие чего уменьшается скорость метаболизма многих ЛВ (лицам старше 60 лет, такие препараты назначают в меньших дозах).

    При заболеваниях печени снижается активность микросомальных ферментов и замедляется биотрансформация многих ЛВ, что приводит к усилению и удлинению их действия. Уменьшение скорости кровото-

    ка также существенно замедляет метаболизм некоторых ЛВ (морфина, лидокаина), поэтому при сердечной недостаточности обычные дозы этих препаратов могут вызвать токсические эффекты. Нарушения функций щитовидной железы повышают (при гипертиреозе) или снижают (при гипотиреозе) биотрансформацию ЛВ. Сахарный диабет и другие нарушения функции эндокринной системы также влияют на лекарственный метаболизм.

    Синтез микросомальных ферментов может повышаться (индукция ферментов) под действием различных ЛВ, некоторых веществ, содержащихся в продуктах питания, сигаретном дыме, окружающей среде и т.д. Индукции могут подвергаться ферменты, участвующие как в несинтетических реакциях, так и в реакциях конъюгации (в основном, с глюкуроновой кислотой).

    При воздействии индукторов микросомальных ферментов повышается скорость биотрансформации ЛВ, которые метаболизируются этими ферментами (см. табл. 1-2), что приводит к ослаблению их тера- певтического действия. Поскольку CYP3A4 участвует в метаболизме многих ЛВ (более 60% препаратов, применяемых в клинической практике), индукция этого изофермента достаточно часто может иметь нежелательные последствия. Некоторые ЛВ (например, фенобарбитал, рифампицин) являются универсальными индукторами, повышая активность нескольких изоферментов цитохрома Р-450, в том числе CYP3A4 и, как следствие, ослабляют терапевтический эффект многих ЛВ. Например, эффективность пероральных контрацептивов может снизиться на фоне лечения рифампицином или фенобарбиталом из-за ускорения метаболизма входящих в их состав эстрогенов и прогестинов.

    Если в процессе биотрансформации ЛВ образуются токсичные метаболиты, индукция метаболизирующих это вещество ферментов приводит к повышению риска его токсического действия. Так, индукция CYP2E1 при хроническом употреблении алкоголя (см. табл. 1-2) увеличивает токсичность парацетамола.

    Как правило, действие индукторов синтеза микросомальных ферментов (в том числе фенобарбитала) развивается медленно (в течение нескольких недель). Рифампицин оказывает более быстрый эффект, существенно повышая активность ферментов уже через несколько дней от начала применения.

    Препараты некоторых лекарственных растений могут ускорять метаболизм ЛВ. Например, препараты зверобоя, применяемые в

    качестве легких антидепрессантов, вызывают индукцию изофермента CYP3A4 и поэтому ослабляют или предупреждают действие ЛВ, которые метаболизируются при участии этого изофермента.

    Полициклические ароматические углеводороды (бензопирены, метилхолантрены), содержащиеся в табачном дыме, некоторые вещества, применяемые в промышленности (например, полихлорированные бифенилы) или побочные продукты химического синтеза (диоксин) вызывают индукцию изофермента CYP1A2. Индукция изофермента CYP2E1 развивается при хроническом употреблении алкоголя (см. табл. 1-2).

    В некоторых случаях может увеличиваться скорость метаболизма самого индуктора (аутоиндукция), вследствие чего ослабляются его фармакологические эффекты. Аутоиндукция весьма характерна для барбитуратов (в частности, фенобарбитала) и является причиной развития толерантности при их длительном приеме.

    Некоторые ЛВ снижают активность микросомальных ферментов, в результате повышается концентрация в крови веществ, метаболизируемых этими ферментами. Это может привести к развитию токсических эффектов. Например, циметидин, некоторые макролидные антибиотики, кетоконазол, ципрофлоксацин, ингибируя цитохром CYP3A4/3А5, замедляют микросомальное окисление варфарина, что может усилить его антикоагулянтный эффект и спровоцировать кровотечение. Токсическое действие теофиллина, который метаболизируется при участии цитохрома CYP1A2, резко усиливается при его одновременном назначении с антибактериальным препаратом ципрофлоксацином, ингибирующим этот фермент. Фуранокумарины, содержащиеся в грейпфрутовом соке, ингибируют CYP3A4/3А5, в результате может усилиться действие многих

    ЛВ (см. табл. 1-2).

    В отличие от индукторов метаболизма ингибиторы ферментов действуют быстрее (эффект ингибирования отмечен через 24 ч после приема соответствующего препарата).

    При одновременном применении ЛВ с индукторами или ингибиторами их метаболизма необходимо корректировать назначаемые дозы этих веществ.

    Изменение активности ферментов метаболизма ЛВ могут определяться генетическими факторами. Такие изменения имеют в своей основе передающиеся из поколения в поколение мутации генов, кодирующих синтез данных ферментов. Данный феномен носит название

    генетического полиморфизма и имеет следствием значительные межиндивидуальные различия в метаболизме ЛВ. При этом у определенного процента больных, принимающих данное ЛВ, активность метаболизирующих ферментов может быть повышена, процесс биотрансформации ЛВ ускоряется, и его действие снижается. И наоборот, активность ферментов может быть снижена (недостаточность ферментов), вследствие чего биотрансформация ЛВ будет происходить медленнее, и действие его будет усиливаться вплоть до появления токсических эффектов. Часто отмечают генетический полиморфизм изоферментов цитохрома Р-450.

    Известны случаи генетического полиморфизма ферментов, не имеющих отношения к системе цитохрома Р-450. Например, при аце- тилировании противотуберкулезного препарата изониазида у определенного процента больных в популяции выявляют недостаточность фермента N-ацетилтрансферазы («медленные ацетиляторы»), а у других больных активность этого фермента повышена («быстрые ацетиляторы»). У «медленных ацетиляторов» концентрация изониазида в плазме крови в 4-6 раз выше, чем у «быстрых ацетиляторов», что может быть причиной токсического действия препарата. Примеры влияния генетической недостаточности некоторых ферментов на действие ЛВ приведены в табл. 1-3.

    Фермент

    Особые реакции

    Лекарственные вещества

    Распространенность

    Глюкозо-6- фосфатдегидрогеназа эритроцитов

    Гемолиз эритроцитов вследствие образования хинона. Гемолитическая анемия

    Хинин, хинидин, сульфаниламиды, хлорамфеникол

    Тропические и субтропические страны (до 100 млн человек)

    трансфераза

    Повышение частоты побочных эффектов.

    Изониазид, сульфаниламиды, прокаинамид

    Европеоиды (до 50% населения)

    Псевдохолинэстераза плазмы крови

    Удлинение расслабляющего действия на скелетные мышцы (6-8 ч вместо 5-7 мин)

    Суксаметоний

    Европеоиды (0,04% населения), эскимосы (1% населения)

    "

    Это вещества избирательно устраняющие отрицательные эмоции – страх, тревогу, напряжение, агрессию.

    Синонимы:

    Классификация:

      Производные бензодиазепина

      Диазепам (Реланиум, Седуксен, Сибазон)

      Феназепам

      Оксазепам (Нозепам, Тазепам)

      Альпразолам (Алзолам, Золдак)

      Лоразепам

      Тофизопам (Грандаксин)

      Медазепам (Мезапам, Рудотель)

      Производные разных химических групп

    Механизм действия:

      Анатомический субстрат – лимбическая система, гипоталамус, РФ ствола мозга, таламические ядра

      ГАМК-ергическое торможение – «бензодизепиновые» рецепторы + рецепторы ГАМК

      ГАМК – реализует функции через открытие в мембране нейрона каналов для ионов хлора

    Рисунок смотри на снотворные

    Фармакологические эффекты

      Анксиолитический – снижение страха, тревоги, напряжения

      Седативный – успокаивающий (не основной, средства с седативным эффектом)

      Снотворный – особенно при нарушении процесса засыпания

      Противосудорожный

      Противоэпилептический

      Миорелаксирующий (Зачет: почему транквилизаторы противопоказаны при миастении. Миастения – мышечная слабость  они обладают миорелаксирующий действием, центральный компонент – миорелаксирующий)

      Потенцирующий

      Амнестический – в больших дозах

      Вегетотропный – снижение активности симпатико-адреналовой системы

    Применение

      Главное применение, в отличие от нейролептиков (при психозе) – невроз (неадекватная реакция на нестандартную ситуацию)

      Бессонница

      Психосоматический нарушения (ГБ, стенокардия, аритмии, ЯБЖ, БА и др.)

      Премедикация и атаральгезия (разновидность потенцирования наркоза)

      Судороги, эпилепсия

      Спастические состояния (при поражениях головного мозга), гиперкинезы

      Абстиненция при алкоголизме и наркомании

    Побочные эффекты

      Нарушение внимания, памяти

      Сонливость, мышечная слабость, нарушение координации движений

      Привыкание

      Лекарственная зависимость

      Импотенция

      Не совместимы с алкоголем (потенцируют их действие)

    «Дневные» транквилизаторы

      Мезапам (Рудотель)

      Грандаксин (Тофизопам)

    • Афобазол – не бензидиазепиновый. Мембранный модулятор ГАМК-реуепторного комплекса – приближает к физиологической норме – максимально физиологический механизм. Обладает мембранопродуктивными совйствами. Не вызывает ни привыкание, ни вялости и сонливости.

    Противопоказания

      Миастения

      Заболевания печени и почек

      Водителям и лицам, выполняющим точные виды деятельности

      Алкоголь совместно

      Беременность – I триместр

    3. Происхождение препаратов инсулина:

      Рекомбинантные инсулин (ИНС) человека (метод генной инженерии) – НМ

      Из ПЖ (поджелудочная железа) свиньи (Суинсулин) – С

    От степени очистки – МП (монопиговые, монокомпонентные) или МК (МС)

    Инсулин вводится только парентерально – шприцы, шприц-ручка с картриджем (пенфилл).

    Классификация

      Короткого действия 30мин (начало действия) – 2-4ч. (через какое время пик действия, обязательно должен приходится на прием пищи) – 6-8ч (общая длительность действия) – п/к, в/м, в/в.

      Средней длительности (+ протамин, Zn) – 2ч – 6-12ч – 20-24ч – п\к.

      Протафан МС

      Монотрад МС

      Длительного действия – 4ч – 8-18ч – 28ч – п\к.

      Ультратард НМ

      Беспиковый инсулин длительного действия (24ч) – Инсулин гларгин (Лантус) – снимает риск ночной гипогликемии

    Показания к применению:

      СД I типа (ИЗСД – инсулин зависимый сахарный диабет);

      Гипотрофия, анорексия, фурункулез, длительные ИЗ (инфекционные заболевания), плохозаживающие раны;

      В составе поляризующей смеси (К, Сl, глюкоза, инсулин);

      Иногда, лечение психических больных;

    Принципы инсулинотерапии:

      Первично – в стационаре индивидуально! (выбор, доза – гликемия, глкозурия). 1 единица утилизирует 4-5 г сахара, полединицы на кг;

      Подбор дозы при коме и прекоматозном состоянии – только короткого действия!

      Максимальная гипогликемия = прием пищи;

    • Комбинация КД (короткого действия) + ДД (базальная и стимулированная секреция);

      Бифазные препараты (2 в 1, КД + ДД):

    Побочные эффекты:

      Липодимтрофия на месте инъекции, по этому места меняются;

      Аллергические реакции;

      Передозировка – гипогликемия;

    Синтетические пероральные противодиабетические средства:

    Используются при СД II типа (ИнеЗСД).

      Снижается секрецию инсулина и уменьшается активность β-клеток.

      Резистентность тканей к инсулину. Снижение количества рецепторов или их чувствительности к инсулину.

    Классификация:

      Производные сульфонилмочевины:

      Букарбан Хлорпропамид. Используются они редко, в больших дозах, короткодействующие.

      Глибенкламид (Манинил), Глипизид (Минидиаб), Гликвидон (Глюренорм), Гликлазид (Диабетон) + ААГ

      Глимепирид (Амарил) – пролонгированность действия.

    Механизм действия: стимулируют секреию эндогенного инсулина, при этом снижается К атф β –клеток  деполяризация  открытие кальциевых каналов  повышение кальция в клетке  дегрануляция с повышение секреции инсулина.

    Побочные эффекты: гипогликемия, лейкопения и агранулоцитоз, нарушение функции печени, ЩЖ, диспепсия, нарушение вкусовых ощущений, аллергия.

      Бигуаниды – Метморфин (Глиформин), он же Сиофор 500. Стимулируется захват глюкозы периферическими тканями (ПТ) и угнетает глконеогенез (ГНГ) в печени и всасывание глюкозы в кишечнике. Снижается аппетит, активируется липолиз, и угнетается липогенез.

    Побочные эффекты: металлический привкус во рту, диспепсия, нарушение всасывания витаминов (В12).

    Глибомет = Глибенкламид + метморфин.

      Ингибиторы α-глюкозидаз:

    Уменьшается всасывание углеводов в кишечнике.

    Побочные эффекты: метеоризм, диарея.

      Прандиальные регуляторы гликемии – глимиды:

      Натеглинид (Старликс) – производное АК ФА

      Рпеаглинид (Новонорм) – производное бензойной кислоты

    Блокируют КАТФ-зависимые βклетки. Действуют быстро и коротко.

      Инсулиновые сенситизаторы (тиазолидиндионы):

    Используются при непереносимости обычной терапии.

    Повышают чувствительность тканей к инсулину. Угнетают ГНГ в печени. Применяют 1 раз в сутки.

      Инкретины (инкреция – поступление продукта, вырабатываемого эндокринными железами, непосредственно в кровяное русло):

    Гормоны, повышающие секрецию инсулина в ответ на прием пищи, и вырабатываются в кишечнике (до 70% постпрандиальной секреции инсулина у здоровых людей).

    Значительно снижает у больных СД II и с нарушением толерантности к глюкозе (НТГ).

    Эффекты ГПП-1:

      Стимуляция глюкагон-зависимой секреции INS (эффект инкретина) – действие зависит от концентрации глюкозы а ПК, и прекращается при ее снижении менее 3.0 ммоль/л – не может вызвать развитие выраженной гипогликемии

      Уитопротекторный – увеличение массы β-клеток, стимуляция неогенеза.

      Блокируется апоптоз β-клеток

      Митотическое действие на β-клетки – увеличение дифференцировки новых β-клеток из клеток – предшественников эпителия панкреатического протока.

      Угнетает секрецию глюкагона.

      Блокируется опорожнение желудка – чувство насыщения – анорексигенное действие

    Инактивация ГПП-1:

    Агонисты ГПП-1:

      Лираглутид (Виктоза) – аналог человеческого ГПП-1 с периодом полураспада около 13 часов. 1 раз в сутки п\к (+ снижение массы тела, снижение АД)

      Эксенатид

      Ингибитор ДПП-4 – Ситаглиптин (Янувия) – предотвращает гидролиз инкретинов  активируют плазменные концентрации активных форм ГПП-1 и ГИП. 1 таб 1 раз в сутки.

    1.Биотрансформация лекарственных веществ. Реакции I и II этапов метаболизма. Индукторы и ингибиторы микросомальных ферментов (примеры).

    Биотрансформация (метаболизм) - изменение химической структуры лекарственных веществ и их физикохимических свойств под действием ферментов организма. Основной направленностью этого процесса является превращение липофильных веществ, которые легко реабсорбируются в почечных канальцах, в гидрофильные полярные соединения, которые быстро выводятся почками (не реабсорбируются в почечных канальцах). В процессе биотрансформации, как правило, происходит снижение активности (токсичности) исходных веществ. Биотрансформация липофильных ЛВ в основном происходит под влиянием ферментов печени, локализованных в мембране эндоплазматического ретикулума гепатоцитов. Эти ферменты называются микросомальными, потому что они оказываются связанными с мелкими субклеточными фрагментами гладкого эндоплазматического ретикулума (микросомами), которые образуются при гомогенизации печеночной ткани или тканей других органов и могут быть выделены центрифугированием (осаждаютсяв так называемой «микросомальной» фракции). В плазме крови, а также в печени, кишечнике, легких, коже, слизистых оболочках и других тканях имеются немикросомальные ферменты, локализованные в цитозоле или митохондриях. Эти ферменты могут участвовать в метаболизме гидрофильных веществ. Различают два основных вида метаболизма лекарственных веществ (этапы): несинтетические реакции (метаболическая трансформация); синтетические реакции (конъюгация).

    биотрансформация (реакции метаболизма 1-й фазы), происходит под действием ферментов - окисление, восстановление, гидролиз.

    конъюгация (реакции метаболизма 2-й фазы), при которой происходит присоединение к молекуле вещества остатков других молекул (глюкуроновой, серной кислот, алкильных радикалов), с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

    Лекарственные вещества могут подвергаться или метаболической биотрансформации (при этом образуются вещества, называемые метаболитами), или конъюгации (образуются конъюгаты). Но большинство Л В сначала метаболизируется при участии несинтетических реакций с образованием реакционноспособных метаболитов, которые затем вступают в реакции конъюгации. Кметаболической трансформации относятся следующие реакции: окисление, восстановление, гидролиз. Многие липофильные соединения подвергаются окислению в печени под влиянием микросомальной системы ферментов, известных как оксидазы смешанных функций, или монооксигеназы. Основными компонентами этой системы являются цитохром Р450 редуктаза и цитохром Р450 гемопротеин, который связывает молекулы лекарственного вещества и кислород в своем активном центре. Реакция протекает при участии НАДФН. В результате происходит присоединение одного атома кислорода к субстрату (лекарственному веществу) с образованием гидроксильной группы (реакция гидроксилирования).

    Под действием некоторых лекарственных веществ (фенобарбитал, рифампицин, карбамазепин, гризеофульвин) может происходить индукция (увеличение скорости синтеза) микросомальных ферментов печени. В результате при одновременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повышается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин). Некоторые лекарственные вещества (циметидин, хлорамфеникол, кетоконазол, этанол) снижают активность (ингибиторы) метаболизирующих ферментов. Например, циметидин является ингибитором микросомального окисления и, замедляя метаболизм варфарина, может повысить его антикоагулянтный эффект и спровоцировать кровотечение. Известны вещества (фуранокумарины), содержащиеся в грейпфрутовом соке, которые угнетают метаболизм таких лекарственных веществ, как циклоспорин, мидазолам, алпразолам и, следовательно, усиливают их действие. При одновременном применении лекарственных веществ с индукторами или ингибиторами метаболизма необходимо корректировать назначаемые дозы этих веществ.

    Source: StudFiles.net


    Взаимодействие ряда лекарственных веществ в процессе их распределения в организме можно рассматривать как один из важных фармакокинетических этапов, который характеризует их биотрансформацию, ведущую в большинстве случаев к образованию метаболитов.

    Метаболизм (биотрансформация) - процесс химической модификации лекарственных веществ в организме .

    Метаболические реакции подразделяют на несинтетические (когда лекарственные вещества претерпевают химические превращения, подвергаясь окислению, восстановлению и гидролитическому расщеплению или нескольким из этих превращений) - I фаза метаболизма и синтетические (реакция конъюгации и др.) - II фаза. Обычно несинтетические реакции представляют собой лишь начальные стадии биотрансформации, а образующиеся продукты могут участвовать в синтетических реакциях и затем элиминировать.

    Продукты несинтетических реакций могут обладать фармакологической активностью. Если активностью обладает не само вещество, введенное в организм, а какой-либо метаболит, то его называют пролекарством.

    Некоторые лекарственные вещества, продукты метаболизма которых обладают важной в терапевтическом отношении активностью

    Лекарственное вещество

    Активный метаболит

    Аллопуринол

    Аллоксантин

    Амитриптилин

    Нортриптилин

    Ацетилсалициловая кислота*

    Салициловая кислота

    Ацетогексамид

    Гидроксигексамид

    Глютетимид

    4-гидроксиглютетимид

    Диазелам

    Дезметилдиазепам

    Дигитоксин

    Дигоксин

    Имипрамин

    Дезипрамин

    Кортизон

    Гидрокортизон

    Лидокаин

    Дезэтиллидокаин

    Метилдопа

    Метилнорадреналин

    Преднизон*

    Преднизолон

    Пропранолол

    4-гидроксипролранолол

    Спиронолактон

    Канренон

    Тримеперидин

    Нормеперидин

    Фенацетин*

    Ацетаминофен

    Фенилбутазон

    Оксифенбутазон

    Флуразепам

    Дезэтилфлуразепам

    Хлоралгидрат*

    Трихлорэтанол

    Хлордиазепоксид

    Дезметилхлордиазепоксид

    * пролекарства, терапевтическое действие оказывают главным образом продукты их метаболизма.

    Несинтетические метаболические реакции лекарственных веществ катализируются микросомальными ферментными системами эндоплазматического ретикулума печени или немикросомальных ферментных систем. К таким веществам относятся: амфетамин, варфарин, имипрамин, мепробамат, прокаинамид, фенацетин, фенитоин, фенобарбитал, хинидин.

    В синтетических реакциях (реакциях конъюгации) лекарственное вещество или метаболит - продукт несинтетической реакции, соединяясь с эндогенным субстратом (глюкуроновой, серной кислотами, глицином, глутамином), образуют конъюгаты. Они, как правило, не обладают биологической активностью и, будучи высокополярными соединениями, хорошо фильтруются, но плохо реабсорбируются в почках, что способствует их быстрому выведению из организма.

    Самыми распространенными реакциями конъюгации являются : ацетилирование (основной путь метаболизма сульфаниламидов, а также гидралазина, изониазида и прокаинамида); сульфатирование (реакция между веществами с фенольными или спиртовыми группами и неорганическим сульфатом. Источником последнего могут быть серосодержащие кислоты, например цистеин); метилирование (инактивируются некоторые катехоламины, ниацинамид, тиоурацил). Примеры различных типов реакций метаболитов лекарственных веществ приведены в таблице.

    Типы реакций метаболизма лекарственных веществ

    Тип реакции

    Лекарственное вещество

    I. НЕСИНТЕТИЧЕСКИЕ РЕАКЦИИ (катализируются ферментами эндоплазматического ретикулума или немикросомальными ферментами)

    Окисление

    Алифатическое гидроксилирование, или окисление боковой цепочки молекулы

    Тиолентал, метогекситал, пентазоцин

    Ароматическое гидроксилирование, или гидроксилирование ароматического кольца

    Амфетамин, лидокаин, салициловая кислота, фенацетин, фенилбутазон, хлорпромазин

    O-дезалкилирование

    Фенацетин, кодеин

    N-дезалкилирование

    Морфин, кодеин, атропин, имипрамин, изопреналин, кетамин, фентанил

    S-дезалкилирование

    Производные барбитуровой кислоты

    N-окисление

    Аминазин, имипрамин, морфин

    S-окисление

    Аминазин

    Дезаминирование

    Фенамин, гисгамин

    Десульфирование

    Тиобарбитураты, тиоридазин

    Дегалогенизация

    Галотан, метоксифлуран, энфлуран

    Восстановление

    Восстановление азогруппы

    Сульфаниламид

    Восстановление нитрогруппы

    Нитразепам, хлорамфеникол

    Восстановление карбоновых кислот

    Преднизолон

    Восстановление, катализируемое алкогольдегидрогеназой

    Этанол, хлоралгидрат

    Эфирный гидролиз

    Ацетилсалициловая кислота, норзпинефрин, кокаин, прокаинамид

    Амидный гидролиз

    Лидокаин, пилокарпин, изониазид новокаинамид фентанил

    II. СИНТЕТИЧЕСКИЕ РЕАКЦИИ

    Конъюгация с глюкуроновой кислотой

    Салициловая кислота, морфин, парацетамол, налорфин, сульфаниламиды

    Конъюгация с сульфатами

    Изопреналин, морфин, парацетамол, салициламид

    Конъюгация с аминокислотами:

    • глицином

    Салициловая кислота, никотиновая кислота

    • глугатионом

    Изоникотиновая кислота

    • глутамином

    Парацетамол

    Ацетилирование

    Новокаинамид, сульфонамиды

    Метилирование

    Норадреналин, гистамин, тиоурацил, никотиновая кислота

    Превращение некоторых лекарственных веществ, принятых перорально, существенно зависит от активности ферментов, вырабатываемых микрофлорой кишечника, где гидролизуются нестойкие сердечные гликозиды, что существенно снижает их кардиальный эффект. Ферменты, вырабатываемые резистентными микроорганизмами, катализируют реакции гидролиза и ацетилирования, вследствие которых антимикробные средства теряют свою активность.

    Существуют примеры, когда ферментативная активность микрофлоры способствует образованию лекарственных веществ, которые проявляют свою активность. Так, фталазол (фталилсульфатиазол) вне организма практически не проявляет противомикробной активности, но под влиянием ферментов микрофлоры кишечника гидролизуется с образованием норсульфазола и фталевой кислоты, оказывающих противомикробный эффект. При участии ферментов слизистой оболочки кишечника гидролизуются резерпин и ацетилсалициловая кислота.

    Однако главным органом, где осуществляется биотрансформация лекарственных веществ, является печень. После всасывания в кишечнике они через воротную вену попадают в печень, где и подвергаются химическим превращениям.

    Через печеночную вену лекарственные вещества и их метаболиты поступают в системное кровообращение. Совокупность этих процессов называют «эффектом первого прохождения», или пресистемной элиминацией, в результате которой количество и эффективность вещества, поступающего в общий кровоток, может изменяться.

    Следует иметь в виду, что при пероралъном приеме лекарств их биодоступностъ индивидуальна для каждого пациента и варьирует для каждого препарата . Вещества, подвергающиеся значительным метаболическим превращениям при первом прохождении в печени, могут не оказывать фармакологического эффекта, например лидокаин, нитроглицерин. Кроме того, метаболизм первого прохождения может осуществляться не только в печени, но и в других внутренних органах. Например, хлорпромазин сильнее метаболизируется в кишечнике, чем в печени.


    На течение пресистемной элиминации одного вещества часто оказывают влияние другие лекарственные вещества. Например, аминазин снижает «эффект первого прохождения» пропранолола, в результате концентрация β-адреноблокатора в крови повышается.

    Всасывание и пресистемная элиминация определяют биологическую доступность и, в значительной степени, эффективность лекарственных веществ .

    Ведущую роль в биотрансформации лекарственных веществ играют ферменты эндоплазматической сети клеток печени, которые нередко называют микросомальными ферментами. Известно более 300 лекарственных веществ, способных изменять активность микросомальных ферментов . Вещества, повышающие их активность, получили название индукторов .

    Индукторами ферментов печени являются: снотворные средства (барбитураты, хлоралгидрат), транквилизаторы (диазепам, хлордиазепоксид, мепробамат), нейролептики (хлорпромазин, трифлуоперазин), противосудорожные (фенитоин), противовоспалительные (фенилбутазон), некоторые антибиотики (рифампицин), диуретики (спиронолактон) и др.

    Активными индукторами ферментных систем печени также считаются пищевые добавки, малые дозы алкоголя, кофе, хлорированные инсектициды (дихлордифенилтрихлорэтан (ДДТ), гексахлоран). В небольших дозах некоторые лекарственные средства, например фенобарбитал, фенилбутазон, нитраты, могут стимулировать собственный метаболизм (аутоиндукция).

    При совместном назначении двух лекарственных веществ, одно из которых индуцирует печеночные ферменты, а второе метаболизируется в печени, дозу последнего необходимо увеличить, а при отмене индуктора - снизить. Классический пример такого взаимодействия - сочетание антикоагулянтов непрямого действия и фенобарбитала. Специальными исследованиями доказано, что в 14% случаев причиной кровотечений при лечении антикоагулянтами является отмена лекарственных веществ, индуцирующих микросомальные ферменты печени.

    Очень большой индуцирующей активностью микросомальных ферментов печени обладает антибиотик рифампицин, несколько меньшей - фенитоин и мепробамат.

    Фенобарбитал и другие индукторы ферментов печени не рекомендуется применять в сочетании с парацетамолом и другими лекарственными веществами, продукты биотрансформации которых токсичнее исходных соединений. Иногда индукторы ферментов печени используют для ускорения биотрансформации соединений (метаболитов), чужеродных для организма. Так фенобарбитал, который способствует образованию глюкуронидов, можно использовать для лечения желтухи с нарушенной конъюгацией билирубина с глюкуроновой кислотой.


    Индукцию микросомальных ферментов часто приходится рассматривать как нежелательное явление, поскольку ускорение биотрансформации лекарств приводит к образованию неактивных или менее активных соединений и уменьшению терапевтического эффекта. Например, рифампицин может снизить результативность лечения глюкокортикостероидами, что приводит к повышению дозы гормонального препарата.

    Значительно реже в результате биотрансформации лекарственного вещества образуются более активные соединения, В частности, при лечении фуразолидоном в течение 4-5 дней в организме накапливается двуоксиэтилгидразин, который блокирует моноаминооксидазу (МАО) и альдегиддегидрогеназу, катализирующую окисление альдегидов в кислоты. Поэтому пациентам, принимающим фуразолидон, не следует употреблять спиртные напитки, так как концентрация в крови уксусного альдегида, образующегося из этилового спирта, может достичь такого уровня, при котором развивается выраженное токсическое действие этого метаболита (синдром ацетальдегида).

    Лекарственные вещества, снижающие или полностью блокирующие активность ферментов печени, получили название ингибиторов .

    К лекарственным веществам, угнетающим активность ферментов печени, относят наркотические анальгетики, некоторые антибиотики (актиномицин), антидепрессанты, циметидин и др. В результате применения комбинации лекарственных веществ, одно из которых ингибирует ферменты печени, замедляется скорость метаболизма другого лекарственного вещества, повышаются его концентрация в крови и риск побочных действий. Так, антагонист гистаминовых H2-репепторов циметидин дозозависимо угнетает активность ферментов печени и замедляет метаболизм антикоагулянтов непрямого действия, что повышает вероятность кровотечений, а также β-адреноблокаторов, что приводят к выраженной брадикардии и артериальной гипотензии. Возможно угнетение метаболизма антикоагулянтов непрямого действия хинидином. Развивающиеся при таком взаимодействии побочные эффекты могут иметь тяжелое течение. Хлорамфеникол угнетает обмен толбутамида, дифенилгидантоина и неодикумарина (этил бискумацетата). Описано развитие гипогликемической комы при комбинированной терапии хлорамфениколом и толбутамидом. Известны летальные случаи при одновременном назначении больным азатиоприна или меркаптопурина и аллопуринола, ингибирующего ксантиноксидазу и замедляющего метаболизм иммуносупрессивных препаратов.

    Способность одних веществ нарушать метаболизм других иногда специально используют в медицинской практике. Например, дисульфирам применяют при лечении алкоголизма. Этот препарат блокирует метаболизм этилового спирта на стадии ацетальдегида, накопление которого вызывает неприятные ощущения. Подобным образом действуют также метронидазол и противодиабетические средства из группы производных сульфонилмочевины.

    Своеобразную блокаду активности фермента используют при отравлении метиловым спиртом, токсичность которого определяется формальдегидом образующимся в организме под влиянием фермента алкогольдегидрогеназы. Он катализирует также превращение этилового спирта в уксусный альдегид, причем сродство фермента к этиловому спирту выше, чем к метиловому. Поэтому, если в среде находятся оба спирта, фермент катализирует главным образом биотрансформацию этанола, и формальдегид, обладающий значительно более высокой токсичностью, чем уксусный альдегид, образуется в меньшем количестве. Таким образом, этиловый спирт можно использовать в качестве противоядия (антидота) при отравлении метиловым спиртом.

    Этиловый спирт изменяет биотрансформацию многих лекарственных веществ . Однократное его применение блокирует инактивацию различных лекарственных веществ и может усиливать их действие. В начальной стадии алкоголизма активность микросомальных ферментов печени может увеличиваться, что ведет к ослаблению действия лекарственных веществ вследствие ускорения их биотрансформации. Напротив, на более поздних стадиях алкоголизма, когда многие функции печени нарушены, следует учитывать, что действие лекарственных веществ, биотрансформация которых в печени нарушена, может заметно усилиться.

    Взаимодействие лекарственных веществ на уровне метаболизма может реализовываться через изменение печеночного кровотока. Известно, что факторы лимитирующие метаболизм препаратов с выраженным эффектом первичной элиминации (пропранолол, верапамил и др.) - это величина печеночного кровотока и в значительно меньшей степени активность гепатоцитов. В связи с этим любые лекарственные вещества, уменьшающие регионарное печеночное кровообращение, снижают интенсивность метаболизма данной группы препаратов и повышают их содержание в плазме крови.

    К взаимодействиям, снижающим концентрацию лекарственных веществ, относятся:

    Уменьшение всасывания в ЖКТ.

    Индукция печеночных ферментов.

    Снижение клеточного захвата.

    I.Уменьшение всасывания в ЖКТ.

    Анионообменная смола холестирамин связывает в ЖКТ препараты тиреоидных гормонов и сердечные гликозиды, препятствуя тем самым их всасыванию. Возможно, это средство взаимодействует и с другими препаратами, поэтому желательно, чтобы между приемом холестирамина и других средств прошло не меньше 2 ч.

    Ионы алюминия, содержащиеся в антацидных средствах, образуют нерастворимые комплексы с тетрациклинами, также препятствуя их всасыванию.

    Двухвалентные ионы железа тоже подавляют всасывание тетрациклинов.

    Каолин/пектин в суспензии связывает дигоксин, уменьшая его всасывание в 2 раза. Однако этот эффект не проявляется, если каолин/пектин принимать не раньше чем через 2 ч после дигоксина.

    Кетоконазол - это слабое основание, диссоциирующее только в кислой среде. Поэтому Н2-блокаторы (ранитидин, фамотидин и др.), снижающие кислотность желудочного содержимого, препятствуют диссоциации и всасыванию кетоконазола.

    На всасывание флуконазола снижение кислотности желудочного содержимого не влияет.

    Аминосалициловая кислота при приеме внутрь по неясному пока механизму снижает всасывание рифампицина.

    II.Индукция печеночных ферментов.

    Если главный путь элиминации препарата - метаболизм, то ускорение метаболизма приводит к снижению концентрации препарата в органах-мишенях. Большая часть лекарственных веществ метаболизируется в печени - органе с большой клеточной массой, высоким кровотоком и содержанием ферментов. Первая реакция в метаболизме многих препаратов катализируется микросомальными ферментами печени, связанными с цитохромом Р450 и содержащимися в эндоплазматическом ретикулуме. Эти ферменты окисляют молекулы лекарственных средств с помощью различных механизмов - гидроксилирования ароматического кольца, N-деметилирования, О-деметилирования и сульфоокисления. Молекулы продуктов этих реакций обычно более полярны, чем молекулы их предшественников, и потому легче удаляются почками.

    Экспрессия некоторых изоферментов цитохрома Р450 регулируется, и их содержание в печени может увеличиваться под действием некоторых лекарственных средств.

    Типичное вещество, вызывающее индукцию микросомальных ферментов печени, - это фенобарбитал. Так же действуют и другие барбитураты. Индуцирующий эффект фенобарбитала проявляется уже в дозе 60 мг/сут.

    Индукцию микросомальных ферментов печени вызывают также рифампицин, карбамазепин, фенитоин, глутетимид; она наблюдается у курильщиков, при воздействии хлорсодержащих инсектицидов типа ДДТ и постоянном употреблении алкоголя.

    Фенобарбитал, рифампицин и другие индукторы микросомальных ферментов печени вызывают снижение сывороточной концентрации многих лекарственных средств, и в том числе - варфарина, хинидина, мексилетина, верапамила, кетоконазола, итраконазола, циклоспорина, дексаметазона, метилпреднизолона, преднизолона (активного метаболита преднизона), стероидных пероральных контрацептивов, метадона, метронидазола и метирапона. Эти взаимодействия имеют большое клиническое значение. Так, если у больного на фоне непрямых антикоагулянтов достигается должный уровень свертываемости крови, но одновременно он принимает какой-либо индуктор микросомальных ферментов печени, то при отмене последнего (например, при выписке) сывороточная концентрация антикоагулянта возрастет. В результате может возникнуть кровоточивость.

    Существуют значительные индивидуальные различия в индуцируемости ферментов метаболизма лекарственных средств. У одних больных фенобарбитал резко повышает этот метаболизм, у других - почти не влияет.

    Фенобарбитал не только вызывает индукцию некоторых изоферментов цитохрома Р450 , но и усиливает печеночный кровоток, стимулирует секрецию желчи и транспорт органических анионов в гепатоцитах.

    Некоторые лекарственные вещества могут усиливать также конъюгацию других веществ с билирубином.

    III.Снижение клеточного захвата.

    Производные гуанидина, используемые для лечения артериальной гипертонии (гуанетидин и гуанадрел), переносятся в адренергические нейроны благодаря активному транспорту биогенных аминов. Физиологическая роль этого транспорта - обратный захват адренергических медиаторов, но с его помощью могут переноситься против концентрационного градиента и многие другие сходные по структуре соединения, включая производные гуанидина.

    Ингибиторы обратного захвата норадреналина препятствуют захвату этих препаратов адренергическими нейронами, блокируя тем самым их действие. Мощными ингибиторами обратного захвата норадреналина являются трициклические антидепрессанты. В связи с этим при одновременном приеме трициклических антидепрессантов (дезипрамина, имипрамина, протриптилина, нортриптилина и амитриптилина) и гуанетидина либо гуанадрела гипотензивный эффект последних почти полностью подавляется. Доксепин и хлорпромазин в меньшей степени блокируют обратный захват норадреналина, но и они оказывают дозозависимое антагонистическое действие по отношению к производным гуанидина. Так же влияет и эфедрин. У больных с тяжелой артериальной гипертонией подобные лекарственные взаимодействия могут приводить к неэффективности лечения, гипертоническому кризу и инсульту.

    Гипотензивный эффект клонидина также частично подавляется трициклическими антидепрессантами. Клонидин действует на сердечно-сосудистый центр продолговатого мозга, вызывая снижение симпатического тонуса. Именно здесь его эффект и блокируется трициклическими антидепрессантами.

    Смотрите также:

    ЛЕКАРСТВЕННЫЕ ВЗАИМОДЕЙСТВИЯ

    Перечисленные механизмы абсорбции (всасывания) «работают», как правило, параллельно, но преобладающий вклад вносит обычно один из них (пассивная диффузия, фильтрация, активный транспорт, пиноцитоз). Так, в ротовой полости и в желудке главным образом реализуется пассивная диффузия, в меньшей степени - фильтрация. Другие механизмы практически не задействованы.

    В тонком кишечнике нет препятствий для реализации всех механизмов всасывания; какой из них доминирует, зависит от лекарственного средства.

    В толстом кишечнике и прямой кишке преобладают процессы пассивной диффузии и фильтрации. Они же являются основными механизмами всасывания лекарственных средств через кожу.

    Применение любого лекарства с лечебной или профилактической целью начинается с его введения в организм или нанесения на поверхность тела. От путей введения зависят скорость развития эффекта, его выраженность и продолжительность. Существующие пути введения обычно подразделяют на ЭНТЕРАЛЬНЫЕ (то есть через пищеварительный тракт: введения через рот, под язык, в 12-перстную кишку, в прямую кишку или ректально), и ПАРЕНТЕРАЛЬНЫЕ (то есть минуя пищеварительный тракт: в/венное введение, в/артериальное, в/мышечное, п/кожное, ингаляции - аэрозоли, газы, порошки); интратекальное или субарахноидальное введение; наконец, - местное применение лекарств: внутриматочное, введение во влагалище, введение в мочевой пузырь, внутрибрюшинное и т. д.).

    От пути введения лекарственного средства во многом зависит, сможет ли оно попасть к месту действия (в биофазу) (например, в очаг воспаления) и оказать лечебный эффект.

    II. РАСПРЕДЕЛЕНИЕ ЛЕКАРСТВЕННЫХ СРЕДСТВ В ОРГАНИЗМЕ. БИОЛОГИЧЕСКИЕ БАРЬЕРЫ. ДЕПОНИРОВАНИЕ

    После абсорбции лекарственные вещества попадают, как правило, в кровь, а затем разносятсяв разные органы и ткани. Характер распределения лекарственного средства определяется множеством факторов, в зависимости от которых лекарство будет распределяться в организме равномерно или неравномерно. Следует сказать, что большинство лекарственных средств распределяется неравномерно и лишь незначительная часть - относительно равномерно (ингаляционные средства для наркоза). Наиболее важными факторами, влияющими на характер распределения лекарственного средства, являются: 1) растворимость в липидах,

    2) степень связывания с белками плазмы крови, 3) интенсивность регионарного кровотока.

    Растворимость в липидах лекарственного средства определяет способность его проникать через биологические барьеры. Это прежде всего, стенка капилляров и клеточные мембраны, являющиеся основными структурами различных гистогематических барьеров, в частности, таких как, гематоэнцефалический и плацентарный барьеры. Неионизированные жирорастворимые лекарственные средства легко проникают через клеточные мембраны и распределяются во всех жидких средах организма. Распределение лекарственных средств, плохо проникающих через клеточные мембраны (ионизированные лекарственные вещества), осуществляется не столь равномерно.

    Проницаемость ГЭБ возрастает при повышении осмотического давления плазмы крови. Различные заболевания могут изменять распределение лекарств в организме. Так развитие ацидоза может способствовать проникновению в ткани лекарств - слабых кислот, которые меньше диссоциируются в таких условиях.

    Иногда распределение лекарственного вещества зависит от сродства препарата к тем или иным тканям, что приводит к их накоплению в отдельных органах и тканях. В качестве примера можно назвать образование тканевого депо в случае использования препаратов, содержащих йод (J) в тканях щитовидной железы. При использовании тетрациклинов последние могут избирательно накапливаться в костной ткане, в частности, зубах. Зубы в таком случае, особенно у детей, могут приобрести желтую окраску.

    Такая избирательность действия обусловлена сродством тетрациклинов к биологическим субстратам костной ткани, а именно образованием тетрациклинкальциевых комплексов по типу хелатов (hela - клешня рака). Данные факты важно помнить, особенно педиатрам и акушер-гинекологам.

    Некоторые препараты могут в больших количествах накапливаться внутри клеток, образуя клеточные депо (акрихин). Происходит это за счет связывания лекарственного вещества с внутриклеточными белками, нуклепротеидами, фосфолипидами.

    Некоторые средства для наркоза в силу своей липофильности могут образовывать жировые депо, что также следует учитывать.

    Депонируются лекарственные средства, как правило, за счет обратимых связей, что в принципе, определяет продолжительность их нахождения в тканевых депо. Однако если образуются стойкие комплексы с белками крови (сульфадиметоксин) или тканей (соли тяжелых металлов), то нахождение этих средств в депо существенно удлиняется.

    Следует также иметь ввиду, что после всасывания в системный кровоток большая часть лекарственного вещества в первые минуты попадает в те органы и ткани, которые наиболее активно перфузируются кровью (сердце, печень, почки). Медленнее происходит насыщение лекарственным средством мышц, слизистных оболочек, кожи и жировой ткани. Для достижения терапевтических концентраций лекарственных веществ в этих тканях требуется время от нескольких минут до нескольких часов.

    Наиболее наглядно влияние состояния гемодинамики на распределение лекарственных средств прослеживается в условиях патологии. Дело в том, что нарушения гемодинамики могут существенно изменять кинетику распределения. Так, при геморрагическом шоке или при застойной сердечной недостаточности перфузия большинства органов уменьшается. Нарушение скорости гломерулярной фильтрации и печеночного кровотока приводят к снижению соответственно почечного и печеночного клиренса, что сразу же скажется возрастанием концентрации препарата в плазме крови. Соответственно, будут увеличены интенсивность и длительность действия препарата. В качестве примера можно указать на увеличение продолжительности действия тиопентала при шоке.

    Многие лекарственные вещества обладают сильным физико-химическим сродством к различным белкам плазмы крови. Наиболее важными в этом отношении являются альбумины и в меньшей степени кислые альфа-гликопроитеиды. Такое средство лекарства приводит в конечном счете к тому, что после всасывания оно может циркулировать в крови не только в свободной форме, но и в форме, связанной с белками. Это так называемое, ЭКСТРАЦЕЛЛЮЛЯРНОЕ (внеклеточное) депо лекарственного вещества, его своеобразный резервуар в крови. Фракция связанного с белками плазмы препарата является временным депо и предупреждает резкие колебания концентрации несвязанного вещества в крови и жидких средах организма. Связывание лекарственных ввеществ с белками плазмы ограничивает их концентрацию в тканях и в месте действия, так как только свободный (несвязанный) препарат может проходить через мембраны. Вещество же, находящееся в комплексе с белком, лишено специфической активности. Связывание с белками снижает диффузию лекарственного вещества в клетку и поэтому замедляет процесс метабонизма. Связывание с белками снижает количество лекарственного вещества, способного фильтроваться в почечных клубочках, в результате чего замедляется и процесс его выведения (экскреция).

    Практически ощутимо, если лекарственное вещество связывается с белками очень активно, то есть более чем на 90%. Сила взаимодействия белков крови и лекарства выражается сродством или аффинитетом. Из этого определения (положения) вытекают важный вывод:

    Если А - лекарство,

    а О - белок, то А + В = АО

    Как видно из данного уравнения, свободная и связанная части лекарственного вещества находятся в состоянии динамического равновесия. Так как лекарство активно только лишь в свободном состоянии, то в связи с белком оно неактивно. Несколько упрощенное сравнение можно допустить, что в свободном состоянии лекарство действует на фармакологические рецепторы тканей как ключ к замку, а в связи с белком - этот ключ не работает.

    От степени аффинитета, то есть силы связывания лекарства с белком зависит:

    1) скорость поступления лекарственного вещества в ткани. Поскольку активность лекарственного вещества определеяется частью, способной к диффузии, то препараты с высокой степенью аффинитета, высоким сродством к белкам, такие, как длительно действующие сульфаниламиды (аффинитет > 90%), действуют медленно и содержатся в интерстициальной (межклеточной) жидкости и в клетках тканей в невысоких концентрациях.

    Другим примером является сердечный гликозид (дигитоксин), связывающийся с белками на 97%. После приема этого препарата внутрь он начинает действовать лишь через 5-6-7 часов.

    2) От степени аффинитета лекарственные средства с белками плазмы зависит длительность их действия. Дигитоксин после 1-кратного приема оказывает фармакологический эффект в течение 2-3 дней, а остаточное его действие реализуется даже через несколько недель (14-21 день). Если при хронической сердечной недостаточности, связываеия лекарств с белками плазмы снижается, то при хронической легочной недостаточности или в послеоперационном периоде повышается (примерно на 10%). У больных со сниженной функции почек процент связывания с белками кислых лекарственных средств со свойствами кислот уменьшается.

    3) Степень аффинитета лекарства с белками крови влияет на различие эффектов лекарственных веществ у людей с различной патологией. Например, при развитии у больного с ожоговой болезнью глубокой гипопротеинемии фракция свободного лекарственного вещества увеличивается, что в такой ситуации требует снижения терапевтических доз препарата. Аналогичная ситуация может развиться при голодании, когда, если не будет снижена доза лекарства, на обычную его дозу разовьется токсический эффект (аналогично и при лучевой болезни).

    4) Одновременное применение препаратов, связывающихся с одними и теми же радикалами белковых молекул может вызвать эффект конкуренции их за связь с белками. Если в таком случае эти препараты обладают различной связывающейся способностью, то есть различным аффинитетом, может произойти внезапное повышение концентрации одного из них, иногда до опасного уровня. Так, если больной получает непрямой антикоагулянт (препарат типа фенилина, неодокумарина), коагуляционный потенциал которого, скоррегирован, то при дополнительном введении (воспаление суставов) салицилатов или бутадиона в плазме крови может значительно повыситься уровень свободного препарата (антикоагулянта) вследствие вытеснения его салицилатом (бутадионом) из комплекса с белками. В результате возникает риск кровотечения. Схематично это можно отобразить следующим образом:

    А + О = АО + В = ВО + А, где В - бутадион.

    Эти фармакокинетические данные стали известны лишь в последние годы.

    Какова же дальнейшая судьба лекарственных средств в организме? После сывания и распределения препараты могут:

    1) метаболизироваться под влиянием адекватных ферментов;

    2) изменяться спонтанно, превращаясь в другие вещества без воздействия ферментов;

    3) либо могут выводиться из организма (или экскретироваться) в неизменном виде.

    Некоторые лекарственные вещества, спонтанно изменяются (эмбихин), превращаясь в другие вещества при соответствующих изменениях кислотности среды в организме. Таким образом, в живом организме лекарственные вещества подвергаются определенным изменениям или БИОТРАНСФОРМАЦИИ. Под биотрансформацией (или превращением, или метаболизмом) понимают комплекс физико-химических и биохимических превращений лекарственных веществ, способствующих их переводу в более простые, ионизированные, более полярные и, следователно, водорастворимые компоненты (метаболиты), которые легче выводятся из организма. Другими словами, какой бы структурой ксенобиотик не обладал, встречающийся с ним адекватный фермент переводит его в состояние, удобное для выведения из организма (как правило ксенобиотик становится менее липофильным) или в состояние для использования в качестве энергетического и пластического материала (кокарбоксилаза, натрия нуклеинат). Хотя некоторые лекарственные вещества биотрансформируясь, образуют метаболиты, более активные по сравнению с вводимыми в организм веществами, подавляющее большинство лекарств инактивируется, разлагается, трансформируется до более простых, фармакологически менее активных и менее токсичных метабонитов. Биотрансформация введенных лекарств происходит преимущественно в печени, но может в почках, стенке кишечника, легких, мышцах и других органах. Процессы биотрансформации сложны и обычно включают ряд последовательлных стадий, каждая из которых опосредуется определенным ферментом крови.

    Различают два (2) типа реакций метаболизма лекарственных препаратов в организме: НЕСИНТЕТИЧЕСКИЕ и СИНТЕТИЧЕСКИЕ.

    1. К несинтетическим реакциям относятся ОКИСЛЕНИЕ, ВОССТАНОВЛЕНИЕ и ГИДРОЛИЗ. Все несинтетические реакции метаболизма, называемые также метаболической трансформацией лекарственных препаратов, также можно разделить в зависимости от локализации 2-х основных биотрансформирующих систем на 2 группы:

    а) основная группа реакций, по которым биотрансформируются большинство лекарственных средств, это реакции катализируемые ферментами эндоплазматического ретикулума гепатоцитов или МИКРОСОМАЛЬНЫЕ реакции;

    б) реакции, катализируемые ферментами другой локализации, НЕМИКРОСОМАЛЬНЫЕ реакции.

    То есть, если микросомальная биотрансформирующая система, представлена ферментами эндоплазматического ретикулуна гепатоцитов печени, то немикросомальная система - ферментами иной локализации.

    Микросомальные реакции окисления или восстановления лекарственных средств, а точнее их отдельных активных групп в структуре лекарственной молекулы, происходят при участии монооксигеназных систем, основными компонентами которых являются цитохром Р-450 и никотин-амидаденин-динуклеотид фосфорированный восстановленный (НАДФ Н).

    Эти цитохромы являются первичными компонентами окислительной ферментной монооксигеназной системы. В большинстве случаев фармакологическая активность таких метаболитов становится меньше активности исходного вещества.

    Дальнейшее окисление лекарственных веществ происходит под влиянием других окислительных ферментов, таких как ОКСИДАЗЫ и РЕДУКТАЗЫ, при обязательном участии НАДФ и молекулярного кислорода.

    Микросомальные ферменты в основном катализируют процессы окисления многих лекарственных средств, то реакции ВОССТАНОВЛЕНИЯ и ГИДРОЛИЗА этих средств, связаны не только с микросомальными, но и немикросомальнми энзимами. Хотя немикросомальные ферменты участвуют в биотрансформации небольшого числа лекарственных средств, они все же играют важную роль в их метаболизме. Немикросомальная биотрансформация препаратов происходит также в печени, но может протекать в плазме крови и другиз тканях (желудке, кишечнике, легких). В качестве примера можно привести биотрансформацию ацетилхолина в плазме крови, осуществляемую ферментом ЭСТЕРАЗОЙ, в нашем случае - АЦЕТИЛХОЛИНЭСТЕРАЗОЙ. По таким реакциям биотрансформируются ряд общеупотребительных лекарств, напрмер, аспирин и сульфаниламиды.

    В основе синтетических реакций лежит образование парных эфиров лекарственных средств с глюкуроновой, серной, уксусной кислотами, а также с глицином и глутатионом, что помогает созданию вы

    сокополярных соединений, хорошо растворимых в воде, мало растворимых в липидах, плохо проникающих в ткани и в большинстве случаев фармакологически неактивных. Естественно, что эти метаболиты хорошо выводятся из организма. Таким образом, синтетические реакции ведут к образованию, синтезу нового метаболита и осуществляется с помощью реакций коньюгации, ацетилирования, метилирования и пр.

    В качестве примера, биотрансформации лекарственных средств по синтетическим реакциям можно привести следующую иллюстрацию. В печени взрослых антибиотик левомицетин подвергается коньгации с клюкуроновой кислотой на 90% и только на 10% его экскретируется с мочой в неизменном виде. Образующиеся глюкурониды легко биотрансформируются и выводятся. Таким же путем из органинзма выводятся эстрогенные и глюкокортикоидные препараты, алкалоиды опия, салицилаты, барбитураты и другие средства.

    С точки зрения эволюции более древний путь биотрансформации - это присоединение к ксенобиотику (коньюгация) высокополярных групп: глюкуроновой кислоты, сульфата, глицина, фосфата, ацетила, эпоксидной группы, делающих ксенобиотики более растворимыми в воде. Эволюционно более молодой путь - окислительно-восстановительный (реакции окисления, восстановления, гидролиза) рассматривается как начальная фаза биотрансформации. Продукты окисления или восстановления (I фаза) обычно подвергаются затем коньюгированию (II фаза). Таким образом, можно сказать, что реакции I фазы биотрансформации лекарственных средств обычно являются несинтетическими, тогда как реакции II фазы - синтетические.

    Как правило, только после II фазы биотрансформации образуются неактивные или малоактивные соединения, поэтому именно синтетические реакции можно считать исинными реакциями дезинтоксикации ксенобиотиков, в том числе и лекарств.

    С практической точки зрения важным является то обстоятельство, что с помощью ряда средств можно активно влиять на процессы микросомального преобразования лекарств. Замечено, что под влиянием лекарственных средств может развиваться как ИНДУЦИРОВАНИЕ (возрастание активности), так и ДЕПРЕССИЯ микрогомальных ферментов. Веществ, стимулирующих биотрансформацию путем индукции синтеза ферментативных белков печени, значительно больше, чем веществ, подавляющих этот синтез. К таким веществами индукторам, которых в настоящее время описано более 200, относят фенобарбитал, барбитураты, гексобарбитал, кофеин, этанол, никотин, бутадион, нейролептики, димедрол, хинин, кордиамин, многие хлорсодержащие пестициды и инсектициды.

    В активации этими веществами ферментов печени участвует микросомальная глюкуронилтрансонфаза. При этом возрастает синтез РНК и микросомальных белков. Важно помнить, что индукторами усиливается не только метаболизм лекарств в печени, но и их выведение с желчью.

    Все эти вещества ускоряют процессы метаболизма печени в 2-4 раза лишь за счет индуцирования синтеза микросомальных ферментов. При этом ускоряется метаболизм не только вводимых вместе с ними или на их фоне лекарственных препаратов, но и их самих. Однако есть и большая группа веществ (ингибиторы), подавляющих и даже разрушающих цитохром Р-450, то есть основной микросомальный фермент. К числу такимх лекарственных средств относится группа местных анестетиков, антиаритмических средств (анаприлин или индерал, вискен, эралдин), а также циметицин, левомицетин, бутадион, антихолинэстеразные средства, ингибиторы МАО. Эти вещества пролонгируют эффекты препаратов, введенных вместе с ними. Кроме того, многие из ингибиторов вызывают явление аутоингибирования метаболизма (верапамил, пропранолол). Из сказанного следует, что надо при комбинации лекарств у больного учитывать такую возможность. Например, индукция микросомальных ферментов печеночных клеток фенобарбиталом лежит в основе применения этого препарата для устранения гипербилирубинемии у новорожденных с гемолитической болезнью.

    Снижение эффективности лекарственных средств при их повторном применении называется толерантностью. Использование того же фенобарбатала в качестве снотворного приводит к постепенному развитию привыкания, т. е. к толерантности, что диктует необходимость повышения дозы лекарства. Особым видом привыкания является тахифилаксия.

    ТАХИФИЛАКСИЯ - возникающее очень быстро привыкание, иногда уже после первого введения вещества. Так, введение эфедрина внутривенно повторно с интервалом в 10-20 минут вызывает меньший подъем АД, чем при первой иньекции. Аналогичная ситуация прослеживается при закапывании растворов эфедрина в нос.

    Вещества-индукторы, активируя микросомальные ферменты, способствуют усиленному выделению из организма витамина Д, в результате чего может развиться размягчение костей и произойти патологический перелом. Все это примеры взаимодействия лекарств.

    Необходимо также помнить, что фармакологические средства можно разделить на 2 группы по скорости инактивации в печени: первые окисляются с малой скоростью, например, дифенин, карбамазенин; вторые - со средней или большой скоростью, например, имизин, изадрин, лидокаин, анаприлин.

    Кроме того, метаболизм лекарственных веществ зависит как от вида и рода животных, расовой принадлежности больного, так и от возраста, пола, питания (у вегетарианцев скорость биотрансформации лекарств меньше, если в пище много белков - метаболизм усилен), состояния нервной системы, пути применения, от одновременного использования других лекарственных средств.

    Более того, важно помнить, что у каждого человека своя, генетически детерминированная скорость биотрансформации. По этому поводу можно сослаться на пример с алкоголем, когда имеется индивидуальная особенность работы алькогольдегидрогеназы у индивидуума. Эти особенности индивидуальной работы ферментов в зависимости от генотипа изучает фармакогенетика.

    Великолепным примером генетической зависимости может служить инактивация противотуберкулезного средства изониазида (фтивазида) путем ацетилирования. Установлено, что скорость этого процесса генетически обусловлена. Имеются лица, которые медленно инактивируют изониазид. При этом его концентрации в организме снижаются более постепенно, чем у людей с быстрой инактивацией препарата. Среди европейской популяции медленных ацетиляторов, по данным некоторых авторов отмечается 50-58, 6%, а быстрых - до 30-41, 4%. При этом, если народы Кавказа и шведы в основном быстрые ацетиляторы, то эскимосы - наоборот - относятся к медленным ацетиляторам.

    Зависимость индивидуальной биотрансформации и изучает наука ФАРМАКОГЕНЕТИКА.

    У медленных ацетиляторов определенная доза лекарственного средства дает более высокую концентрацию в крови, а потому у них может быть больше побочных эффектов. Действительно изониазид содает у 20% больных с туберкулезом, медленных ацетиляторов, осложнения в виде периферической нейропатии, а у быстрых ацетиляторов - только в 3% случаев.

    Заболевания печени меняют биотрансформацию лекарственных веществ в данном органе. Для веществ, медленно трансформирующихся в печени, важную роль играет функция печеночных клеток, уровень активности которых снижается при гепатите, циррозе, уменьшая инактивацию этих веществ. Такие многофакторные особенности биотрансформации лекарств делают необходимым изучение данной проблемы в каждом конкретном случае.

    Последним этапом взаимодействия лекарств с живым организмом является их выведение или ЭКСКРЕЦИЯ.

    Лекарственные препараты, за исключением препаратов для ингаляционного наркоза, как правило, экскретируются не через те структуры, в которых происходила абсорбция (всасывание). Основными путями экскреции являются почки, печень, ЖКТ, легкие, кожа, слюнные железы, потовые железы, молоко матери. Нас в клиническом плане особенно интересуют почки.

    Выведение лекарств почками определяется тремя процессами, осуществляемыми в нефроне:

    1) пассивной клубочковой ФИЛЬТРАЦИЕЙ;

    2) пассивной диффузией через канальцы или РЕАБСОРБЦИЕЙ;

    3) активной канальцевой СЕКРЕЦИЕЙ.

    Как видим, для лекарств характерны все физиологические процессы в нефроне. Неионизированные лекарственные вещества, хорошо абсорбирующиеся, могут подвергаться фильтрации в почечных клубочках, но из просвета почечных канальцев они могут вновь диффундировать в клетки, выстилающие канальцы. Таким образом, только очень небольшое количество препарата появляется в моче.

    Ионизированные лекарственные вещества, плохо абсорбирующиеся, экскретируются почти полностью путем клубочковой фильтрации и не реабсорбируются.

    Пассивная диффузия - двунаправленный процесс, и лекарственные вещества могут диффундировать через стенку канальцев в любом направлении в зависимости от концентрации их и pH среды (например, акрихин, салицилаты).

    Значение pH мочи влияет на экскрецию некоторых слабых кислот и оснований. Так, слабые кислоты быстро экиминируются при щелочной реакции мочи, например барбитураты и салицилаты, а слабые основания быстро экскретируются при кислой среде (фенамин). Поэтому при остром отравлении барбитуратами необходимо подщелачивать мочу, что достигается в/венным введением растворов гидрокарбоната натрия (соды), последнее улучшает экскрецию снотворного.

    Если же значение pH мочи не соответствует оптимальнму для экскреции лекарственного средства значению, действие этих лекарственных веществ может быть пролонгировано.

    При щелочной реакции мочи канальцевая реабсорбция слабых кислот минимальна, так как основная масса этих веществ находится в ионизированном состоянии в щелочной среде. Аналогичная ситуация в отношении слабых оснований при кислой реакции мочи. Выведение слабых оснований и кислот может быть ускорено, если высокий диурез поддерживается введением маннитола и диуретиков (мочегонных), а также корригируется значением pH мочи до оптимального применительно к данному препарату.

    При патологии почек способность их экскретировать лекарственные вещества снижается. В результате даже при использовании нормальных доз препаратов уровень их в крови повышается и пролонгируется действие лекарств. В связи с этим при назначении препаратов типа, аминогликозидных антибиотиков (стрептомицин, гентамицин), кумариновых антикоагулянтов, больным со сниженной функцией почек (почечная недостаточность), требуется особый режим наблюдения.

    В заключении данного раздела несколько слов о термине «ЭЛИМИНАЦИЯ». В литературе часто термины «элиминация» и «экскреция» употребляют как синонимы. Но необходимо помнить, что ЭЛИМИНАЦИЯ - это более широкий термин, соответствующий сумме всех метаболических (биотрансформация) и экскреторных процессов, в результате которых активное вещество исчезает из организма.

    Следствием недостаточности экскреции или элиминации может быть накопление или кумуляция лекарственного средства в организме, в его тканях. Кумуляция - (аккумулятор - накопитель) есть следствие недостаточности экскреции и элиминации, и, как правило, связана с патологией органа экскреции (печени, ЖКТ и др.) или с усилением связывания с белками плазмы, что снижает количество вещества, способного фильтроваться в клубочках.

    Имеются три (3) основных пути борьбы с кумуляцией:

    1) уменьшение дозы лекарственного вещества;

    2) перерыв в назначении лекарств (2-3-4 дня-2 недели);

    3) на первом этапе введение большой дозы (дозы насыщения), а потом перевод больного на низкую, поддерживающую дозу. Таким образом, используют, например, сердечные гликозиды (дигитоксин).

    Преферанская Нина Германовна
    Ст. преподаватель кафедры фармакологии фармацевтического факультета ММА им. И.М. Сеченова

    Гепатопротекторы препятствуют разрушению клеточных мембран, предотвращают повреждение печеночных клеток продуктами распада, ускоряют репаративные процессы в клетках, стимулируют регенерацию гепатоцитов, восстанавливают их структуру и функции. Они применяются для лечения острых и хронических гепатитов, жировой дистрофии печени, цирроза печени, при токсических повреждениях печени, в том числе связанных с алкоголизмом, при интоксикации промышленными ядами, лекарственными препаратами, тяжелыми металлами, грибами и других поражениях печени.

    Одним из ведущих патогенетических механизмов поражения гепатоцитов является избыточное накопление свободных радикалов и продуктов перекисного окисления липидов при воздействии токсинов экзогенного и эндогенного происхождения, приводя, в конечном итоге, к повреждению липидного слоя клеточных мембран и разрушению клеток печени.

    Лекарственные средства, применяемые для лечения заболеваний печени, обладают разными фармакологическими механизмами защитного действия. Гепатопротекторное действие большинства препаратов связывают с ингибированием ферментативного перекисного окисления липидов, с их способностью нейтрализовать различные свободные радикалы, оказывая при этом антиоксидантный эффект. Другие препараты являются строительным материалом липидного слоя клеток печени, оказывают мембраностабилизирующий эффект и восстанавливают структуру мембран гепатоцитов. Третьи индуцируют микросомальные ферменты печени, повышают скорость синтеза и активность этих ферментов, способствуют усилению биотрансформации веществ, активируют метаболические процессы, что способствует быстрому выведению из организма чужеродных токсичных соединений. Четвертые препараты обладают широким спектром биологической активности, содержат комплекс витаминов и незаменимых аминокислот, повышают устойчивость организма к воздействию неблагоприятных факторов, уменьшают токсические эффекты, в том числе и после принятия алкоголя и др.

    Выделить препараты с каким-то одним механизмом действия очень трудно, как правило, эти препараты обладают одновременно несколькими из перечисленных выше механизмов. В зависимости от происхождения они подразделяются на препараты: растительного происхождения, синтетические лекарственные средства, животного происхождения, гомеопатические и биологически активные добавки к пище. По составу их различают на монокомпонентные и комбинированные (комплексные) препараты.

    Лекарственные средства, преимущественно ингибирующие перекисное окисление липидов

    К ним относятся препараты и фитопрепараты плодов расторопши пятнистой (остро-пестрой). Растительные флавоноидные соединения, выделенные из плодов и млечного сока расторопши пятнистой, содержат комплекс изомерных полигидроксифенолхроманонов, главными из которых являются силибинин, силидианин, силикристин и др. Свойства расторопши известны на протяжении более 2000 лет, она использовалась в Древнем Риме для лечения различных отравлений. Гепатопротекторное действие биофлавоноидов, выделенных из плодов расторопши пятнистой обусловлено его антиоксидантными, мембраностабилизирующими свойствами и стимуляцией репаративных процессов в печеночных клетках.

    Основным активным биофлавоноидом в расторопше пятнистой является силибинин. Он оказывает гепатопротекторное и антитоксическое действие. Взаимодействует с мембранами гепатоцитов и стабилизирует их, предотвращая потерю трансаминаз; связывает свободные радикалы, ингибирует процессы перекисного окисления липидов, предупреждает разрушение клеточных структур, при этом уменьшается образование малонового диальдегида и поглощение кислорода. Препятствует проникновению в клетку ряда гепатотоксических веществ (в частности, яда бледной поганки). Стимулируя РНК-полимеразу, увеличивает биосинтез белков и фосфолипидов, ускоряет регенерацию поврежденных гепатоцитов. При алкогольных поражениях печени блокирует выработку ацетальдегида и связывает свободные радикалы, сохраняет запасы глутатиона, способствующего процессам детоксикации в гепатоцитах.

    Силибинин (Silibinin). Синонимы: Силимарин, Силимарин Седико быстрорастворимый, Силегон, Карсил, Легалон. Выпускается в драже 0,07 г, капсулах 0,14 г и суспензии 450 мл. Силимарин – это смесь изомерных флавоноидных соединений (силибинина, силидианина, силикристина) с преобладающим содержанием силибинина. Биофлавоноиды активируют синтез белков и ферментов в гепатоцитах, воздействуют на метаболизм в гепатоцитах, оказывают стабилизирующее воздействие на мембрану гепатоцитов, ингибируют дистрофические и потенцируют регенеративные процессы в печени. Силимарин препятствует накоплению гидроперекисей липидов, уменьшает степень повреждения клеток печени. Заметно снижает повышенный уровень трансаминаз в сыворотке крови, уменьшает степень жировой дистрофии печени. Стабилизируя клеточную мембрану гепатоцитов, замедляет поступление в них токсических продуктов метаболизма. Силимарин активирует обмен веществ в клетке, результатом чего является нормализация белоксинтетической и липотропной функции печени. Улучшаются показатели иммунологической реактивности организма. Силимарин практически не растворяется в воде. Благодаря слабокислым свойствам, может образовывать соли со щелочными веществами. Более 80% препарата выделяется с желчью в виде глюкуронидов и сульфатов. В результате расщепления кишечной микрофлорой выделившегося с желчью силимарина до 40% вновь реабсорбируется, что создает его кишечно-печеночный кругооборот.

    Силибор – препарат, содержащий сумму флавоноидов из плодов расторопши пятнистой (Silibbum marianum L). Форма выпуска: таблетки, покрытые оболочкой по 0,04 г.

    Силимар , сухой очищенный экстракт, получаемый из плодов расторопши пятнистой (Silybum marianum L), содержит флаволигнаны (силибинин, силидианин и др.), а также другие вещества, в основном флавоноиды, 100 мг в одной таблетке. Силимар обладает рядом свойств, обусловливающих его защитное действие на печень при воздействии различных повреждающих агентов. Он проявляет антиоксидантные и радиопротекторные свойства, усиливает детоксикационную и внешнесекреторную функции печени, оказывает спазмолитическое и небольшое противовоспалительное действие. При острой и хронической интоксикации, вызываемой четыреххлористым углеродом, Силимар оказывает выраженное гепатозащитное действие: подавляет нарастание индикаторных ферментов, тормозит процессы цитолиза, препятствует развитию холестаза. У больных с диффузными поражениями печени, в том числе алкогольного генеза, препарат нормализует функционально-морфологические показатели гепатобилиарной системы. Силимар уменьшает жировую дегенерацию клеток печени и ускоряет их регенерацию за счет активации РНК-полимеразы.

    Гепатофальк планта – комплексный препарат, содержащий экстракты из плодов расторопши, чистотела и термелика. Фармакологический эффект комбинированного растительного препарата определяется совокупным действием его компонентов. Препарат оказывает гепатопротективное, спазмолитическое, анальгезирующее, желчегонное (холеретическое и холекинетическое) действие. Стабилизирует мембраны гепатоцитов, повышает синтез белка в печени; оказывает отчетливое спазмолитическое действие на гладкую мускулатуру; обладает антиоксидантной, противовоспалительной и антибактериальной активностью. Препятствует проникновению в клетку ряда гепатотоксических веществ. При алкогольных поражениях печени блокирует выработку ацетальдегида и связывает свободные радикалы, сохраняет запасы глутатиона, способствующего процессам детоксикации в гепатоцитах. Алкалоид хелидонин, содержащийся в чистотеле, обладает спазмолитическим, анальгезирующим и желчегонным действием. Куркумин – действующее вещество термелика яванского оказывает желчегонное (как холеретическое, так и холекинетическое) и противовоспалительное действие, снижает насыщенность желчи холестерином, обладает бактерицидной и бактериостатической активностью в отношении золотистого стафилококка, сальмонелл и микобактерий.

    Гепабене содержит экстракт расторопши пятнистой со стандартизированным количеством флавоноидов: 50 мг силимарина и не менее 22 мг силибинина, а также экстракт дымянки аптечной, содержащей не менее 4,13 мг алкалоидов дымянки аптечной в пересчете на протопин. Лечебные свойства Гепабене определяются оптимальным сочетанием гепатопротекторного действия экстракта расторопши пятнистой и нормализующего секрецию желчи и моторику желчевыводящих путей влияния дымянки аптечной Основным действующим веществом дымянки лекарственной является производное фумаровой кислоты – алкалоид протопин. Нормализует как слишком слабое, так и повышенное желчевыделение, снимает спазм сфинктера ОДДИ, нормализует моторную функцию желчевыводящих путей при их дискинезии, как по гиперкинетическому, так и по гипокинетическому типу. Эффективно восстанавливает дренажную функцию желчевыводящих путей, предупреждая развитие застоя желчи и образование конкрементов в желчном пузыре. При приеме препарата может возникать послабляющее действие и увеличиваться диурез. Выпускается в капсулах. Применяют внутрь, во время еды по одной капсуле 3 раза в сутки.

    Сибектан , в одной таблетке которого содержится: экстракт из пижмы, жома плодов расторопши пятнистой, зверобоя, березы по 100 мг. Препарат оказывает мембраностабилизирующее, регенерирующее, антиоксидантное, гепатопротекторное и желчегонное действие. Нормализует липидный и пигментный обмен, усиливает детоксикационную функцию печени, тормозит процессы липопероксидации в печени, стимулирует регенерацию слизистых оболочек и нормализует моторику кишечника. Принимают за 20–40 мин. до еды по 2 таблетки 4 раза в сутки. Курс 20–25 дней.

    Лекарственные средства, преимущественно восстанавливающие структуру мембран гепатоцитов и оказывающие мембраностабилизирующий эффект Повреждение гепатоцитов часто сопровождается нарушением целостности мембран, это приводит к попаданию ферментов из поврежденной клетки в цитоплазму. Наряду с этим повреждаются межклеточные связи, ослабевает связь между отдельными клетками. Нарушаются важные процессы для организма – всасывание триглицеридов, необходимых для образования хиломикронов и мицелл, снижается желчеобразование, продукция белков, нарушается обмен веществ и способность гепатоцитов выполнять барьерную функцию. При приеме препаратов этой подгруппы происходит ускорение регенерации клеток печени, усиливается синтез белков и фосфолипидов, которые являются пластическим материалом мембран гепатоцитов, нормализуется обмен фосфолипидов клеточных мембран. Эти препараты проявляют антиоксидантное действие, т.к. в печени взаимодействуют со свободными радикалами и переводят их в неактивную форму, что препятствует дальнейшему разрушению клеточных структур. В состав данных препаратов входят эссенциальные фосфолипиды, которые являются пластическим материал для поврежденных клеток печени, состоящих на 80% из гепатоцитов.

    Эссенциале Н и эссенциале форте Н . Выпускается в капсулах, содержащих по 300 мг «эссенциальных фосфолипидов», для приема внутрь во время еды. Препарат обеспечивает печень высокой дозой готовых к усвоению фосфолипидов, которые проникают в клетки печени, внедряются в мембраны гепатоцитов и нормализуют ее функции, в том числе и детоксикационную. Восстанавливается клеточная структура гепатоцитов, тормозится формирование соединительной ткани в печени, все это способствует регенерации печеночных клеток. Ежедневный прием препарата способствует активации фосфолипидзависимых ферментных систем печени, уменьшает уровень энергозатрат, улучшает метаболизм липидов и белков, преобразует нейтральные жиры и холестерин в легко метаболизирующиеся формы, стабилизируются физико-химические свойства желчи. При острых и тяжелых формах поражения печени (печеночная предкома и кома, некроз клеток печени и токсические ее поражения, при операциях в области гепатобиларной зоны и др.) используют раствор для внутривенного медленного введения в ампулах из темного стекла по 5 мл, содержащий 250 мг «эссенциальных фосфолипидов». Вводят 5–10 мл в день, при необходимости дозу увеличивают до 20 мл/день. Нельзя смешивать с другими препаратами.

    Эссливер форте – комбинированный препарат, содержащий эссенциальные фосфолипиды 300 мг и комплекс витаминов: тиамина мононитрат, рибофлавина, пиридоксина, токоферола ацетата по 6 мг, никотинамида 30 мг, цианкобаламина 6 мкг, оказывает гепатопротекторное, гиполипидемическое и гипогликемическое действие. Регулирует проницаемость биомембран, активность мембраносвязанных ферментов, обеспечивая физиологическую норму процессов окислительного фосфорилирования в клеточном метаболизме. Восстанавливает мембраны гепатоцитов путем структурной регенерации и методом конкурентного ингибирования перекисных процессов. Ненасыщенные жирные кислоты, встраиваясь в биомембраны, принимают на себя токсикогенные воздействия вместо мембранных липидов печени и нормализуют функцию печени, повышают ее дезинтоксикационную роль.

    Фосфоглив – в одной капсуле содержится 0,065 г фосфатидилхолина и 0,038 г динатриевой соли глицерризиновой кислоты. Препарат восстанавливает клеточные мембраны гепатоцитов с помощью глицерофосфолипидов. В молекуле фосфатидилхолина соединены глицерин, высшие жирные кислоты, фосфорная кислота и холин, все необходимые вещества для построения клеточных мембран. Молекула глициризиновой кислоты схожа со строением гормонов коры надпочечников (например, кортизоном), за счет этого она обладает противовоспалительными и антиаллергическими свойствами, обеспечивает эмульгирование фосфатидилхолина в кишечнике. Содержащаяся в ее структуре глюкуроновая кислота связывает и инактивирует образующиеся токсичные продукты. Применяют внутрь по 1–2 капсулы 3 раза в сутки в течение месяца. Дозу можно увеличит до 4 капсул за один прием и 12 капсул в сутки.

    Ливолин форте – комбинированный препарат, в одной капсуле которого содержится 857,13 мг лецитина (300 мг фосфатидилхолина) и комплекс необходимых витаминов: Е, В1, В6 – по 10 мг, В2 – 6 мг, В12 – 10 мкг и РР – 30 мг. Входящие в состав фосфолипиды являются основными элементами в структуре клеточной оболочки и митохондрий. При применении препарата регулируется липидный и углеводный обмен, улучшается функциональное состояние печени, активируется ее важнейшая детоксикационная функция, сохраняется и восстанавливается структура гепатоцитов, тормозится формирование соединительной ткани печени. Входящие витамины выполняют функцию коэнзимов в процессах окислительного декарбоксилирования, дыхательного фосфорилирования, обладают антиоксидантным действием, защищают мембраны от воздействия фосфолипаз, препятствуют образованию перекисных соединений и ингибируют свободные радикалы. Применяют по 1–2 капсулы 2–3 раза в день во время еды, курс 3 месяца, при необходимости курс повторяют.

    Препараты, улучшающие метаболические процессы в организме Они обеспечивают детоксикацию клеток, стимулируют регенерацию клеток за счет повышения активности микросомальных ферментов печени, улучшения микроциркуляции и питания клеток, а также улучшают метаболические процессы в гепатоцитах.

    Средство, влияющее на метаболические процессы, Тиоктовая кислота (липоевая кислота, липамид, тиоктацид). Фармакологическое действие – гиполипидемическое, гепатопротективное, гипохолестеринемическое, гипогликемическое. Тиоктовая кислота участвует в окислительном декарбоксилировании пировиноградной и a-кетокислот. По характеру биохимического действия она близка к витаминам группы В. Участвует в регулировании липидного и углеводного обмена, стимулирует обмен холестерина, улучшает функцию печени. Применяют внутрь, в начальной дозе 200 мг (1 таблетка) 3 раза в сутки, поддерживающая доза 200–400 мг/сут. При применении препарата могут наблюдаться диспепсия, аллергические реакции: крапивница, анафилактический шок; гипогликемия (в связи с улучшением усвоения глюкозы). При тяжелых формах диабетической полинейропатии вводят в/в по 300–600 мг или в/в капельно, в течение 2–4 нед. В дальнейшем переходят на поддерживающую терапию таблетированными формами – 200–400 мг/сут. После в/в введения возможны побочные нежелательные реакции – такие, как развитие судорог, диплопии, точечных кровоизлияний в слизистые и кожу, нарушение функции тромбоцитов; при быстром введении ощущение тяжести в голове, затруднение дыхания.

    Альфа-липоевая кислота является коферментом окислительного декарбоксилирования пировиноградной кислоты и альфа-кетокислот, нормализует энергетический, углеводный и липидный обмены, регулирует метаболизм холестерина. Улучшает функции печени, снижает повреждающее влияние на нее эндогенных и экзогенных токсинов. Применяют внутрь в/м и в/в. При в/м инъекции доза, вводимая в одно место, не должна превышать 2 мл. В/в введение капельное, предварительно разбавив 1–2 мл 250 мл 0,9% раствора натрия хлорида. При тяжелых формах полинейропатии – в/в по 12–24 мл ежедневно в течение 2–4 нед., затем переходят на поддерживающую терапию внутрь 200–300 мг/сут. Препарат светочувствителен, поэтому ампулы из упаковки необходимо доставать только непосредственно перед использованием. Раствор для инфузии пригоден для введения в течение 6 час., если он защищен от воздействия света.

    Эспа-липон выпускается в таблетках, покрытых оболочкой и в растворах для инъекций. Одна таблетка содержит 200 мг или 600 мг, этилендиаминовой соли альфа-липоевой кислоты, а в 1 мл раствора его содержится 300 мг или 600 мг, ампулы соответственно по 12 мл и 24 мл. При применении препарата происходит стимулирование окислительного декарбоксилирования пировиноградной кислоты, a-кетокислот, регулирование липидного и углеводного обмена, улучшаются функции работы печени, происходит защита от неблагоприятного действия эндо- и экзо-факторов.

    Адеметионин (Гептрал) является предшественником физиологических тиоловых соединений, участвующих в многочисленных биохимических реакциях. Это эндогенное вещество, обнаруженное почти во всех тканях и жидкостях организма, получено синтетическим путем, обладает гепатопротективным, детоксикационным, регенерирующим, антиоксидантным, антифиброзирующим и нейропротекторным действием. Его молекула включена в большинство биологических реакций, в т.ч. как донор метильной группы в реакциях метилирования, в составе липидного слоя клеточной мембраны (трансметилирование); как предшественник эндогенных тиоловых соединений – цистеина, таурина, глютатиона, коэнзима А (транссульфатирование); как предшественник полиаминов – путресцина, стимулирующего регенерацию клеток, пролиферацию гепатоцитов, спермидина, спермина, входящих в структуру рибосом (аминопропилирование). Обеспечивает окислительно-восстановительный механизм клеточной детоксикации, стимулирует детоксикацию желчных кислот – повышает содержание в гепатоцитах конъюгированных и сульфатированных желчных кислот. Стимулирует синтез в них фосфатидилхолина, повышает подвижность и поляризацию мембран гепатоцитов. Гептрал включается в биохимические процессы организма, одновременно стимулируя выработку эндогенного адеметионина, в первую очередь в печени и мозге. Проникая через гематоэнцефалический барьер, проявляет антидепрессивное действие, которое развивается в первую неделю и стабилизируется в течение второй недели лечения. Терапия гептралом сопровождается исчезновением астенического синдрома у 54% пациентов и уменьшением его интенсивности у 46% больных. Антиастенический, антихолестатический и гепатопротективный эффекты сохранялись в течение 3 месяцев после прекращения лечения. Выпускается в таблетках по 0,4 г лиофилизированного порошка. Поддерживающая терапия внутрь 800–1600 мг/сут. между приемами пищи, глотать, не разжевывая, желательно в первой половине дня. При интенсивной терапии в первые 2–3 недели лечения назначают в/в 400–800 мг/сут. (очень медленно) или в/м, порошок растворяют только в специальном прилагаемом растворителе (раствор L-лизина). Основные побочные эффекты при приеме внутрь – изжога, боль или неприятные ощущения в эпигастральной области, диспептические явления, возможны аллергические реакции.

    Орнитина аспартат (гепа-Мерц гранулы) . Фармакологическое действие – дезинтоксикационное, гепатопротективное, способствует нормализации КОС организма. Участвует в орнитиновом цикле мочевинообразования (образование мочевины из аммиака), утилизирует аммонийные группы в синтезе мочевины и снижает концентрацию аммиака в плазме крови. При приеме препарата активируется выработка инсулина и соматотропного гормона. Препарат выпускается в гранулах для приготовления растворов, для приема внутрь. 1 пакетик содержит 3 г орнитина аспартата. Применяют внутрь, по 3–6 г 3 раза в сутки после еды. Концентрат для инфузий, в ампулах по 10 мл, в 1 мл которого содержится 500 мг орнитина аспартата. Вводят в/м по 2–6 г/сут. или в/в струйно по 2–4 г/сут.; кратность введения 1–2 раза в сутки. При необходимости в/в капельно: 25–50 г препарата разводят в 500–1500 мл изотонического раствора натрия хлорида, 5% раствора глюкозы или дистиллированной воды. Максимальная скорость инфузии 40 кап./мин. Продолжительность курса лечения определяется динамикой концентрации аммиака в крови и состоянием больного. Курс лечения можно повторять каждые 2–3 мес.

    Гепасол А , комбинированный препарат, в 1 л раствора содержится: 28,9 г L-аргинина, 14,26 г L-яблочной кислоты, 1,33 г L-аспарагиновой кислоты, 100 мг никотинамида, 12 мг рибофлавина и 80 мг пиридоксина.

    Действие основано на влиянии L-аргинина и L-яблочной кислоты на процессы метаболизма и обмена веществ в организме. L-аргинин способствует превращению аммиака в мочевину, связывает токсичные ионы аммония, образующиеся при катаболизме белков в печени. L-яблочная кислота необходима для регенерации L-аргинина в этом процессе и в качестве энергетического источника для синтеза мочевины. Рибофлавин (В2) превращается во флавин-мононуклеотид и флавин-аденин-динуклеотид. Оба метаболита фармакологически активны и в составе коферментов играют важную роль в окислительно-восстановительных реакциях. Никотинамид переходит в депо в форме пиридин нуклеотида, который играет важную роль в окислительных процессах организма. Совместно с лактофлавином никотинамид участвует в промежуточных процессах метаболизма, в форме трифосфопиридина нуклеотида – в синтезе белка. Снижает уровень сывороточных липопротеинов очень низкой плотности и низкой плотности и в тоже время повышает уровень липопротеинов высокой плотности, поэтому используется в терапии гиперлипидемий. D-пантенол, как кофермент А, являясь основой промежуточных процессов метаболизма, участвует в метаболизме углеводов, глюконеогенезе, катаболизме жирных кислот, в синтезе стерола, стероидных гормонов и порфирина. Пиридоксин (В6) является составной частью групп многих ферментов и коферментов, играет значительную роль в процессах метаболизма углеводов и жиров, необходим для образования порфирина, а также синтеза Hb и миоглобина. Терапия устанавливается индивидуально, с учетом исходной концентрации аммиака в крови и назначается в зависимости от динамики состояния больного. Обычно назначают в/в капельное введение 500 мл раствора со скоростью 40 кап./мин. Введение препарата может повторяться каждые 12 ч и до 1,5 л в сутки.

    Аргинин содержится в гепатопротекторных препаратах Сарженор и Цитраргин .

    Цитрат бетаина Бофур – в его состав входит бетаин и цитрат (анион лимонной кислоты). Бетаин – аминокислота, производное глицина с метилированной аминогруппой, присутствующая в печени и почках человека, основной липотропный фактор. Способствует профилактике жирового перерождения печени и снижает уровень холестерина в крови, увеличивает дыхательные процессы в пораженной клетке. Цитрат представляет собой важное звено в цикле трикарбоновых кислот (цикл Кребса). Выпускается в гранулах по 250 г для приема внутрь.

    К индукторам микросомальных ферментов печени относятся также флумецинол (зиксорин) и производное барбитуровой кислоты фенобарбитал, обладающий противосудорожным и снотворным действием.

    Препараты животного происхождения Гепатамин , комплекс белков и нуклеопротеидов, выделенных из печени крупного рогатого скота; Сирепар – гидролизат экстракта печени; Гепатосан – препарат, получаемый из печени свиньи.

    Препараты животного происхождения, содержат комплекс белков, нуклеотидов и других активных веществ, выделенных из печени крупного рогатого скота. Они нормализуют метаболизм в гепатоцитах, повышают ферментативную активность. Обладают липотропным эффектом, способствуют регенерации паренхиматозной ткани печени и оказывают детоксикационное действие.

    Растительное сырье для улучшения функции печени и пищеварения

    Лив-52 , содержащий соки и отвары многих растений, обладает гепатотропным действием, способствует улучшению функции печени, аппетита и отхождению газов из кишечника.

    Тыквеол содержит жирное масло, полученное из семян тыквы обыкновенной, в состав которого входят каротиноиды, токоферолы, фосфолипиды, флавоноиды; витамины: В1, В2,С, Р, РР; жирные кислоты: насыщенные, ненасыщенные и полинасыщенные – пальмитиновая, стеариновая, олеиновая, линолевая, линоленовая, арахидоновая и др. Препарат оказывает гепатопротекторное, антиатеросклеротическое, антисептическое, желчегонное действие. Выпускается во флаконах по 100 мл и в пластиковых флаконах-капельницах по 20 мл. Применяют по 1 ч. ложке за 30 мин. до еды 3–4 раза в день, курс лечения 1–3 месяца.

    Бонджигар выпускается в сиропе и твердых желатиновых капсулах, содержит смесь растительных компонентов, обладающих противовоспалительным, гепатопротекторным, мембраностабилизирующим, детоксицирующим и липотропным действием. Предотвращает поражение и нормализует функции печени, защищает ее от действия повреждающих факторов и накопления токсических продуктов метаболизма. Применяют внутрь, после еды, по 2 столовые ложки сиропа или 1–2 капсулы 3 раза в день в течение 3 недель.

    Гомеопатические препараты

    Гепар композитум – комплексный препарат, содержащий фитокомпоненты: Lycopodium и Carduus marianus, суис-органные препараты печени, поджелудочной железы и желчного пузыря, катализаторы и серу, поддерживает метаболические функции печени.

    Хепель – в состав этого препарата входит расторопша пятнистая, чистотел, плаун булавовидный, чемерица, фосфор, колоцинт и др. Антигомотоксический препарат обладает антиоксидантной активностью, защищает гепатоциты от повреждения свободных радикалов, а также антипролиферативным и гепатопротекторным действием. Выпускается в таблетках, применяют под язык по 1 таблетке 3 раза в день.

    Комплексный гомеопатический препарат Галстена применяется в комплексном лечении острых и хронических заболеваний печени, заболеваний желчного пузыря (хронический холецистит, постхолецистэктомический синдром) и хронического панкреатита. Выпускается во флаконах по 20 мл. Назначают детям до 1 года по 1 капле, до 12 лет – 5 капель, взрослым – 10 капель. В острых случаях возможен прием каждые полчаса-час до наступления улучшения состояния, но не более 8 раз, после чего принимать 3 раза в день.

    Биологически активные добавки к пище (БАД) Овесол – комплексный препарат, содержащий вытяжку овса молочной спелости в сочетании с желчегонными травами и маслом куркумы. Выпускается в виде капель по 50 мл и таблеток по 0,25 г. Ежедневный прием препарата по 1 таблетке 2 раза во время еды в течение месяца улучшает дренажные функции желчевыводящих путей, устраняет застой и нормализует биохимический состав желчи, препятствует образованию желчных камней. БАД бережно очищает печень от шлаков и токсичных продуктов эндогенного и экзогенного происхождения, улучшает метаболическую функцию печени, способствует вымыванию песка.

    Гепатрин – в его составе три главных компонента: экстракт расторопши, экстракт артишока и эссенциальные фосфолипиды. БАД применяется с профилактической целью, для защиты клеток печени от повреждения при применении лекарств, алкоголя, от неблагоприятного воздействия эндо-, экзотоксинов и употребления чрезмерно жирной пищи. Выпускается в капсулах по 30 штук.

    Эссенциал ойл – высококачественный рыбий жир, полученный из гренландского лосося методом холодной обработки и стабилизированный от окисления витамином Е. В одной капсуле содержатся: ненасыщенные жирные кислоты (омега-3): 180 мг эйкзапентаеновой кислоты, 120 мг докозагексаеновой к-ты и 1мг D-альфа-токоферола. В качестве БАД употреблять взрослым по 1–3 капсуле в день во время еды. Курс приема 1 месяц.

    Гепавит Лайф формула содержит комплекс витаминов группы В и жирорастворимые витамины А, Е, К, фосфолипидный комплекс, активирующий функции печени, активные компоненты растительного сырья, обладающие антиоксидантным, желчегонным, детоксикационным действием. Выпускается в капсулах (таблетках), применяют по 1 капс. (табл.) 1–2 раза в сутки.

    Тыквэйнол – БАД , изготовленная на основе пищевых масел морского и растительного происхождения – эйконола и тыквеола, полученных по отечественным технологиям с использованием щадящих режимов переработки сырья. Тыквэйнол содержит комплекс биологически активных веществ: насыщенные и полиненасыщенные жирные кислоты – эйкозапентаеновую, докозагексаеновую, линоленовую, линолевую, пальмитиновую, стеариновую, арахидоновую и др., каротиноиды, токоферолы, фосфолипиды, стерины, фосфатиды, флавоноиды, витамины А, D, Е, F, В1, В2, С, Р, РР. Благодаря сочетанию активных соединений морского и растительного происхождения способствует очищению организма от жировых и известковых отложений, улучшению кровообращения, повышению эластичности кровеносных сосудов, укреплению сердечной мышцы, предупреждению инфаркта миокарда, улучшению зрения, исчезает шум в голове, а также оказывает гепатопротекторное, желчегонное, противоязвенное, антисептическое действие; тормозит чрезмерное развитие клеток предстательной железы; способствует снижению воспалительных процессов и ускорению регенерации тканей при заболеваниях слизистой желудочно-кишечного тракта, слизистой полости рта, желчевыводящих путей, мочеполовой системы и кожи. При приеме БАД улучшается состав желчи, нормализуется нарушенное функциональное состояние желчного пузыря, снижается риск возникновения желчекаменной болезни и холецистита. Нормализует секреторную и моторноэвакуаторную функции желудка и улучшает обмен веществ. При лечебном приеме необходимо уменьшить содержание растительного масла в суточном рационе на 10 г. С профилактической целью Тыквэйнол рекомендуется употреблять курсами по 2 г в день в течение не менее 1 месяца два раза в год, в осенне-зимний и весенний периоды года. Особенно необходим Тыквэйнол людям, подверженным умственным и физическим перегрузкам, студентам и школьникам для повышения обучаемости и толерантности к нагрузкам. В дозе по 1 г в день Тыквэйнол полезен всем здоровым людям для профилактики.

    Ливер Райт содержит экстракта печени 300 мг, холина битартрат 80 мг, экстракта расторопши 50 мг, инозитола 20 мг; цистеина 15 мг; витамина В12 6 мкг. Предупреждает гепатотоксическое действие ацетальдегида, продукта метаболизма алкоголя, восстанавливает клеточные эндоплазматические мембраны, состоящие из фосфоглицеридов, синтезируемых на основе инозитола и холина, снижает уровень молочной кислоты в крови за счет улучшения метаболизма при участии цистеина, способствует накоплению глютатиона в результате действия цистеина, что предупреждает перекисное окисление липидов, улучшает мик

    Это действие препарата в месте его приложения +может привести к рефлекторному ответу +может быть побочным -это разновидность резорбтивного действия

    Это всегда побочное действие -определяется дозой вещества +определяется концентрацией вещества

      Действие вещества развивающееся после его поступления в системный кровоток называется :

    Резорбтивным -рефлекторным -этиотропным -местным +общим

      Факторы воздействующие на лекарство в желудке :

    Пепсин -панкреатические ферменты +кислая среда -умеренно щелочная среда -фермент инсулиназа

    Количество лекарства, поступившее в системный кровоток -соотношение между назначенной дозой и массой человека +предположительный объем жидкости организма, необходимый для равномерного распределения введенной дозы лекарственного вещества +отношение между принятой дозой и концентрацией вещества в крови

    Объем крови, в котором растворено лекарство

    Любому прямому действию +действию нежелательному в процессе лечения -любому рефлекторному

    Синергистическому -антагонистическое +идиосинкразии +действию, вызывающему аллергию

      Перенос лекарства через мембрану со стороны низкой

    концентрации в пространство с большей концентрацией осуществляется :

    Пассивной диффузией -облегченной диффузией -пиноцитозом +активным транспортом

    Транспортом с затратами энергии -фагоцитозом +транспортом с участием переносчиков

      Биологический смысл реакций биотрансформации с участием цитохромов Р -450:

    Окислить молекулу лекарственного вещества

      Ацетилирование лекарственного вещества означает :

    Присоединение остатка уксусной кислоты с участием ацетил-КоА -присоединение глюкуроновой кислоты -синоним микросомального окисления -то же, что и гидролиз -присоединение гидроксильных групп +вид конъюгации

    Вид химического превращения, происходящего в печени

    Быстрее обезвреживаются печенью +меньше обезвреживаются печенью +имеют другие показатели биодоступности +не разрушаются ферментами ЖКТ

    Легче проникают через гематоэнцефалический барьер

      К понятию « полипрагмазия » имеет отношение следующее явление :

    Сенсибилизация -толерантность

    Необоснованное назначение большого количества лекарств -абстиненция -идиосинкразия

      Процессам микросомального окисления веществ в печени присущи следующие черты :

    Способность к индукции +возможность ингибирования +неспецифичность субстрата

    Строгая химическая специфичность субстрата -присоединение метильных радикалов -присоединение остатка уксусной кислоты

      Термин « привыкание » соответствует :

    Усилению действия лекарства при повторном введении -понятию «лекарственная зависимость» +понятию «толерантность»

    Ослаблению действия лекарства при повторном применении -понятию «абстиненция»

      Выберите вариант ответа который соответствует наиболее быстрому удалению лекарства почками :

    Вещество слабо фильтруется и слабо реабсорбируется -вещество хорошо фильтруется и хорошо реабсорбируется

    Вещество хорошо фильтруется и секретируется канальцами, но не

    реабсорбируется -вещество хорошо фильтруется, хорошо реабсорбируется и секретируется канальцами

      Привыкание к лекарственному веществу может быть следствием :

    Индукции микросомальных ферментов печени -подавления цитохромов Р-450 -повышения чувствительности рецепторов

    Снижения чувствительности рецепторов органов - мишеней -снижения метаболизма данного лекарственного вещества

      Если какое - то вещество ингибирует систему микросомального окисления печени то можно ожидать :

    Снижения скорости метаболизма лекарств +пролонгирования эффекта препаратов +возможной кумуляции веществ -укорочения периода элиминации

    Снижения эффективности действия препаратов

      Индукция микросомальных ферментов печени может :

    Потребовать уменьшения дозы некоторых веществ +потребовать увеличения дозы некоторых веществ

    Способствовать проникновению веществ через гемато-

    энцефалический барьер +способствовать удалению чужеродных веществ из организма

    Препятствовать удалению чужеродных веществ из организма

      Лекарственное средство попадает в кровоток минуя печеночный барьер при применении в виде :

    Капсул +таблеток под язык

    Внутривенных инъекций -настоев внутрь +ингаляций

      Ускорение выведения лекарственного вещества с мочой достигается при :

    Увеличении фильтрации в клубочках -усилении канальцевой реабсорбции -применении альдостерона и вазопрессина +активации канальцевой секреции в почках

    Повышении степени связывания лекарства с белками

      Понятие « фармакокинетика » включает :

    Абсорбцию вещества +распределение вещества в организме +биотрансформацию вещества -взаимодействие с рецепторами -эффекты действия -механизм действия +экскрецию вещества +период полужизни вещества

    Механизм побочных эффектов вещества

      При назначении ацетилсалициловой кислоты наряду с

    противовоспалительным действием может возникнуть язва желудка . Этот эффект можно охарактеризовать как :

    Симптоматическое действие +побочное действие -канцерогенность -эмбриотоксичность +ульцерогенное действие

      Понятие « гистогематические барьеры » включает :

    Гематоофтальмический барьер -мембраны лизосом +плацентарный барьер +гематоэнцефалический барьер

      Пресистемная элиминация лекарства это :

    Процесс удаления вещества из крови почками +удаление лекарства до его попадания в общий кровоток -секреция вещества железами желудка

    Биотрансформация вещества в печени после всасывания в кровь

      Пролонгирование эффектов лекарственных веществ достигается при :

    Создании депо в жировой ткани -нарушении всасывания в кишечнике +увеличении связывания с белками плазмы

    Повышении клубочковой фильтрации в почках -усилении биотрансформации в печени

      Вторичными внутриклеточными посредниками в действии лекарств могут быть :

    Циклические нуклеотиды (цАМФ, цГМФ) -активаторы ионных каналов +ионы кальция -аденилатциклаза

      Процесс метаболической трансформации лекарств включает :

    Окисление -метилирование

    Восстановление +гидролиз -ацетилирование

      Реакция конъюгации лекарств подразумевает :

    Окисление +взаимодействие с глюкуроновой кислотой

    Взаимодействие с глутатионом +ацетилирование -взаимодействие с хлористоводородной кислотой -гидролиз

      Понятие « аффинитет » подразумевает :

    Способность образовывать комплексы с циторецепторами -вид комбинированного действия лекарств +сродство вещества к рецептору

    Способность вещества вызывать сенсибилизацию организма

      К вторичным передатчикам мессенджерам ») относятся :

    Циклические нуклеотиды (цАМФ, цГМФ) -аденилатциклаза +диацилглицерол (ДАГ)

    Лиганды мембранных рецепторов +ионизированный кальций +инозитол 1,4,5-трифосфат (НФ3)

      К препаратам - дженерикам относятся :

    Оригинальные препараты, впервые появившиеся на фармацевтическом рынке +воспроизведенные лекарственные препараты

    Наиболее дорогие препараты из данной фармакологической группы -препараты, классифицируемые по особенностям своего химического строения

    Биотрансформация лекарственных веществ. Реакции I и II этапов метаболизма. Индукторы и ингибиторы микросомальных ферментов (примеры).

    Биотрансформация (метаболизм) - изменение химической структуры лекарственных веществ и их физикохимических свойств под действием ферментов организма. Основной направленностью этого процесса является превращение липофильных веществ, которые легко реабсорбируются в почечных канальцах, в гидрофильные полярные соединения, которые быстро выводятся почками (не реабсорбируются в почечных канальцах). В процессе биотрансформации, как правило, происходит снижение активности (токсичности) исходных веществ.
    Биотрансформация липофильных ЛВ в основном происходит под влиянием ферментов печени, локализованных в мембране эндоплазматического ретикулума гепатоцитов. Эти ферменты называются микросомальными, потому что
    они оказываются связанными с мелкими субклеточными фрагментами гладкого эндоплазматического ретикулума (микросомами), которые образуются при гомогенизации печеночной ткани или тканей других органов и могут быть выделены центрифугированием (осаждаютсяв так называемой «микросомальной» фракции).
    В плазме крови, а также в печени, кишечнике, легких, коже, слизистых оболочках и других тканях имеются немикросомальные ферменты, локализованные в цитозоле или митохондриях. Эти ферменты могут участвовать в метаболизме гидрофильных веществ.
    Различают два основных вида метаболизма лекарственных веществ (этапы):
    несинтетические реакции (метаболическая трансформация);
    синтетические реакции (конъюгация).

    биотрансформация (реакции метаболизма 1-й фазы), происходит под действием ферментов - окисление, восстановление, гидролиз.

    конъюгация (реакции метаболизма 2-й фазы), при которой происходит присоединение к молекуле вещества остатков других молекул (глюкуроновой, серной кислот, алкильных радикалов), с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

    Лекарственные вещества могут подвергаться или метаболической биотрансформации (при этом образуются вещества, называемые метаболитами), или конъюгации (образуются конъюгаты). Но большинство Л В сначала метаболизируется при участии несинтетических реакций с образованием реакционноспособных метаболитов, которые затем вступают в реакции конъюгации.
    Кметаболической трансформации относятся следующие реакции: окисление, восстановление, гидролиз. Многие липофильные соединения подвергаются окислению в печени под влиянием микросомальной системы ферментов, известных как оксидазы смешанных функций, или монооксигеназы. Основными компонентами этой системы являются цитохром Р450 редуктаза и цитохром Р450 гемопротеин, который связывает молекулы лекарственного вещества и кислород в своем активном центре. Реакция протекает при участии НАДФН. В результате происходит присоединение одного атома кислорода к субстрату (лекарственному веществу) с образованием гидроксильной группы (реакция гидроксилирования).



    Под действием некоторых лекарственных веществ (фенобарбитал, рифампицин, карбамазепин, гризеофульвин) может происходить индукция (увеличение скорости синтеза) микросомальных ферментов печени. В результате при одновременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повышается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин).
    Некоторые лекарственные вещества (циметидин, хлорамфеникол, кетоконазол, этанол) снижают активность (ингибиторы) метаболизирующих ферментов. Например, циметидин является ингибитором микросомального окисления и, замедляя метаболизм варфарина, может повысить его антикоагулянтный эффект и спровоцировать кровотечение. Известны вещества (фуранокумарины), содержащиеся в грейпфрутовом соке, которые угнетают метаболизм таких лекарственных веществ, как циклоспорин, мидазолам, алпразолам и, следовательно, усиливают их действие. При одновременном применении лекарственных веществ с индукторами или ингибиторами метаболизма необходимо корректировать назначаемые дозы этих веществ.



    12. Пути выведения лекарственных веществ из организма, значение, понятие о квоте элиминации, периоде полувыведения (Т 1/2) и общем плазматическом клиренсе. Зависимость действия лекарственных веществ от пути выведения, примеры.

    Выведение неизмененного лекарственного вещества или его метаболитов осуществляется всеми экскреторными органами (почками, кишечником, легкими, молочными, слюнными, потовыми железами и др.).

    Основным органом выведения лекарств из организма являются почки. Выведение лекарств почками происходит путем фильтрации и с помощью активного или пассивного транспорта. Липоидорастворимые вещества легко фильтруются в клубочках, но в канальцах они вновь пассивно всасываются. Препараты, слабо растворимые в липоидах, быстрее выводятся с мочой, поскольку они плохо реабсорбируются в почечных канальцах. Кислая реакция мочи способствует выведению щелочных соединений и затрудняет экскрецию кислых. Поэтому при интоксикации лекарствами кислого характера (например, барбитуратами) применяют натрия гидрокарбонат или другие щелочные соединения, а при интоксикации алкалоидами, имеющими щелочной характер, используют аммония хлорид. Ускорить выведение лекарств из организма можно и назначением сильнодействующих мочегонных средств, например, осмотических диуретиков или фуросемида, на фоне введения в организм большого количества жидкости (форсированный диурез). Выведение из организма оснований и кислот происходит путем активного транспорта. Этот процесс идет с затратой энергии и с помощью определенных ферментных систем-переносчиков. Создавая конкуренцию за переносчик каким-либо веществом, можно замедлить выведение лекарства (например, этамид ипенициллин секретируются с помощью одних и тех же ферментных систем, поэтому этамидзамедляет выведение пенициллина).

    Препараты, плохо всасывающиеся из желудочно-кишечного тракта, выводятся кишечником и применяются при гастритах, энтеритах и колитах (например, вяжущие средства, некоторыеантибиотики используемые при кишечных инфекциях). Кроме того, из печеночных клеток лекарства и их метаболиты попадают в желчь и с нею поступают в кишечник, откуда либо повторно всасываются, доставляются в печень, а затем с желчью в кишечник (кишечно- печеночная циркуляция), либо выводятся из организма с каловыми массами. Не исключается и прямая секреция ряда лекарств и их метаболитов стенкой кишечника.

    Через легкие выводятся летучие вещества и газы (эфир, закись азота, камфора и т.д.). Для ускорения их выброса необходимо увеличить объем легочной вентиляции.

    Многие лекарственные препараты могут экскретироваться с молоком, особенно слабые основания и неэлектролиты, что следует учитывать при лечении кормящих матерей.

    Некоторые лекарственные вещества частично выводятся железами слизистой оболочки полости рта, оказывая местное (например, раздражающее) действие на путях выведения. Так, тяжелые металлы (ртуть, свинец, железо, висмут), выделяясь слюнными железами, вызывают раздражение слизистой оболочки полости рта, возникают стоматиты и гингивиты. Кроме того, они вызывают появление темной каймы по десневому краю, особенно в области кариозных зубов, что обусловлено взаимодействием тяжелых металлов с сероводородом в полости рта и образованием практически нерастворимых сульфидов. Такая "кайма" является диагностическим признаком хронического отравления тяжелыми металлами.

    При длительном применении дифенина и вальпроата натрия (противосудорожныепрепараты) раздражение слизистой оболочки десны может быть причиной возникновения гипертрофического гингивита ("дифениновый гингивит").Уровень элиминации любого лекарственного вещества оценивают при помощи двух основных тестов:

    • во-первых, определяют время, в течение которого элиминирует половина введенной дозы химиопрепарата, то есть находят полупериод жизни последнего (Т 1/2);
    • во-вторых, вычисляют процент той части однократной дозы препарата, которая элиминирует на протяжении суток (коэффициент, или квота, элиминации).

    Эти два критерия элиминации любого лекарственного вещества не являются стабильными, ибо зависят от комплекса условий. Среди последних существенная роль отводится свойствам самого препарата и состоянию организма. Они зависят от скорости метаболизма лекарственного вещества в тканях и жидких средах организма, интенсивности его экскреции, функционального состояния печени и почек, пути введения химиопрепарата, длительности и условий хранения, липоидорастворимости, химического строения и т. д.
    Элиминация жирорастворимых, ионизированных лекарственных веществ, связанных с белками, осуществляется медленнее» чем препаратов водорастворимых, ионизированных, не связанных с белками. При введении высоких доз лекарственных средств элиминация их удлиняется, что обусловлено интенсификацией всех процессов, участвующих в транспорте, распределении, метаболизме и выделении химиопрепаратов.
    Элиминация большинства лекарственных средств у детей значительно ниже, чем у взрослых. Особенно замедлена она у недоношенных детей первых месяцев жизни. Резко удлиняют элиминацию врожденные и приобретенные энзимопатии (недостаточность глюкозо-6-фосфатдегидрогеназы, N-ацетилтрансферазы в др.), заболевания печени и почек, протекающие с недостаточностью их функций.
    На скорость элиминации влияют и другие факторы: пол больного, температура тела, физиологические биоритмы, пребывание ребенка в постели и т. д. Данные о полупериоде жизни препаратов позволяет врачу более обоснованно назначать разовую и суточную, дозу того или иного лекарственного средства, кратность введения его.