Примеры решения задач на тему «Случайные величины. Дискретная случайная величина

В приложениях теории вероятностей основное значение имеет количественная характеристика эксперимента. Величина, которая может быть количественно определена и которая в результате эксперимента может принимать в зависимости от случая различные значения, называется случайной величиной.

Примеры случайных величин:

1. Число выпадений четного числа очков при десяти бросаниях игральной кости.

2. Число попаданий в мишень стрелком, который производит серию выстрелов.

3. Число осколков разорвавшегося снаряда.

В каждом из приведенных примеров случайная величина может принимать лишь изолированные значения, то есть значения, которые можно пронумеровать с помощью натурального ряда чисел.

Такая случайная величина, возможные значения которой есть отдельные изолированные числа, которые эта величина принимает с определенными вероятностями, называется дискретной.

Число возможных значений дискретной случайной величины может быть конечным или бесконечным (счетным).

Законом распределения дискретной случайной величины называют перечень её возможных значений и соответствующих им вероятностей. Закон распределения дискретной случайной величины можно задать в виде таблицы (ряд распределения вероятностей), аналитически и графически (многоугольник распределения вероятностей).

При осуществлении того или иного эксперимента возникает необходимость оценивать изучаемую величину «в среднем». Роль среднего значения случайной величины играет числовая характеристика, называемая математическим ожиданием, которая определяется формулой

где x 1 , x 2 ,.. , x n – значения случайной величины X , а p 1 , p 2 , ... , p n – вероятности этих значений (заметим, что p 1 + p 2 +…+ p n = 1).

Пример. Производится стрельба по мишени (рис. 11).

Попадание в I дает три очка, в II – два очка, в III – одно очко. Число очков, выбиваемых при одном выстреле одним стрелком, имеет закон распределения вида

Для сравнения мастерства стрелков достаточно сравнить средние значения выбиваемых очков, т.е. математические ожидания M (X ) и M (Y ):

M (X ) = 1 0,4 + 2  0,2 + 3  0,4 = 2,0,

M (Y ) = 1 0,2 + 2  0,5 + 3  0,3 = 2,1.

Второй стрелок дает в среднем несколько большее число очков, т.е. при многократной стрельбе он будет давать лучший результат.

Отметим свойства математического ожидания:

1. Математическое ожидание постоянной величины равно самой постоянной:

M (C ) = C .

2. Математическое ожидание суммы случайных величин равно сумме математических ожиданий слагаемых:

M = (X 1 + X 2 +…+ X n )= M (X 1)+ M (X 2)+…+ M (X n ).

3. Математическое ожидание произведения взаимно независимых случайных величин равно произведению математических ожиданий cомножителей

M (X 1 X 2 X n ) = M (X 1)M (X 2)M (X n ).

4. Математическое отрицание биноминального распределения равно произведению числа испытаний на вероятность появления события в одном испытании (задача 4.6).

M (X ) = пр .

Для оценки того, каким образом случайная величина «в среднем» уклоняется от своего математического ожидания, т.е. для того чтобы охарактеризовать разброс значений случайной величины в теории вероятностей служит понятие дисперсии.

Дисперсией случайной величины X называют математическое ожидание квадрата отклонения:

D (X ) = M [(X - M (X )) 2 ].

Дисперсия является числовой характеристикой рассеивания случайной величины. Из определения видно, что чем меньше дисперсия случайной величины, тем кучнее располагаются её возможные значения около математического ожидания, то есть тем лучше значения случайной величины характеризуются её математическим ожиданием.

Из определения следует, что дисперсия может быть вычислена по формуле

.

Дисперсию удобно вычислять по другой формуле:

D (X ) = M (X 2) - (M (X )) 2 .

Дисперсия обладает следующими свойствами:

1. Дисперсия постоянной равна нулю:

D (C ) = 0.

2. Постоянный множитель можно выносить за знак дисперсии, возводя его в квадрат:

D (CX ) = C 2 D (X ).

3. Дисперсия суммы независимых случайных величин равна сумме дисперсии слагаемых:

D (X 1 + X 2 + X 3 +…+ X n )= D (X 1)+ D (X 2)+…+ D (X n )

4. Дисперсия биномиального распределения равна произведению числа испытаний на вероятность появления и непоявления события в одном испытании:

D (X ) = npq .

В теории вероятностей часто используется числовая характеристика, равная корню квадратному из дисперсии случайной величины. Эта числовая характеристика называется средним квадратным отклонением и обозначается символом

.

Она характеризует примерный размер уклонения случайной величины от её среднего значения и имеет одинаковую со случайной величиной размерность.

4.1. Стрелок проводит по мишени три выстрела. Вероятность попадания в мишень при каждом выстреле равна 0,3.

Построить ряд распределения числа попаданий.

Решение . Число попаданий является дискретной случайной величиной X . Каждому значению x n случайной величины X отвечает определенная вероятность P n .

Закон распределения дискретной случайной величины в данном случае можно задать рядом распределения .

В данной задаче X принимает значения 0, 1, 2, 3. По формуле Бернулли

,

найдем вероятности возможных значений случайной величины:

Р 3 (0) = (0,7) 3 = 0,343,

Р 3 (1) =0,3(0,7) 2 = 0,441,

Р 3 (2) =(0,3) 2 0,7 = 0,189,

Р 3 (3) = (0,3) 3 = 0,027.

Расположив значения случайной величины X в возрастающем порядке, получим ряд распределения:

X n

Заметим, что сумма

означает вероятность того, что случайная величина X примет хотя бы одно значение из числа возможных, а это событие достоверное, поэтому

.

4.2 .В урне имеются четыре шара с номерами от 1 до 4. Вынули два шара. Случайная величинаX – сумма номеров шаров. Построить ряд распределения случайной величиныX .

Решение. Значениями случайной величиныX являются 3, 4, 5, 6, 7. Найдем соответствующие вероятности. Значение 3 случайной величиныX может принимать в единственном случае, когда один из выбранных шаров имеет номер 1, а другой 2. Число всевозможных исходов испытания равно числу сочетаний из четырех (число возможных пар шаров) по два.

По классической формуле вероятности получим

Аналогично,

Р (Х = 4) =Р (Х = 6) =Р (Х = 7) = 1/6.

Сумма 5 может появиться в двух случаях: 1 + 4 и 2 + 3, поэтому

.

Х имеет вид:

Найти функцию распределения F (x ) случайной величиныX и построить ее график. Вычислить дляX ее математическое ожидание и дисперсию.

Решение . Закон распределения случайной величины может быть задан функцией распределения

F (x ) = P (X x ).

Функция распределения F (x ) – неубывающая, непрерывная слева функция, определенная на всей числовой оси, при этом

F (- )= 0,F (+ )= 1.

Для дискретной случайной величины эта функция выражается формулой

.

Поэтому в данном случае

График функции распределения F (x ) представляет собой ступенчатую линию (рис. 12)

F (x )

Математическое ожидание М (Х ) является взвешенной средней арифметической значенийх 1 , х 2 ,……х n случайной величиныХ при весахρ 1, ρ 2, …… , ρ n и называется средним значением случайной величиныХ . По формуле

М (Х ) = х 1 ρ 1 + х 2 ρ 2 + ……+ х n ρ n

М (Х ) = 3·0,14+5·0,2+7·0,49+11·0,17 = 6,72.

Дисперсия характеризует степень рассеяния значений случайной величины от своего среднего значения и обозначаетсяD (Х ):

D (Х )[(Х-М (Х )) 2 ] = М (Х 2) –[М (Х )] 2 .

Для дискретной случайной величины дисперсия имеет вид

или она может быть вычислена по формуле

Подставляя числовые данные задачи в формулу, получим:

М (Х 2) = 3 2 ∙ 0,14+5 2 ∙ 0,2+7 2 ∙ 0,49+11 2 ∙ 0,17 = 50,84

D (Х ) = 50,84-6,72 2 = 5,6816.

4.4. Две игральные кости одновременно бросают два раза. Написать биномиальный закон распределения дискретной случайной величиныХ - числа выпадений четного суммарного числа очков на двух игральных костях.

Решение . Введем в рассмотрение случайное событие

А = {на двух костях при одном бросании выпало в сумме четное число очков}.

Используя классическое определение вероятности найдем

Р (А )= ,

где n - число всевозможных исходов испытания находим по правилу

умножения:

n = 6∙6 =36,

m - число благоприятствующих событиюА исходов - равно

m = 3∙6=18.

Таким образом, вероятность успеха в одном испытании равна

ρ = Р (А )= 1/2.

Задача решается с применением схемы испытаний Бернулли. Одним испытанием здесь будет бросание двух игральных костей один раз. Число таких испытаний n = 2. Случайная величинаХ принимает значения 0, 1, 2 с вероятностями

Р 2 (0) =,Р 2 (1) =,Р 2 (2) =

Искомое биноминальное распределение случайной величины Х можно представить в виде ряда распределения:

х n

ρ n

4.5 . В партии из шести деталей имеется четыре стандартных. Наудачу отобраны три детали. Составить распределение вероятностей дискретной случайной величиныХ – числа стандартных деталей среди отобранных и найти ее математическое ожидание.

Решение. Значениями случайной величиныХ являются числа 0,1,2,3. Ясно, чтоР (Х =0)=0, поскольку нестандартных деталей всего две.

Р (Х =1) =
=1/5,

Р (Х= 2) =
= 3/5,

Р (Х =3) =
= 1/5.

Закон распределения случайной величины Х представим в виде ряда распределения:

х n

ρ n

Математическое ожидание

М (Х )=1 ∙ 1/5+2 ∙ 3/5+3 ∙ 1/5=2.

4.6 . Доказать, что математическое ожидание дискретной случайной величиныХ - числа появлений событияА вn независимых испытаниях, в каждом из которых вероятность появления события равнаρ – равно произве-дению числа испытаний на вероятность появления события в одном испыта-нии, то есть доказать, что математическое ожидание биноминального распределения

М (Х ) =n . ρ ,

а дисперсия

D (X ) =np .

Решение. Случайная величинаХ может принимать значения 0, 1, 2…,n . ВероятностьР (Х = к) находится по формуле Бернулли:

Р (Х =к)=Р n (к)=ρ к (1) n- к

Ряд распределения случайной величины Х имеет вид:

х n

ρ n

q n

ρq n- 1

ρq n- 2

ρ n

где q = 1- ρ .

Для математического ожидания имеем выражение:

М (Х )=ρq n - 1 +2 ρ 2 q n - 2 +…+.n ρ n

В случае одного испытания, то есть при n = 1для случайной величиныХ 1 –числа появлений событияА - ряд распределения имеет вид:

х n

ρ n

M (X 1)= 0 ∙ q+ 1 ∙ p = p

D (X 1) = p p 2 = p (1- p ) = pq .

Если Х к – число появлений событияА в к-ом испытании, тоР (Х к )= ρ и

Х=Х 1 2 +….+Х n .

Отсюда получаем

М (Х )(Х 1 )(Х 2)+ (Х n )= ,

D (X )=D (X 1)+D (X 2)+ ... +D (X n )=npq.

4.7. ОТК проверяет изделия на стандартность. Вероятность того, что изделие стандартно, равна 0,9. В каждой партии содержится 5 изделий. Найти математическое ожидание дискретной случайной величиныХ -числа партий, в каждой из которых окажется равно 4 стандартных изделия – если проверке подлежит 50 партий.

Решение . Вероятность того, что в каждой произвольно выбранной партии окажется 4 стандартных изделия, постоянна; обозначим ее черезρ .Тогда математическое ожидание случайной величиныХ равноМ (Х )= 50∙ρ.

Найдем вероятность ρ по формуле Бернулли:

ρ=Р 5 (4)== 0,94∙0,1=0,32.

М (Х )= 50∙0,32=16.

4.8 . Бросаются три игральные кости. Найти математическое ожидание суммы выпавших очков.

Решение. Можно найти распределение случайной величиныХ - суммы выпавших очков и затем ее математическое ожидание. Однако такой путь слишком громоздок. Проще использовать другой прием, представляя случайную величинуХ , математическое ожидание которой требуется вычислить, в виде суммы нескольких более простых случайных величин, математическое ожидание которых вычислить легче. Если случайная величинаХ i – это число очков, выпавших наi – й кости (i = 1, 2, 3), то сумма очковХ выразится в виде

Х = Х 1 + Х 2 + Х 3 .

Для вычисления математического ожидания исходной случайной величины останется лишь воспользоваться свойством математического ожидании

М (Х 1 + Х 2 + Х 3 ) = М (Х 1 ) + М (Х 2) + М (Х 3 ).

Очевидно, что

Р (Х i = К )= 1/6, К = 1, 2, 3, 4, 5, 6, i = 1, 2, 3.

Следовательно, математическое ожидание случайной величины Х i имеет вид

М (Х i ) = 1/6∙1 + 1/6∙2 +1/6∙3 + 1/6∙4 + 1/6∙5 + 1/6∙6 = 7/2,

М (Х ) = 3∙7/2 = 10,5.

4.9. Определить математическое ожидание числа приборов, отказавших в работе за время испытаний, если:

а) вероятность отказа для всех приборов одна и та же равна р , а число испытуемых приборов равно n ;

б) вероятность отказа для i го прибора равна p i , i = 1, 2, … , n .

Решение. Пусть случайная величина Х – число отказавших приборов, тогда

Х = Х 1 + Х 2 + … + Х n ,

X i =

Ясно, что

Р (Х i = 1)= Р i , Р (Х i = 0)= 1Р i , i= 1, 2,, n.

М (Х i )= 1∙Р i + 0∙(1–Р i ) i ,

М (Х )(Х 1)(Х 2)+ … +М (Х n ) 1 2 + … +Р n .

В случае «а» вероятность отказа приборов одна и та же, то есть

Р i =p , i= 1, 2, , n .

М (Х )= np .

Этот ответ можно было получить сразу, если заметить, что случайная величина Х имеет биномиальное распределение с параметрами (n , p ).

4.10. Две игральные кости бросают одновременно два раза. Написать биномиальный закон распределения дискретной случайной величины Х – числа выпадения четного числа очков на двух игральных костях.

Решение. Пусть

А ={выпадение четного числа на первой кости},

В = {выпадение четного числа на второй кости}.

Выпадение четного числа на обеих костях при одном бросании выразится произведением АВ. Тогда

Р (АВ ) = Р (А )∙Р (В ) =
.

Результат второго бросания двух игральных костей не зависит от первого, поэтому применима формула Бернулли при

n = 2, р = 1/4, q = 1 – р = 3/4.

Случайная величина Х может принимать значения 0, 1, 2, вероятность которых найдем по формуле Бернулли:

Р (Х= 0) = Р 2 (0) = q 2 = 9/16,

Р (Х= 1) = Р 2 (1) = С , р q = 6/16,

Р (Х= 2) = Р 2 (2) = С , р 2 = 1/16.

Ряд распределения случайной величины Х:

4.11. Устройство состоит из большого числа независимо работающих элементов с одинаковой очень малой вероятностью отказа каждого элемента за время t . Найти среднее число отказавших за время t элементов, если вероятность того, что за это время откажет хотя бы один элемент, равна 0,98.

Решение. Число отказавших за время t элементов – случайная величина Х , которая распределена по закону Пуассона, поскольку число элементов велико, элементы работают независимо и вероятность отказа каждого элемента мала. Среднее число появлений события в n испытаниях равно

М (Х ) = np .

Поскольку вероятность отказа К элементов из n выражается формулой

Р n (К )
,

где  = np , то вероятность того, что не откажет ни один элемент за время t получим при К = 0:

Р n (0) = е -  .

Поэтому вероятность противоположного события – за время t откажет хотя бы один элемент – равна 1 - е -  . По условию задачи эта вероятность равна 0,98. Из уравнения

1 - е -  = 0,98,

е -  = 1 – 0,98 = 0,02,

отсюда  = -ln 0,02 4.

Итак, за время t работы устройства откажет в среднем 4 элемента.

4.12 . Игральная кость бросается до тех пор, пока не выпадет «двойка». Найти среднее число бросаний.

Решение . Введем случайную величину Х – число испытаний, которое надо произвести, пока интересующее нас событие не наступит. Вероятность того, что Х = 1 равна вероятности того, что при одном бросании кости выпадет «двойка», т.е.

Р (Х= 1) = 1/6.

Событие Х = 2 означает, что при первом испытании «двойка» не выпала, а при втором выпала. Вероятность событияХ = 2 находим по правилу умножения вероятностей независимых событий:

Р (Х= 2) = (5/6)∙(1/6)

Аналогично,

Р (Х= 3) = (5/6) 2 ∙1/6, Р (Х= 4) = (5/6) 2 ∙1/6

и т.д. Получим ряд распределения вероятностей:

(5/6) к ∙1/6

Среднее число бросаний (испытаний) есть математическое ожидание

М (Х ) = 1∙1/6 + 2∙5/6∙1/6 + 3∙(5/6) 2 ∙1/6 + … + К (5/6) К -1 ∙1/6 + … =

1/6∙(1+2∙5/6 +3∙(5/6) 2 + … + К (5/6) К -1 + …)

Найдем сумму ряда:

К g К -1 = (g К ) g
.

Следовательно,

М (Х ) = (1/6) (1/ (1 – 5/6) 2 = 6.

Таким образом, нужно осуществить в среднем 6 бросаний игральной кости до тех пор, пока не выпадет «двойка».

4.13. Производятся независимые испытания с одинаковой вероятностью появления события А в каждом испытании. Найти вероятность появления события А , если дисперсия числа появлений события в трех независимых испытаниях равна 0,63.

Решение. Число появлений события в трех испытаниях является случайной величиной Х , распределенной по биномиальному закону. Дисперсия числа появлений события в независимых испытаниях (с одинаковой вероятностью появления события в каждом испытании) равна произведению числа испытаний на вероятности появления и непоявления события (задача 4.6)

D (Х ) = npq .

По условию n = 3, D (Х ) = 0,63, поэтому можно р найти из уравнения

0,63 = 3∙р (1),

которое имеет два решения р 1 = 0,7 и р 2 = 0,3.

На этой странице мы собрали примеры решения учебных задач о дискретных случайных величинах . Это довольно обширный раздел: изучаются разные законы распределения (биномиальный, геометрический, гипергеометрический, Пуассона и другие), свойства и числовые характеристики, для каждого ряда распределения можно строить графические представления: полигон (многоугольник) вероятностей, функцию распределения.

Ниже вы найдете примеры решений о дискретных случайных величинах, в которых требуется применить знания из предыдущих разделов теории вероятностей для составления закона распределения, а затем вычислить математическое ожидание, дисперсию, среднее квадратическое отклонение, построить функцию распределения, дать ответы на вопросы о ДСВ и т.п.

Примеры для популярных законов распределения вероятностей:


Калькуляторы на характеристики ДСВ

  • Вычисление математического ожидания, дисперсии и среднего квадратического отклонения ДСВ .

Решенные задачи о ДСВ

Распределения, близкие к геометрическому

Задача 1. На пути движения автомашины 4 светофора, каждый из которых запрещает дальнейшее движение автомашины с вероятностью 0,5. Найти ряд распределения числа светофоров, пройденных машиной до первой остановки. Чему равны математическое ожидание и дисперсия этой случайной величины?

Задача 2. Охотник стреляет по дичи до первого попадания, но успевает сделать не более четырех выстрелов. Составить закон распределения числа промахов, если вероятность попадания в цель при одном выстреле равна 0,7. Найти дисперсию этой случайной величины.

Задача 3. Стрелок, имея 3 патрона, стреляет в цель до первого попадания. Вероятности попадания при первом, втором и третьем выстрелах соответственно 0,6, 0,5, 0,4. С.В. $\xi$ - число оставшихся патронов. Составить ряд распределения случайной величины, найти математическое ожидание, дисперсию, среднее квадратичное отклонение с.в., построить функцию распределения с.в., найти $P(|\xi-m| \le \sigma$.

Задача 4. В ящике содержится 7 стандартных и 3 бракованных детали. Вынимают детали последовательно до появления стандартной, не возвращая их обратно. $\xi$ - число извлеченных бракованных деталей.
Составить закон распределения дискретной случайной величины $\xi$, вычислить ее математическое ожидание, дисперсию, среднее квадратическое отклонение, начертить многоугольник распределения и график функции распределения.

Задачи с независимыми событиями

Задача 5. На переэкзаменовку по теории вероятностей явились 3 студента. Вероятность того, что первый сдаст экзамен, равна 0,8, второй - 0,7, третий - 0,9. Найдите ряд распределения случайной величины $\xi$ числа студентов, сдавших экзамен, постройте график функции распределения, найдите $М(\xi), D(\xi)$.

Задача 6. Вероятность попадания в цель при одном выстреле равна 0,8 и уменьшается с каждым выстрелом на 0,1. Составить закон распределения числа попаданий в цель, если сделано три выстрела. Найти математическое ожидание, дисперсию и С.К.О. этой случайной величины. Построить график функции распределения.

Задача 7. По цели производится 4 выстрела. Вероятность попадания при этом растет так: 0,2, 0,4, 0,6, 0,7. Найти закон распределения случайной величины $X$ - числа попаданий. Найти вероятность того, что $X \ge 1$.

Задача 8. Подбрасываются две симметричные монеты, подсчитывается число гербов на обеих верхних сторонах монет. Рассматривается дискретная случайная величина $X$- число выпадений гербов на обеих монетах. Записать закон распределения случайной величины $X$, найти ее математическое ожидание.

Другие задачи и законы распределения ДСВ

Задача 9. Два баскетболиста делают по три броска в корзину. Вероятность попадания для первого баскетболиста равна 0,6, для второго – 0,7. Пусть $X$ - разность между числом удачных бросков первого и второго баскетболистов. Найти ряд распределения, моду и функцию распределения случайной величины $X$. Построить многоугольник распределения и график функции распределения. Вычислить математическое ожидание, дисперсию и среднее квадратичное отклонение. Найти вероятность события $(-2 \lt X \le 1)$.

Задача 10. Число иногородних судов, прибывающих ежедневно под погрузку в определенный порт – случайная величина $X$, заданная так:
0 1 2 3 4 5
0,1 0,2 0,4 0,1 0,1 0,1
А) убедитесь, что задан ряд распределения,
Б) найдите функцию распределения случайной величины $X$,
В) если в заданный день прибывает больше трех судов, то порт берет на себя ответственность за издержки вследствие необходимости нанимать дополнительных водителей и грузчиков. Чему равна вероятность того, что порт понесет дополнительные расходы?
Г) найдите математическое ожидание, дисперсию и среднее квадратическое отклонение случайной величины $X$.

Задача 11. Бросают 4 игральные кости. Найти математическое ожидание суммы числа очков, которые выпадут на всех гранях.

Задача 12. Двое поочередно бросают монету до первого появления герба. Игрок, у которого выпал герб, получает от другого игрока 1 рубль. Найти математическое ожидание выигрыша каждого игрока.


X задана законом распределения вероятностей: Тогда ее среднее квадратическое отклонение равно … 0,80

Решение:
Среднее квадратическое отклонение случайной величины Х определяется как , где дисперсию дискретной случайной величины можно вычислить по формуле .Тогда , а


Решение:
A (вынутый наудачу шар – черный) применим формулу полной вероятности: .Здесь вероятность того, что из первой урны переложили во вторую урну белый шар; – вероятность того, что из первой урны переложили во вторую урну черный шар; – условная вероятность того, что вынутый шар черный, если из первой урны во вторую был переложен белый шар; – условная вероятность того, что вынутый шар черный, если из первой урны во вторую был переложен черный шар.


Дискретная случайная величина Х задана законом распределения вероятностей: Тогда вероятность равна …

Решение:
Дисперсию дискретной случайной величины можно вычислить по формуле . Тогда

Или . Решив последнее уравнение, получаем два корня и

Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет годных, равна …



Решение:
Для вычисления события А (среди отобранных деталей нет годных) воспользуемся формулой где n m – число элементарных исходов, благоприятствующих появлению события А. нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть .

А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три бракованные детали из пяти, то есть .


Банк выдает 44% всех кредитов юридическим лицам, а 56% – физическим лицам. Вероятность того, что юридическое лицо не погасит в срок кредит, равна 0,2; а для физического лица эта вероятность составляет 0,1. Тогда вероятность того, что очередной кредит будет погашен в срок, равна …

0,856

Решение:
Для вычисления вероятности события A (выданный кредит будет погашен в срок) применим формулу полной вероятности: . Здесь – вероятность того, что кредит был выдан юридическому лицу; – вероятность того, что кредит был выдан физическому лицу; – условная вероятность того, что кредит будет погашен в срок, если он был выдан юридическому лицу; – условная вероятность того, что кредит будет погашен в срок, если он был выдан физическому лицу. Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Для дискретной случайной величины Х

0,655

Тема: Определение вероятности
Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков не меньше девяти, равна …

Решение:
Для вычисления события (сумма выпавших очков будет не меньше девяти) воспользуемся формулой , где – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события A . В нашем случае возможны элементарных исходов испытания, из которых благоприятствующими являются исходы вида , , , , , , , и , то есть . Следовательно,

Тема: Законы распределения вероятностей дискретных случайных величин

функция распределения вероятностей имеет вид:

Тогда значение параметра может быть равно …

0,7
0,85
0,6

Решение:
По определению . Следовательно, и . Этим условиям удовлетворяет, например, значение

Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана функцией распределения вероятностей:

Тогда ее дисперсия равна …

Решение:
Эта случайная величина распределена равномерно в интервале . Тогда ее дисперсию можно вычислить по формуле . То есть

Тема: Полная вероятность. Формулы Байеса
В первой урне 6 черных шаров и 4 белых шара. Во второй урне 2 белых и 8 черных шаров. Из наудачу взятой урны вынули один шар, который оказался белым. Тогда вероятность того, что этот шар вынули из первой урны, равна …

Решение:
A (вынутый наудачу шар – белый) по формуле полной вероятности: . Здесь – вероятность того, что шар извлечен из первой урны; – вероятность того, что шар извлечен из второй урны; – условная вероятность того, что вынутый шар белый, если он извлечен из первой урны; – условная вероятность того, что вынутый шар белый, если он извлечен из второй урны.
Тогда .
Теперь вычислим условную вероятность того, что этот шар был извлечен из первой урны, по формуле Байеса:

Тема: Числовые характеристики случайных величин
Дискретная случайная величина X задана законом распределения вероятностей:

Тогда ее дисперсия равна …

7,56
3,2
3,36
6,0

Решение:
Дисперсию дискретной случайной величины можно вычислить по формуле

Тема: Законы распределения вероятностей дискретных случайных величин

Решение:
По определению . Тогда
а) при , ,
б) при , ,
в) при , ,
г) при , ,
д) при , .
Следовательно,

Тема: Определение вероятности
Внутрь круга радиуса 4 наудачу брошена точка. Тогда вероятность того, что точка окажется вне вписанного в круг квадрата, равна …

Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет бракованных, равна …

Решение:
Для вычисления события (среди отобранных деталей нет бракованных) воспользуемся формулой , где n – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события . В нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть . А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три небракованные детали из семи, то есть . Следовательно,

Тема: Полная вероятность. Формулы Байеса

0,57
0,43
0,55
0,53

Решение:
Для вычисления вероятности события A
Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда вероятность равна …

Решение:
Воспользуемся формулой . Тогда

Тема: Полная вероятность. Формулы Байеса

0,875
0,125
0,105
0,375

Решение:
Предварительно вычислим вероятность события A
.
.

Тема: Числовые характеристики случайных величин

Тогда ее математическое ожидание равно …

Решение:
Воспользуемся формулой . Тогда .

Тема: Определение вероятности

Решение:

Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана плотностью распределения вероятностей . Тогда математическое ожидание a и среднее квадратическое отклонение этой случайной величины равны …

Решение:
Плотность распределения вероятностей нормально распределенной случайной величины имеет вид , где , . Поэтому .

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда значения a и b могут быть равны …

Решение:
Так как сумма вероятностей возможных значений равна 1, то . Этому условию удовлетворяет ответ: .

Тема: Определение вероятности
В круг радиуса 8 помещен меньший круг радиуса 5. Тогда вероятность того, что точка, наудачу брошенная в больший круг, попадет также и в меньший круг, равна …

Решение:
Для вычисления вероятности искомого события воспользуемся формулой , где – площадь меньшего круга, а – площадь большего круга. Следовательно, .

Тема: Полная вероятность. Формулы Байеса
В первой урне 3 черных шара и 7 белых шаров. Во второй урне 4 белых шара и 5 черных шаров. Из первой урны переложили один шар во вторую урну. Тогда вероятность того, что шар, вынутый наудачу из второй урны, будет белым, равна …

0,47
0,55
0,35
0,50

Решение:
Для вычисления вероятности события A (вынутый наудачу шар – белый) применим формулу полной вероятности: . Здесь – вероятность того, что из первой урны переложили во вторую урну белый шар; – вероятность того, что из первой урны переложили во вторую урну черный шар; – условная вероятность того, что вынутый шар белый, если из первой урны во вторую был переложен белый шар; – условная вероятность того, что вынутый шар белый, если из первой урны во вторую был переложен черный шар.
Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Для дискретной случайной величины :

функция распределения вероятностей имеет вид:

Тогда значение параметра может быть равно …

0,7
0,85
0,6

ЗАДАНИЕ N 10 сообщить об ошибке
Тема: Полная вероятность. Формулы Байеса
Банк выдает 70% всех кредитов юридическим лицам, а 30% – физическим лицам. Вероятность того, что юридическое лицо не погасит в срок кредит, равна 0,15; а для физического лица эта вероятность составляет 0,05. Получено сообщение о невозврате кредита. Тогда вероятность того, что этот кредит не погасило юридическое лицо, равна …

0,875
0,125
0,105
0,375

Решение:
Предварительно вычислим вероятность события A (выданный кредит не будет погашен в срок) по формуле полной вероятности: . Здесь – вероятность того, что кредит был выдан юридическому лицу; – вероятность того, что кредит был выдан физическому лицу; – условная вероятность того, что кредит не будет погашен в срок, если он был выдан юридическому лицу; – условная вероятность того, что кредит не будет погашен в срок, если он был выдан физическому лицу. Тогда
.
Теперь вычислим условную вероятность того, что этот кредит не погасило юридическое лицо, по формуле Байеса:
.

ЗАДАНИЕ N 11 сообщить об ошибке
Тема: Определение вероятности
В партии из 12 деталей имеется 5 бракованных. Наудачу отобраны три детали. Тогда вероятность того, что среди отобранных деталей нет годных, равна …

Решение:
Для вычисления события (среди отобранных деталей нет годных) воспользуемся формулой , где n – общее число возможных элементарных исходов испытания, а m – число элементарных исходов, благоприятствующих появлению события . В нашем случае общее число возможных элементарных исходов равно числу способов, которыми можно извлечь три детали из 12 имеющих, то есть . А общее число благоприятствующих исходов равно числу способов, которыми можно извлечь три бракованные детали из пяти, то есть . Следовательно,

ЗАДАНИЕ N 12 сообщить об ошибке
Тема: Числовые характеристики случайных величин
Непрерывная случайная величина задана плотностью распределения вероятностей:

Тогда ее дисперсия равна …

Решение:
Дисперсию непрерывной случайной величины можно вычислить по формуле

Тогда

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда ее функция распределения вероятностей имеет вид …

Решение:
По определению . Тогда
а) при , ,
б) при , ,
в) при , ,
г) при , ,
д) при , .
Следовательно,

Тема: Полная вероятность. Формулы Байеса
Имеются три урны, содержащие по 5 белых и 5 черных шаров, и семь урн, содержащих по 6 белых и 4 черных шара. Из наудачу взятой урны вытаскивается один шар. Тогда вероятность того, что этот шар белый, равна …

0,57
0,43
0,55
0,53

Решение:
Для вычисления вероятности события A (вынутый наудачу шар – белый) применим формулу полной вероятности: . Здесь – вероятность того, что шар извлечен из первой серии урн; – вероятность того, что шар извлечен из второй серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из первой серии урн; – условная вероятность того, что вынутый шар белый, если из он извлечен из второй серии урн.
Тогда .

Тема: Законы распределения вероятностей дискретных случайных величин
Дискретная случайная величина задана законом распределения вероятностей:

Тогда вероятность равна …

Тема: Определение вероятности
Игральная кость бросается два раза. Тогда вероятность того, что сумма выпавших очков – десять, равна …

Дискретными случайными величинами называются случайные величины, принимающие только отдаленные друг от друга значения, которые можно заранее перечислить.
Закон распределения
Законом распределения случайной величины называется соотношение, устанавливающее связь между возможными значениями случайной величины и соответствующими им вероятностями.
Рядом распределения дискретной случайной величины называют перечень ее возможных значений и соответствующих им вероятностей.
Функцией распределения дискретной случайной величины называют функцию:
,
определяющую для каждого значения аргумента x вероятность того, что случайная величина X примет значение, меньшее этого x.

Математическое ожидание дискретной случайной величины
,
где - значение дискретной случайной величины; - вероятности принятия случайной величиной X значений .
Если случайная величина принимает счетное множество возможных значений, то:
.
Математическое ожидание числа наступлений события в n независимых испытаниях:
,

Дисперсия и среднеквадратическое отклонение дискретной случайной величины
Дисперсия дискретной случайной величины:
или .
Дисперсия числа наступлений события в n независимых испытаниях
,
где p - вероятность наступления события.
Среднеквадратическое отклонение дискретной случайной величины:
.

Пример 1
Составьте закон распределения вероятностей дискретной случайной величины (д.с.в.) X – числа k выпадений хотя бы одной «шестерки» в n = 8 бросаниях пары игральных кубиков. Постройте многоугольник распределения. Найдите числовые характеристики распределения (моду распределения, математическое ожидание M(X), дисперсию D(X), среднее квадратическое отклонение s(X)). Решение: Введем обозначение: событие A – «при бросании пары игральных кубиков шестерка появилась хотя бы один раз». Для нахождения вероятности P(A) = p события A удобнее вначале найти вероятность P(Ā) = q противоположного события Ā – «при бросании пары игральных кубиков шестерка не появилась ни разу».
Поскольку вероятность непоявления «шестерки» при бросании одного кубика равна 5/6, то по теореме умножения вероятностей
P(Ā) = q = = .
Соответственно,
P(A) = p = 1 – P(Ā) = .
Испытания в задаче проходят по схеме Бернулли, поэтому д.с.в. величина X – число k выпадений хотя одной шестерки при бросании двух кубиков подчиняется биномиальному закону распределения вероятностей:

где = – число сочетаний из n по k .

Проведенные для данной задачи расчеты удобно оформить в виде таблицы:
Распределение вероятностей д.с.в. X º k (n = 8; p = ; q = )

k

Pn (k )

Полигон (многоугольник) распределения вероятностей дискретной случайной величины X представлен на рис.:

Рис. Полигон распределения вероятностей д.с.в. X =k .
Вертикальной линией показано математическое ожидание распределения M (X ).

Найдем числовые характеристики распределения вероятностей д.с.в. X . Мода распределения равна 2 (здесь P 8(2) = 0,2932 максимально). Математическое ожидание по определению равно:
M (X ) = = 2,4444,
где xk = k – значение, принимаемое д.с.в. X . Дисперсию D (X ) распределения найдем по формуле:
D (X ) = = 4,8097.
Среднее квадратическое отклонение (СКО):
s(X ) = = 2,1931.

Пример2
Дискретная случайная величинаX задана законом распределения

Найти функцию распределения F(x) и построить ее график.

Решение. Если , то (третье свойство).
Если , то . Действительно, X может принять значение 1 с вероятностью 0,3.
Если , то . Действительно, если удовлетворяет неравенству
, то равно вероятности события , которое может быть осуществлено, когда X примет значение 1 (вероятность этого события равна 0,3) или значение 4 (вероятность этого события равна 0,1). Поскольку эти два события несовместны, то по теореме сложения вероятность события равна сумме вероятностей 0,3 + 0,1=0,4. Если , то . Действительно, событие достоверно, следовательно, его вероятность равна единице. Итак, функция распределения аналитически может быть записана так:

График этой функции:
Найдем соответствующие этим значениям вероятности. По условию, вероятности выхода из строя приборов равны: тогда вероятности того, что приборы будут рабочими в течение гарантийного срока равны:




Закон распределения имеет вид:

Определение 2.3. Случайная величина, обозначаемая X, называется дискретной, если она принимает конечное либо счетное множество значений, т.е. множество – конечное либо счетное множество.

Рассмотрим примеры дискретных случайных величин.

1. Однократно бросают две монеты. Число выпадений гербов в этом эксперименте – случайная величина Х . Ее возможные значения 0,1,2, т. е. – конечное множество.

2. Регистрируется число вызовов "Скорой помощи" в течение некоторого заданного промежутка времени. Случайная величина Х – число вызовов. Ее возможные значения 0, 1, 2, 3, ...,т.е. ={0,1,2,3,...}– счетное множество.

3. В группе 25 студентов. В какой-то день регистрируется число студентов, пришедших на занятия, – случайная величина Х . Ее возможные значения: 0, 1, 2, 3, ...,25 т.е. ={0, 1, 2, 3, ..., 25}.

Хотя все 25 человек в примере 3 пропустить занятия не могут, но случайная величина Х принимать это значение может. Это означает, что значения случайной величины обладают различной вероятностью.

Рассмотрим математическую модель дискретной случайной величины.

Пусть проводится случайный эксперимент, которому соответствует конечное или счетное пространство элементарных событий . Рассмотрим отображение этого пространства на множество действительных чисел, т. е. каждому элементарному событию поставим в соответствие некоторое действительное число , . Множество чисел при этом может быть конечным или счетным, т. е. или

Система подмножеств, в которую входит любое подмножество , в том числе одноточечное, образует -алгебру числового множества ( – конечно или счетно).

Поскольку любому элементарному событию поставлены в соответствие определенные вероятности р i (в случае конечного все ), причем , то и каждому значению случайной величины можем поставить в соответствие определенную вероятность р i , такую, что .

Пусть х – произвольное действительное число. Обозначим Р Х (х) вероятность того, что случайная величина Х приняла значение, равное х , т.е. Р Х (х)=Р(Х=х) . Тогда функция Р Х (х) может принимать положительные значения лишь при тех значениях х , которые принадлежат конечному либо счетному множеству , а при всех остальных значениях вероятность этого значения Р Х (х)=0.

Итак, мы определили множество значений , -алгебру как систему любых подмножеств и каждому событию {X = х } сопоставили вероятность дпя любых , т.е. построили вероятностное пространство .

Например, пространство элементарных событий эксперимента, состоящего в двукратном подбрасывании симметричной монеты, состоит из четырех элементарных событий: , где



При двукратном подбрасывании монеты выпали две решетки ; при двукратном подбрасывании монеты выпали два герба ;

При первом подбрасывании монеты выпала решетка, а при втором – герб ;

При первом подбрасывании монеты выпал герб, а при втором – решетка .

Пусть случайная величина Х – число выпадений решетки. Она определена на и множество ее значений . Все возможные подмножества , в том числе и одноточечные, образуют - алгебру, т.е. ={Ø, {1}, {2}, {0,1}, {0,2}, {1,2}, {0,1,2}}.

Вероятность события {Х=х i }, і = 1,2,3 , определим как вероятность появления события, являющегося его прообразом:

Таким образом, на элементарных событиях {X = х i } задали числовую функцию Р Х , так, что .

Определение 2.4. Законом распределения дискретной случайной величины называется совокупность пар чисел (х i , р i), где х i – возможные значения случайной величины, а р i – вероятности, с которыми она принимает эти значения, причем .

Простейшей формой задания закона распределения дискретной случайной величины является таблица, в которой перечислены возможные значения случайной величины и соответствующиеим вероятности:

Такая таблица называется рядом распределения. Чтобы придать ряду распределения более наглядный вид, его изображают графически: на оси Ох наносят точки х i и проводят из них перпендикуляры длиной р i . Полученные точки соединяют и получают многоугольник, который является однойиз форм закона распределения (рис. 2.1).

Таким образом, для задания дискретной случайной величины нужно задать ее значения и соответствующиеим вероятности.

Пример 2.2. Денежный приемник автомата срабатывает при каждом опускании монеты с вероятностью р . Как только он сработал, монеты не опускают. Пусть Х – число монет, которые надо опустить до срабатывания денежного приемника автомата. Построить ряд распределения дискретной случайной величины Х .



Решение. Возможные значения случайной величины Х : х 1 = 1, х 2 = 2,..., х к =к, … Найдем вероятности этих значений: р 1 – вероятность того, что денежный приемник сработает при первом опускании, и р 1 =р; р 2 – вероятность того, что будут произведены две попытки. Для этого нужно, чтобы: 1) при первой попытке денежный приемник не сработал; 2) при второй попытке – сработал. Вероятность этого события равна (1–р)р . Аналогично и так далее, . Ряд распределения Х примет вид

1 2 3 к
р qp q 2 p q r -1 p

Заметим, что вероятности р к образуют геометрическую прогрессию со знаменателем: 1–p=q , q<1, поэтому такое распределение вероятностей называется геометрическим .

ІІредположим далее, что построена математическая модель эксперимента, описываемого дискретной случайной величиной Х , и рассмотрим вычисление вероятностей наступления произвольных событий .

Пусть произвольное событие содержит конечное либо счетное множество значений х i : A= {х 1 , х 2 ,..., х i , ... } .Событие А можно представить в виде объединения несовместных событий вида : . Тогда, применяя аксиому Колмогорова 3, получаем

так как вероятности наступления событий мы определили равными вероятностям появления событий, являющихся их прообразами. Это значит, что и вероятность любого события , , можно вычислить по формуле , так как это событие представимо в виде, объединения событий , где .

Тогда и функция распределения F(х) = Р(– <Х<х) находится по формуле . Отсюда следует, что функция распределения дискретной случайной величины Х разрывна и возрастает скачками, т. е. является ступенчатой функцией (рис. 2.2):

Если множество конечно, то число слагаемых в формуле конечно, если же счётно, то и число слагаемых счетно.

Пример 2.3. Техническое устройство состоит из двух элементов, работающих независимо друг от друга. Вероятность выходаиз строя первого элемента за время Т равна 0,2, а вероятность выхода второго элемента – 0,1. Случайная величина Х – число отказавших элементов за время Т. Найти функцию распределения случайнойвеличины и построить ее график.

Решение. Пространство элементарных событий эксперимента, состоящего в исследовании надежности двух элементов технического устройства, определяется четырьмя элементарными событиями , , , : – оба элемента исправны; – первый элемент исправен, второй неисправен; – первый элемент неисправен, второй исправен; – оба элемента неисправны. Каждоеиз элементарных событий можно выразить через элементарные события пространств и , где – первый элемент исправен; – первый элемент вышел из строя; – второй элемент исправен; – второй элемент вышел из строя. Тогда , и таккак элементы технического устройства работают независимо друг от друга, то

8. Чему равна вероятность того, что значения дискретной случайной величины принадлежат промежутку ?