Основные задачи на построение. Построение геометрии с помощью непрерывного ввода объектов

Если вполне естественно, что с допущением большего разнообразия инструментов оказывается возможным решать более обширное множество задач на построение, то можно было бы предвидеть, что, напротив, при ограничениях, налагаемых на инструменты, класс разрешимых задач будет суживаться. Тем более замечательным нужно считать открытие, сделанное итальянцем Маскерони (1750-1800): все геометрические построения, выполнимые с помощью циркуля и линейки, могут быть выполнены с помощью одного только циркуля. Следует, конечно, оговорить, что провести на самом деле прямую линию через две данные точки без линейки невозможно, так что это основное построение не покрывается теорией Маскерони. Вместо того приходится считать, что прямая задана, если заданы две ее точки. Но с помощью одного лишь циркуля удается найти точку пересечения двух прямых, заданных таким образом, или точку пересечения прямой с окружностью.

Вероятно, простейшим примером построения Маскерони является удвоение данного отрезка АВ. Решение было уже дано на стр. 174-175. Далее, на стр. 175-176 мы научились делить данный отрезок пополам. Посмотрим теперь, как разделить пополам дугу окружности АВ с центром О. Вот описание этого построения (рис. 47). Радиусом АО проводим две дуги с центрами A и В. От точки О откладываем на этих дугах две такие дуги ОР и OQ, что OP = OQ = АВ . Затем находим точку R пересечения дуги с центром Р и радиусом РВ и дуги с центром Q и радиусом QA. Наконец, взяв в качестве радиуса отрезок OR, опишем дугу с центром Р или Q до пересечения с дугой AВ - точка пересечения и является искомой средней точкой дуги АВ. Доказательство предоставляем читателю в качестве упражнения.

Было бы невозможно доказать основное утверждение Маскерони, указывая для каждого построения, выполнимого с помощью циркуля и линейки, как его можно выполнить с помощью одного циркуля: ведь возможных построений бесчисленное множество. Но мы достигнем той же цели, если установим, что каждое из следующих основных построений выполнимо с помощью одного циркуля:

  1. Провести окружность, если заданы ее центр и радиус.
  2. Найти точки пересечения двух окружностей.
  3. Найти точки пересечения прямой и окружности.
  4. Найти точку пересечения двух прямых.

Любое геометрическое построение (в обычном смысле, с допущением циркуля и линейки) составляется из выполнения конечной последовательности этих элементарных построений. Что первые два из них выполнимы с помощью одного циркуля, ясно непосредственно. Более трудные построения 3 и 4 выполняются с использованием свойств инверсии, рассмотренных в предыдущем пункте.

Обратимся к построению 3: найдем точки пересечения данного круга С с прямой, проходящей через данные точки А и В. Проведем дуги с центрами А и В и радиусами, соответственно равными АО и ВО, кроме точки О, они пересекутся в точке Р. Затем построим точку Q, обратную точке Р относительно окружности С (см. построение, описанное на стр. 174). Наконец, проведем окружность с центром Q и радиусом QO (она непременно пересечется с С): ее точки пересечения Х и Х" окружностью С и будут искомыми. Для доказательства достаточно установить, что каждая из точек X и X" находится на одинаковых расстояниях от О и P (что касается точек А и В, то аналогичное их свойство сразу вытекает из построения). Действительно, достаточно сослаться на то обстоятельство, что точка, обратная точке Q, отстоит от точек X и Х" на расстояние, равное радиусу круга С (см. стр. 173). Стоит отметить, что окружность, проходящая через точки X, X" и О, является обратной прямой АВ в инверсии относительно окружности С, так как эта окружность и прямая АВ пересекаются с С в одних и тех же точках. (При инверсии точки основной окружности остаются неподвижными.) Указанное построение невыполнимо только в том случае, если прямая АВ проходит через центр С. Но тогда точки пересечения могут быть найдены посредством построения, описанного на стр. 178, как середины дуг С, получающихся, когда мы проводим произвольную окружность с центром В, пересекающуюся с С в точках В 1 и В 2 .

Метод проведения окружности, обратной прямой," соединяющей две данные точки, немедленно дает и построение, решающее задачу 4. Пусть прямые даны точками А, В и A", В" (рис. 50) Проведем произвольную окружность С и с помощью указанного выше метода построим окружности, обратные прямым АВ и А"В". Эти окружности пересекаются в точке О и еще в одной точке Y, Точка X, обратная точке Y, и есть искомая точка пересечения: как ее построить - уже было разъяснено выше. Что X есть искомая точка, это ясно из того факта, что Y есть единственная точка, обратная точке, одновременно принадлежащей обеим прямым АВ и А"В", следовательно, точка X, обратная Y, должна лежать одновременно и на АВ, и на А"В".

Этими двумя построениями заканчивается доказательство эквивалентности между построениями Маскерони, при которых разрешается пользоваться только циркулем, и обыкновенными геометрическими построениями с циркулем и линейкой.

Мы не заботились об изяществе решения отдельных проблем, нами здесь рассмотренных, так как нашей целью было выяснить внутренний смысл построений Маскерони. Но в качестве примера мы еще укажем построение правильного пятиугольника; точнее говоря, речь идет о нахождении каких-то пяти точек на окружности, которые могут служить вершинами правильного вписанного пятиугольника.

Пусть Л- произвольная точка на окружности К. Так как сторона правильного вписанного шестиугольника равна радиусу круга, то не представит труда отложить на К такие точки В, С, D, что АВ = ВС = CD = 60° (рис. 51). Проводим дуги с центрами А и D радиусом, равным АС; пусть они пересекаются в точке X. Тогда, если О есть центр K, дуга с центром А и радиусом ОХ пересечет К в точке F, являющейся серединой дуги ВС (см. стр. 178). Затем радиусом, равным радиусу K, опишем дуги с центром F, пересекающиеся с K в точках G и H. Пусть Y есть точка, расстояния которой от точек G и Н равны ОХ и которая отделена от X центром О. В таком случае отрезок AY как раз и есть сторона искомого пятиугольника. Доказательство предоставляется читателю в качестве упражнения. Интересно отметить, что при построении используются только три различных радиуса.

В 1928 г. датский математик Ельмслев нашел в книжной лавке в Копенгагене экземпляр книги под названием Euclides Danicus , опубликованной в 1672 г. никому не известным автором Г. Мором. По титульному листу можно было сделать заключение, что это просто один из вариантов евклидовых "Начал", снабженный, может быть, редакторским комментарием. Но по внимательном рассмотрении оказалось, что в ней содержится полное решение проблемы Маскерони, найденное задолго до Маскерони.

Упражнения. В дальнейшем дается описание построений Мора. Проверьте их правильность. Почему можно утверждать, что они решают проблему Маскерони?

Вдохновляясь результатами Маскерони, Якоб Штейнер (1796-1863) предпринял попытку исследования построений, выполнимых с помощью одной только линейки. Конечно, одна только линейка не выводит за пределы данного числового поля, и потому она недостаточна для выполнения всех геометрических построений в классическом их понимании. Но тем более замечательны результаты, полученные Штейнером при введенном им ограничении - пользоваться циркулем только один раз. Он доказал, что все построения на плоскости, выполнимые с помощью циркуля и линейки, выполнимы также с помощью одной линейки при условии, что задан единственный неподвижный круг вместе с центром. Эти построения подразумевают применение проективных методов и будут описаны позднее (см. стр. 228).

* Без круга, и притом с центром, обойтись нельзя. Например, если дан круг, но не указан его центр, то найти центр с помощью одной линейки невозможно. Мы сейчас докажем это, ссылаясь, однако, на факт, который будет установлен позднее (см. стр. 252): существует такое преобразование плоскости самой в себя, что а) заданная окружность остается неподвижной, b) всякая прямая линия переходит в прямую, с) центр неподвижной окружности не остается неподвижным, а смещается. Само существование такого преобразования свидетельствует о невозможности построить центр данной окружности, пользуясь одной линейкой. В самом деле, какова бы ни была процедура построения, она сводится к ряду отдельных этапов, заключающихся в проведении прямых линий и нахождении их пересечений друг с другом или с данной окружностью. Представим себе теперь, что вся фигура в целом - окружность, а все прямые, проведенные по линейке при выполнении построения центра, подвергнуты преобразованию, существование которого мы здесь допустили. Тогда ясно, что фигура, полученная после преобразования, также удовлетворяла бы всем требованиям построения; но указываемое этой фигурой построение приводило бы к точке, отличной от центра данной окружности. Значит, построение, о котором идет речь, невозможно.

Известный еще с античных времен.

В задачах на построение возможны следующие операции:

  • Отметить произвольную точку на плоскости, точку на одной из построенных линий или точку пересечения двух построенных линий.
  • С помощью циркуля нарисовать круг с центром в построенной точке и радиусом, равным расстоянию между двумя уже построенными точками.
  • С помощью линейки провести прямую, проходящую через две построенные точки.

При этом циркуль и линейка считаются идеальными инструментами, в частности:


1. Простой пример

Деление отрезка пополам

Задача. С помощью циркуля и линейки разделить данный отрезок AB на две равные части. Один из решений показано на рисунке:

  • Циркулем строим окружность с центром в точке A радиуса AB.
  • Строим окружность с центром в точке B радиуса AB.
  • Находим точки пересечения P и Q двух построенных кругов.
  • Линейкой проводим отрезок, соединяющий точки P и Q.
  • Находим точку пересечения AB и PQ. Это - искомая середина отрезка AB.

2. Правильные многоугольники

Античным геометрам были известны методы построения правильных n-угольников для , , и .


4. Возможные и невозможные построения

Все построения является ничем иным, как решением какого-либо уравнения , причем коэффициенты этого уравнения связаны с длинами заданных отрезков. Поэтому удобно говорить о построении числа - графического решения уравнения определенного типа.

В рамках вищеокреслених требований, возможны следующие постройки:

Иначе говоря, можно построить лишь числа равны арифметическим выражениям с использованием квадратного корня из исходных чисел (длин отрезков). Например,


5. Вариации и обобщения


6. Забавные факты

  • GeoGebra , Kig, KSEG - программы, позволяющие выполнять построения с помощью циркуля и линейки.

Литература

  • А. Адлер. Теория геометрических построений, Перевод с немецкого Г. М. Фихтенгольц. Издание третье. Л., Навчпедвид, 1940-232 с.
  • И. Александров, Сборник геометрических задач на построение, Издание восемнадцатое, М., Навчпедвид, 1950-176 с.
  • Б. И. Аргунов, М Б Балк.

Команда предназначена для последовательного построения кривых и прямых линий так, что конец предыдущего объекта является началом следующего объекта. Построение геометрии этим способом возможно также из меню Инструменты → Геометрия

Параметр Описание
С помощью этой кнопки завершается создание цепочки геометрических элементов. При этом производится замыкание контура из этих элементов путем соединения последнего геометрического элемента с первой точкой цепочки. Эта кнопка активна в том случае, когда возможно осуществить замыкание цепочки. Например, цепочка не получится, если последовательно построены только 2 прямых отрезка - их можно замкнуть только 3 прямым отрезком - получится треугольник (минимальная фигура). Но в случае кривой Безье - достаточно 2 точек, чтобы с помощью третьей точки замкнуть контур
Отрезок Команды создания прямых отрезков
С помощью этой кнопки производится построение произвольного прямого отрезка, параллельного выбранной прямой линии. Эта линия может находиться вне строящейся цепочки
С помощью этой кнопки производится построение прямого отрезка, перпендикулярного выбранной прямой линии. Эта линия может находиться вне строящейся цепочки
С помощью этой кнопки производится построение прямого отрезка, касательного выбранной кривой. Эта кривая должна находиться вне строящейся цепочки. В некоторых случаях программа может предложить несколько вариантов построения касательных отрезков. Для выбора одного из них или всех вместе необходимо использовать кнопки Предыдущий или Следующий объект или, указывая мышкой на каждый нужный вариант, нажимать левую кнопку мыши. Если задать конкретную длину отрезка в поле Длина , то появляется возможность строить касательный отрезок, вторая точка которого может не лежать на выбранной кривой
Дуга Команды создания дуг
С помощью этой кнопки производится построение произвольной дуги путем последовательного указания трех точек в графическом окне или на панели параметров
С помощью этой кнопки производится построение дуги, касательной предыдущему элементу в цепочке
Лекальная кривая Команды создания кривых
С помощью этой кнопки производится построение сплайна по ряду точек
Сплайн по полюсам С помощью этой кнопки производится построение сплайна по ряду ограничительных точек. При этом можно задавать Вес точки и Порядок Вес определяет «силу притяжения» кривой к точке кривой. Чем больше вес, тем ближе к точке кривая. По сути это параметр кривизны кривой (чем больше кривизна кривой, тем меньше радиус изгиба, и наоборот). Параметр Порядок определяет минимальное количество точек, по которому будет построена кривая. Минимальный порядок 3 - позволяет построить кривую по трем точкам

Построение геометрии с помощью инструмента Линия

Команда Линия предназначена для последовательного построения прямых линий и дуг так, что конец предыдущего объекта является началом следующего объекта. Панель параметров этой команды содержит вырожденное меню команды . Построение геометрии этим способом возможно также из меню Инструменты → Геометрия → Линия . Панель параметров этой кнопки содержит следующие команды:

Параметр Описание
Отрезок С помощью этой кнопки производится построение произвольного прямого отрезка
Дуга С помощью этой кнопки производится построение дуги, касательной к предыдущему элементу в цепочке. При этом направление создания дуги изменяется перемещением курсора в противоположную сторону от начальной точки дуги
С помощью этой кнопки завершается создание цепочки геометрических элементов. После этого программа переходит в режим ожидания ввода новой цепочки
Если эта кнопка нажата, то производится построение цепочки элементов. Если эта кнопка отжата, то производится построение отдельных элементов (линий или дуг)

Построение кривых и ломаной линии

Построение кривых возможно из менюИнструменты → Геометрия → Кривые . Построение ломаной линии возможно из менюИнструменты → Геометрия → Ломаная . Кривая Безье представляет собой частный случай NURBS кривой. Все эти команды находятся на панели инструментов Геометрия. Способы их построения перечислены ниже:

Кнопка Сплайн предназначена для построения одноименной кривой по ряду точек. Представленные на панели параметров кнопки Разомкнутый объект и Замкнутый объект позволяют строить соответственно незамкнутую и замкнутую кривую, когда первая и последняя точки соединяются. Замкнутую кривую всегда можно переключить в незамкнутую кривую и наоборот.

У сплайна возможно расширенное редактирование характерных точек. Для этого предназначена кнопка Редактировать точки на панели параметров. Также эта команда автоматически вызывается при двойном щелчке левой кнопки мыши на уже построенной кривой. При этом точки кривой дополняются касательными отрезками, которые проходят через характерные точки кривой.

Кривую можно разбить на части с помощью команд меню Разбить → Кривую и Разбить → Кривую на N частей . Первая команда позволяет разбить выбранную кривую на 2 части в указанной точке. Вторая кривая позволяет разбить кривую на несколько равных частей. Для этого необходимо выбрать количество частей на панели параметров и указать кривую, которую необходимо разбить.

Передвигая мышкой характерные точки (квадратные точки) и концы касательных отрезков (круглые точки), можно управлять формой кривой. Можно передвигать эти точки с использование стрелок клавиатуры, для этого необходимо навести курсор на требуемую точку и нажать клавишу Enter. После этого станет возможным передвижение с помощью стрелок с шагом, кратным текущему шагу курсора. Завершить перемещение можно также по нажатию клавиши Enter. Возможно 3 варианта перемещения характерных точек:

  • Перемещение в любом направлении - если курсор при наведении на точку будет выглядеть в виде четырех диагональных стрелок
  • Перемещение в ограниченном диапазоне направлений - если курсор при наведении на точку будет выглядеть в виде четырех ортогональных стрелок
  • Перемещение курсора приводит к вращению геометрии - если курсор при наведении на точку будет выглядеть в виде вращающихся стрелок.

Точки кривой можно привязывать к другим объектам и другим точкам кривой с помощью глобальных и локальных привязок. Включение необходимой локальной привязки в процессе перемещения характерной точки возможно при нажатии правой кнопки мыши (или сочетании клавиш SHIFT+F10) и выборе привязки из выпадающего подменю Привязка .

Кнопка Сплайн по полюсам предназначена для построения кривой – сплайна по ряду точек. Для этого типа кривой можно задавать Вес с точки и Порядок кривой на панели параметров. Параметр Вес определяет «силу притяжения» кривой к точке кривой. Чем больше вес, тем ближе к точке кривая. По сути это параметр кривизны кривой (чем больше кривизна кривой, тем меньше радиус изгиба и наоборот). Параметр Порядок определяет минимальное количество точек, по которому будет построена кривая. Минимальный порядок 3 - позволяет построить кривую по трем точкам. Сплайн по полюсам напоминает обычный сплайн в режиме редактирования точек. Если конечные точки смежных касательных (тангенциальных) отрезков в к сплайне соединить, то получится подобие сплайна по полюсам. Сплайн по по полюсам изначально более «гладкий», чем обычный сплайн, в связи с тем, что в сплайн по полюсам обеспечивается непрерывность по кривизне.

Если построить 2 сплайна по полюcам, то можно соединить их концы так, чтобы обеспечивалась непрерывность («гладкость») в точке перехода.

Для этого необходимо построить вспомогательную линию в точке перехода с необходимым наклоном (например, касательную вспомогательную прямую в этой точке перехода) и расположить вторые точки от точки перехода на этой вспомогательной прямой. Теперь при перемещении 3 точки и выше (если смотреть от точки перехода) на любой из этих кривых будет сохраняться условие непрерывности кривой в точке перехода.

Добавить характерную точку можно с помощью простого щелчка левой кнопки мыши на нужном участке кривой.

Удалить характерную точку можно с помощью клавиши DEL при выборе требуемой точки. При этом кривая изменит форму.

Интерфейс работы со сплайнами по полюсам аналогичен интерфейсу работы с обычными сплайнами. На панели параметров можно также создать как Разомкнутый объект так и Замкнутый объект. И с помощью кнопки Редактировать точки можно также исправить форму кривой, двигая характерные точки. Точно так же, как и с кривыми Безье работают привязки, совершается перемещение точек и разбиение кривой на части.

Кнопка Ломаная предназначена для построения серии связанных между собой прямых линий. Ломаная линия отличается от обычной последовательности прямых отрезков тем, что сдвиг любого элемента не приводит к разрыву линии.

Интерфейс работы с ломаными линиями аналогичен интерфейсу работы с кривыми. На панели параметров можно также создать как Разомкнутый объект , так и Замкнутый объект . И с помощью кнопки Редактировать точки можно также исправить форму ломаной линии, двигая характерные точки. Точно так же, как и с кривыми, работают привязки и совершается перемещение точек. Отличительной особенностью ломаной линии является то, что ее можно разбить на отдельные элементы с помощью команды меню Редактор → Разрушить . После этого отдельные элементы ломаной линии можно перемещать или удалять, без воздействия на другие элементы.

Муниципальное бюджетное общеобразовательное учреждение

средняя общеобразовательная школа №34 с углубленным изучением отдельных предметов

МАН, физико-математическая секция

«Геометрические построения с помощью циркуля и линейки»

Выполнила: ученица 7 «А» класса

Батищева Виктория

Руководитель: Колтовская В.В.

Воронеж, 2013

3. Построение угла равного данному.

Проведем произвольную окружность с центром в вершине А данного угла (рис.3). Пусть В и С - точки пересечения окружности со сторонами угла. Радиусом АВ проведем окружность с центром в точке О-начальной точке данной полупрямой. Точку пересечения этой окружности с данной полупрямой обозначим С 1 . Опишем окружность с центром С 1 и Рис.3

радиусом ВС. Точка В 1 пересечения построенных окружностей в указанной полуплоскости лежит на стороне искомого угла.

6. Построение перпендикулярных прямых.

Проводим окружность с произвольным радиусом r с центром в точке O рис.6. Окружность пересекает прямую в точках A и B. Из точек A и B проводим окружности с радиусом AB. Пусть тоска С – точка пересечения этих окружностей. Точки А и В мы получили на первом шаге, при построении окружности с произвольным радиусом.

Искомая прямая проходит через точки С и О.


Рис.6

Известные задачи

1. Задача Брахмагупты

Построить вписанный четырехугольник по четырем его сторонам. Одно из решений использует окружность Аполлония. Решим задачу Аполлония, используя аналогию между трехокружником и треугольником. Как мы находим окружность, вписанную в треугольник: строим точку пересечения биссектрис, опускаем из нее перпендикуляры на стороны треугольника, основания перпендикуляров (точки пересечения перпендикуляра со стороной, на которую он опущен) и дают нам три точки, лежащие на искомой окружности. Проводим окружность через эти три точки – решение готово. Точно также мы поступим с задачей Аполлония.

2. Задача Аполлония

Построить с помощью циркуля и линейки окружность, касающуюся трех данных окружностей. По легенде, задача сформулирована Аполлонием Пергским примерно в 220 г. до н. э. в книге «Касания», которая была потеряна, но была восстановлена в 1600 г. Франсуа Виетом, «галльским Аполлонием», как его называли современники.

Если ни одна из заданных окружностей не лежит внутри другой, то эта задача имеет 8 существенно различных решений.


Построение правильных многоугольников.

П

равильный
(или равносторонний ) треугольник - это правильный многоугольник с тремя сторонами, первый из правильных многоугольников. Все стороны правильного треугольника равны между собой, а все углы равны 60°. Чтобы построить равносторонний треугольник нужно разделить окружность на 3 равные части. Для этого необходимо провести дугу радиусом R этой окружности лишь из одного конца диаметра, получим первое и второе деление. Третье деление находится на противоположном конце диаметра. Соединив эти точки, получим равносторонний треугольник.

Правильный шестиугольник можно построить с помощью циркуля и линейки. Ниже приведён метод построения через деление окружности на 6 частей. Используем равенство сторон правильного шестиугольника радиусу описанной окружности. Из противоположных концов одного из диаметров окружности описываем дуги радиусом R. Точки пересечения этих дуг с заданной окружностью разделят её на 6 равных частей. Последовательно соединив найденные точки, получают правильный шестиугольник.

Построение правильного пятиугольника.

П
равильный пятиугольник может быть построен с помощью циркуля и линейки, или вписыванием его в заданную окружность, или построением на основе заданной стороны. Этот процесс описан Евклидом в его «Началах» около 300 года до н. э.

Вот один из методов построения правильного пятиугольника в заданной окружности:

    Постройте окружность, в которую будет вписан пятиугольник и обозначьте её центр как O . (Это зелёная окружность на схеме справа).

    Выберите на окружности точку A , которая будет одной из вершин пятиугольника. Постройте прямую через O и A .

    Постройте прямую перпендикулярно прямой OA , проходящую через точку O . Обозначьте одно её пересечение с окружностью, как точку B .

    Постройте точку C посередине между O и B .

    C через точку A . Обозначьте её пересечение с прямой OB (внутри первоначальной окружности) как точку D .

    Проведите окружность с центром в A через точку D, пересечение данной окружности с оригинальной (зелёной окружностью) обозначьте как точки E и F .

    Проведите окружность с центром в E через точку A G .

    Проведите окружность с центром в F через точку A . Обозначьте её другое пересечение с первоначальной окружностью как точку H .

    Постройте правильный пятиугольник AEGHF .

Неразрешимые задачи

Следующие три задачи на построение были поставлены ещё в античности:

    Трисекция угла - разбить произвольный угол на три равные части.

Иначе говоря, необходимо построить трисектрисы угла - лучи, делящие угол на три равные части. П. Л. Ванцель доказал в 1837 году, что задача разрешима только тогда, когда например, трисекция осуществима для углов α = 360°/n при условии, что целое число n не делится на 3. Тем не менее, в прессе время от времени публикуются (неверные) способы осуществления трисекции угла циркулем и линейкой.

    Удвоение куба - классическая античная задача на построение циркулем и линейкой ребра куба, объём которого вдвое больше объёма заданного куба.

В современных обозначениях, задача сводится к решению уравнения . Всё сводится к проблеме построения отрезка длиной . П. Ванцель доказал в 1837 году, что эта задача не может быть решена с помощью циркуля и линейки.

    Квадратура круга - задача, заключающаяся в нахождении построения с помощью циркуля и линейки квадрата, равновеликого по площади данному кругу .

Как известно, с помощью циркуля и линейки можно выполнить все 4 арифметических действия и извлечение квадратного корня; отсюда следует, что квадратура круга возможна в том и только в том случае, если с помощью конечного числа таких действий можно построить отрезок длины π. Таким образом, неразрешимость этой задачи следует из неалгебраичности (трансцендентности) числа π, которая была доказана в 1882 году Линдеманом.

Другая известная неразрешимая с помощью циркуля и линейки задача - построение треугольника по трём заданным длинам биссектрис .

Причём эта задача остаётся неразрешимой даже при наличии трисектора.

Только в XIX веке было доказано, что все три задачи неразрешимы при использовании только циркуля и линейки. Вопрос возможности построения полностью решён алгебраическими методами, основанными на теории Галуа.

А ЗНАЕТЕ ЛИ ВЫ, ЧТО...

(из истории геометрических построений)


Когда-то в построение правильных многоугольников вкладывали мистический смысл.

Так, пифагорейцы, последователи религиозно-философского учения, основанного Пифагором, и жившие в древней Греции (V I-I V вв. до н. э.), приняли в качестве знака своего союза звездчатый многоугольник, образованный диагоналями правильного пятиугольника.

Правила строгого геометрического построения некоторых правильных многоугольников изложены в книге «Начала» древнегреческого математика Евклида, жившего в III в. до н.э. Для выполнения этих построений Евклид предлагал пользоваться только линейкой и циркулем, который в то время был без шарнирного устройства соединения ножек (такое ограничение в инструментах было непреложным требованием античной математики).

Правильные многоугольники нашли широкое применение и в античной астрономии. Если Евклида построение этих фигур интересовало с точки зрения математики, то для древнегреческого астронома Клавдия Птолемея (около 90 - 160 г. н. э.) оно оказалось необходимым как вспомогательное средство при решении астрономических задач. Так, в 1-й книге «Альмагесты» вся десятая глава посвящена построению правильных пяти- и десятиугольников.

Однако помимо чисто научных трудов, построение правильных многоугольников было неотъемлемой частью книг для строителей, ремесленников, художников. Умение изображать эти фигуры издавна требовалось и в архитектуре, и в ювелирном деле, и в изобразительном искусстве.

В «Десяти книгах о зодчестве» римского архитектора Витрувия (жившего примерно в 63 -14 гг. до н. э.) говорится, что городские стены должны иметь в плане вид правильного многоугольника, а башни крепости «следует делать круглыми или многоугольными, ибо четырехугольник скорее разрушается осадными орудиями».

Планировка городов очень интересовала Витрувия, который считал, что нужно спланировать улицы так, чтобы вдоль них не дули основные ветры. Предполагалось, что таких ветров восемь и что они дуют в определенных направлениях.

В эпоху Возрождения построение правильных многоугольников, и в частности пятиугольника, представляло не простую математическую игру, а являлось необходимой предпосылкой для построения крепостей.

Правильный шестиугольник явился предметом специального исследования великого немецкого астронома и математика Иоганна Кеплера (1571-1630), о котором он рассказывает в своей книге «Новогодний подарок, или о шестиугольных снежинках». Рассуждал о причинах того, почему снежинки имеют шестиугольную форму, он отмечает, в частности, следующее: «...плоскость можно покрыть без зазоров лишь следующими фигурами: равносторонними треугольниками, квадратами и правильными шестиугольниками. Среди этих фигур правильный шестиугольник покрывает наибольшую площадь»

0дним из наиболее известных ученых, занимавшихся геометрическими построениями, был великий немецкий художник и математик Альбрехт Дюрер (1471 -1528), который посвятил им значительную часть своей книги «Руководства...». Он предложил правила построения правильных многоугольников с 3. 4, 5... 16-ю сторонами. Методы деления окружности, предложенные Дюрером, не универсальны, в каждом конкретном случае используется индивидуальный прием.

Дюрер применял методы построения правильных многоугольников в художественной практике, например, при создании разного рода орнаментов и узоров для паркета. Наброски таких узоров были сделаны им во время поездки в Нидерланды, где паркетные полы встречались во многих домах.

Дюрер составлял орнаменты из правильных многоугольников, которые соединены в кольца (кольца из шести равносторонних треугольников, четырех четырехугольников, трех или шести шестиугольников, четырнадцати семиугольников, четырех восьмиугольников).

Заключение

Итак, геометрические построения - это способ решения задачи, при котором ответ получают графическим путем. Построения выполняют чертежными инструментами при максимальной точности и аккуратности работы, так как от этого зависит правильность решения.

Благодаря этой работе я познакомилась с историей возникновения циркуля, подробнее познакомилась с правилами выполнения геометрических построений, получила новые знания и применила их на практике.
Решение задач на построение циркулем и линейкой – полезное времяпровождение, позволяющее по-новому посмотреть на известные свойства геометрических фигур и их элементов. В данной работе рассмотрены наиболее актуальные задачи, связанные с геометрическими построениями с помощью циркуля и линейки. Рассмотрены основные задачи и даны их решения. Приведенные задачи имеют значительный практический интерес, закрепляют полученные знания по геометрии и могут использоваться для практических работ.
Таким образом, цель работы достигнута, поставленные задачи выполнены.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-1.jpg" alt=">Построение с помощью линейки и циркуля Геометрия ">

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-2.jpg" alt="> Построить отрезок равный данному Ú Задача А В "> Построить отрезок равный данному Ú Задача А В На данном луче от его начала С отложить отрезок, равный данному Ú Решение 1. Изобразим фигуры, данные в D условии задачи: луч ОС и отрезок АВ О 2. Затем циркулем построим окружность радиуса АВ и с центром О. 3. Эта окружность пересечёт луч ОС в некой точке D. Отрезок OD – искомый.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-3.jpg" alt="> Построение угла равного данному Рассмотрим треугольники "> Построение угла равного данному Рассмотрим треугольники Ú АВС и ОDE. Задача В Отрезки АВ и АС являются равный Отложить от данного луча угол, данному Ú радиусами окружности с Решение 1. центром А, савершиной А и луч и ОЕ Построим угол отрезки OD ОМ А С 2. – радиусами окружности с Проведем окружность произвольного центром О. Таквершине А данного радиуса с центром в как по угла. 3. построениюпересекает стороны Эта окружность эти окружности имеют равные радиусы, то угла в точках В и С. 4. АВ=OD, AC=OE. Также же Затем проведём окружность того по Е радиуса с центром в начале данного построению ВС=DE. М луча ОМ. О D Следовательно, треугольники 5. Она пересекает луч в точке D. 6. равны по построим окружность с После этого 3 сторонам. Поэтому центром D, радиус которой равен ВС 7. угол DOEс= углу BAC. Т. е. Окружности центрами О и D построенный угол МОЕ равен пересекаются в двух точках. Одну из углу А. буквой Е них назовём 8. Докажем, что угол МОЕ - искомый

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-4.jpg" alt="> Построение биссектрисы угла Задача Ú"> Построение биссектрисы угла Задача Ú Рассмотрим треугольники Ú АСЕ и АВЕ. биссектрису угла Построить Они равны по Ú трём сторонам. АЕ – общая, Решение Е 1. АС и АВ равны как угол ВАС Изобразим данный радиусы 2. одной и тойокружность Проведём же окружности, В СЕ = ВЕ по построению. произвольного радиуса с С Ú Изцентром А. Она пересечёт равенства треугольников следует, что угол САЕ В и С стороны угла в точках = углу 3. ВАЕ, т. е. луч АЕдве Затем проведём – окружности одинакового биссектриса данного угла. А радиуса ВС с центрами в точках В и С 4. Докажем, что луч АЕ – биссектриса угла ВАС

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-5.jpg" alt="> Построение перпендикулярных прямых Ú Задача Даны прямая"> Построение перпендикулярных прямых Ú Задача Даны прямая и точка на ней. Построить прямую, проходящую через данную точку Р и перпендикулярную данной прямой. Ú Решение 1. Построим прямую а и точку М, принадлежащую этой прямой. 2. На лучах прямой а, исходящих из точки М, отложим равные отрезки МА и МВ. М а Затем построим две окружности с центрами А и В радиуса АВ. Они пересекутся в двух точках: P и Q. А B 3. Проведём прямую через точку М и одну из этих точек, например прямую МР, и докажем, что эта прямая искомая, т. Е. что она перпендикулярна к данной прямой. 4. В самом деле, так как медиана РМ равнобедренного треугольника РАВ Q является также высотой, то РМ перпендикулярна а.

Src="https://present5.com/presentation/3/178794035_430371946.pdf-img/178794035_430371946.pdf-6.jpg" alt="> Построение середины отрезка Задача Ú Построить середину данного"> Построение середины отрезка Задача Ú Построить середину данного отрезка Ú Решение Р 1. Пусть АВ – данный отрезок. 2. Построим две окружности с 21 центрами А и В радиуса АВ. Они пересекаются в точках Р и Q. О 3. Проведём прямую РQ. Точка О пересечения этой прямой с А B отрезком АВ и есть искомая середина отрезка АВ 4. В самом деле, треугольники АРQ и ВРQ равны по трём сторонам, поэтому угол 1 = Q углу 2 5. Следовательно отрезок РО – биссектриса равнобедренного треугольника АРВ, а значит, и медиана, т. Е. точка О – середина отрезка АВ.