Решение линейных диофантовых уравнений. «Диофантовы уравнения

Алгебраические неравенства или их системы с рациональными коэффициентами, решения которых ищутся в интегральных или целых числах. Как правило, количество неизвестных в диофантовых уравнениях больше. Таким образом, они также известны как неопределенные неравенства. В современной математике указанное выше понятие применяется к алгебраическим уравнениям, решения которых ищутся в алгебраических целых числах некоторого расширения поля Q-рациональных переменных, поля p-адических и т. д.

Истоки данных неравенств

Исследования уравнений Диофанта находится на границе между теорией чисел и алгебраической геометрией. Поиск решений в целых переменных является одной из старейших математических задач. Уже в начале второго тысячелетия до н.э. древним вавилонянам удалось решить системы уравнений с двумя неизвестными. Эта отрасль математики в наибольшей степени процветала в Древней Греции. Арифметика Диофанта (примерно, 3-го века н.э.) является значимым и главным источником, который содержит различные типы и системы уравнений.

В этой книге Диофант предвидел ряд методов изучения неравенств второй и третьей степеней, которые были полностью развиты в XIX веке. Создание теории рациональных чисел этим исследователем Древней Греции привело к анализу логических решений неопределенных систем, которые систематически сопровождаются в его книге. Несмотря на то, что в его работе содержатся решения конкретных диофантовых уравнений, есть основания полагать, что он также был знаком с несколькими общими методами.

Изучение этих неравенств обычно связано с серьезными трудностями. Ввиду того, что в них присутствуют многочлены с целыми коэффициентами F (x,y1,…, y n). На основе этого, были созданы выводы, что нет единого алгоритма, с помощью которого можно было бы для любого заданного определить x, выполняется ли уравнение F (x, y 1 ,…., y n). Ситуация разрешима для y 1 , …, y n . Примеры таких многочленов могут быть записаны.

Простейшее неравенство

ax + by = 1, где a и b - относительно целые и простые числа, для него имеется огромное количество выполнений (если x 0, y 0 сформирован результат, то пара переменных x = x 0 + b n и y = y 0 -an , где n - произвольное, также будет рассматриваться как выполнение неравенства). Другим примером диофантовых уравнений служит x 2 + y 2 = z 2 . Положительные интегральные решения этого неравенства представляют собой длину малых сторон x, y и прямоугольных треугольников, а также гипотенузы z с целыми боковыми размерами. Эти числа известны как пифагорейские числа. Все триплеты относительно простых указанных выше переменных даются формулами x=m 2 - n 2 , y = 2mn, z = m 2 + n 2 , где m и n- целые и простые числа (m>n>0).

Диофант в своей «Арифметике» занимается поиском рациональных (не обязательно интегральных) решений специальных типов своих неравенств. Общая теория решения диофантовых уравнений первой степени была разработана К. Г. Башетом в 17 веке. Другие ученые в начале XIX века в основном изучали подобные неравенства типа ax 2 +bxy + cy 2 + dx +ey +f = 0, где a, b, c, d, e, и f общие, неоднородные, с двумя неизвестными второй степени. Лагранж использовал непрерывные дроби в своем исследовании. Гаусс для квадратичных форм разработал общую теорию, лежащую в основе решения некоторых типов.

В исследованиях этих неравенств второй степени значительные успехи были достигнуты только в XX веке. У А. Туэ было установлено, что диофантово уравнение a 0 x n + a 1 x n-1 y +…+a n y n =c, где n≥3, a 0 ,…,a n ,c - целые числа, а a 0 t n + … + a n не может иметь бесконечное количество целочисленных решений. Однако метод Туэ не получил должного развития. А. Бейкер создал эффективные теоремы, дающие оценки на выполнении некоторых уравнений такого рода. Б. Н. Делоне предложил другой метод исследования, применимый к более узкому классу этих неравенств. В частности, вид ax 3 + y 3 = 1 полностью разрешим этим способом.

Диофантовы уравнения: методы решения

Теория Диофанта имеет много направлений. Таким образом, хорошо известной проблемой в этой системе является гипотеза, согласно которой не существует нетривиальное решение диофантовых уравнений x n + y n = z n если n ≥ 3 (вопрос Ферма). Изучение целочисленных выполнений неравенства является естественным обобщением проблемы пифагорейских триплетов. Эйлер получил положительное решение задачи Ферма для n = 4. В силу этого результата она относится к доказательству отсутствующих целочисленных, ненулевых исследований уравнения, если n - это нечетное простое число.

Исследование, касающееся решения, не было завершено. Трудности с его выполнением связаны с тем, что простая факторизация в кольце алгебраических целых чисел не единственна. Теория дивизоров в этой системе для многих классов простых показателей n позволяет подтвердить справедливость теоремы Ферма. Таким образом, существующими методами и способами выполняется линейное диофантово уравнение с двумя неизвестными.

Виды и типы описываемых задач

Арифметика колец алгебраических целых чисел также используется во многих других задачах и решениях диофантовых уравнений. Например, такие методы были применены при выполнении неравенств вида N(a 1 x 1 +…+ a n x n) = m, где N(a) - норма a, и x 1 , …, x n найдены интегральные рациональные переменные. Этот класс включает уравнение Пелля x 2- dy 2 =1.

Значения a 1, …, a n которые появляются, эти уравнения подразделяют на два типа. Первый тип - так называемые полные формы - включают в себя уравнения, в которых среди a есть m линейно независимые числа над полем рациональных переменных Q, где m = , в которых присутствует степень алгебраических показателей Q (a1,…, a n) над Q. Неполными видами являются те, в которых максимальное количество a i меньше, чем m.

Полные формы проще, их исследование завершено, и можно описать все решения. Второй тип - неполные виды - сложнее, а разработка подобной теории еще не завершена. Такие уравнения изучаются с помощью диофантовых приближений, которые включают неравенство F(x,y)=C, где F (x,y) - многочлен степени n≥3 является неприводимым, однородным. Таким образом, можно предположить, что y i → ∞. Соответственно, если y i достаточно велико, то неравенство будет противоречить теореме Туэ, Зигеля и Рота, из которой выходит, что F(x,y)=C, где F- форма третьей степени или выше, неприводимая не может иметь бесконечное количество решений.

Данный пример составляет довольно узкий класс среди всех. Например, несмотря на их простоту, x 3 + y 3 + z 3 = N, а также x 2 +y 2 +z 2 +u 2 = N не входят в этот класс. Изучение решений является достаточно тщательно исследованной ветвью диофантовых уравнений, где в основе лежит представление квадратичными формами чисел. Лагранж создал теорему, которая гласит, что выполнение существует для всех естественных N. Любое натуральное число может быть представлено в виде суммы трех квадратов (теорема Гаусса), но оно не должно иметь вид 4 a (8K-1), где a и k неотрицательные целые показатели.

Рациональные или интегральные решения системы диофантового уравнения типа F (x 1 , …, x n) = a, где F (x 1 , …, x n) является квадратичной формой с целыми коэффициентами. Таким образом, согласно теореме Минковского-Хассе, неравенство ∑a ij x i x j = b где a ij и b рационально, имеет интегральное решение в действительных и p-адических числах для каждого простого числа p только тогда, когда оно разрешимо в этой структуре.

Из-за присущих трудностей изучение чисел с произвольными формами третьей степени и выше изучалось в меньшей степени. Главным методом выполнения является способ тригонометрических сумм. В данном случае число решений уравнения явно выписывается в терминах интеграла Фурье. После чего метод окружения используется для выражения количества выполнения неравенства соответствующих конгруэнций. Способ тригонометрических сумм зависит от алгебраических особенностей неравенств. Существует большое количество элементарных методов для решения линейных диофантовых уравнений.

Диофантов анализ

Отделение математики, предметом которого является исследование интегральных и рациональных решений систем уравнений алгебры методами геометрии, из той же сферы. Во второй половине XIX века появление этой теории чисел привело к изучению уравнений Диофанта из произвольного поля с коэффициентами, и решения рассматривались либо в нем, либо в его кольцах. Система алгебраических функций развивалась параллельно с числами. Основная аналогия между двумя, которая была подчеркнута Д. Гильбертом и, в частности, Л. Кронекером, привела к равномерному построению различных арифметических концепций, которые обычно называются глобальными.

Это особенно заметно, если изучаемые алгебраические функции над конечным полем констант являются одной переменной. Такие понятия, как теория полей классов, делитель, а также ветвление и результаты являются хорошей иллюстрацией вышеизложенного. Эта точка зрения была принята в системе диофантовых неравенств только позднее, а систематическое исследование не только с численными, но и с коэффициентами, которые являются функциями, началось только в 1950-х годах. Одним из решающих факторов в этом подходе было развитие алгебраической геометрии. Одновременное изучение полей чисел и функций, которые возникают как две одинаково важные стороны одного и того же субъекта, не только давало изящные и убедительные результаты, но приводило к взаимному обогащению двух тем.

В алгебраической геометрии понятием многообразия заменяется неинвариантный набор неравенств над данным полем K, а их решения заменяются рациональными точками со значениями в K или в конечном его расширении. Можно, соответственно, сказать, что фундаментальная задача диофантовой геометрии заключается в изучении рациональных точек алгебраического множества X(K), X при этом - определенные числа в поле K. Целочисленное выполнение имеет геометрический смысл в линейных диофантовых уравнениях.

Исследования неравенств и варианты выполнения

При изучении рациональных (или интегральных) точек на алгебраических многообразиях возникает первая проблема, заключающаяся в их существовании. Десятая задача Гильберта сформулирована как проблема нахождения общего метода решения этого вопроса. В процессе создания точного определения алгоритма и после того, как было доказано, что подобных выполнений для большого числа задач не существует, проблема приобрела очевидный отрицательный результат, и наиболее интересным вопросом является определение классов диофантовых уравнений, для которых существует указанная выше система. Наиболее естественным подходом, с алгебраической точки зрения, является так называемый принцип Хассе: начальное поле K изучается вместе с его пополнениями K v по всем возможным оценкам. Поскольку X(K) = X(K v) являются необходимым условием существования, а K точка учитывает, что множество X(K v) не пусты для всех v.

Важность заключается в том, что он сводит две проблемы. Вторая намного проще, она ​​разрешима известным алгоритмом. В частном случае, когда многообразие X проективно, лемма Гензеля и его обобщения делают возможным дальнейшее сокращение: проблему можно свести к изучению рациональных точек над конечным полем. Затем он решается строить концепцию либо путем последовательного исследования, либо более эффективными методами.

Последнее важное соображение состоит в том, что множества X(K v) являются непустыми для всех v, за исключением конечного числа, так что количество условий всегда конечное, и они могут быть эффективно проверены. Однако принцип Хассе не применим к кривым степени. Например, 3x 3 + 4y 3 =5 имеет точки во всех p-адических числовых полях и в системе но не имеет рациональных точек.

Этот способ послужил отправным пунктом для построения концепции, описывающей классы главных однородных пространств абелевых многообразий для выполнения «отклонения» от принципа Хассе. Оно описывается в терминах специальной структуры, которые могут быть связаны с каждым многообразием (группа Тейта-Шафаревича). Основная трудность теории заключается в том, что методы вычисления групп сложно получить. Эта концепция также была распространена на другие классы алгебраических многообразий.

Поиск алгоритма выполнения неравенств

Другая эвристическая идея, используемая при изучении диофантовых уравнений, заключается в том, что если число переменных, участвующих в множестве неравенств - велико, то система обычно имеет решение. Однако это очень трудно доказать для любого конкретного случая. Общий подход к проблемам этого типа использует аналитическую теорию чисел и основан на оценках тригонометрических сумм. Этот метод первоначально применялся к специальным видам уравнений.

Однако впоследствии было доказано с его помощью, что если форма нечетной степени - это F, в d и n переменных и с рациональными коэффициентами, то n достаточно велико по сравнению с d, таким образом, имеет рациональную точку проективная гиперповерхность F = 0. Согласно гипотезе Артина, этот результат верен, даже если n > d 2 . Это доказано только для квадратичных форм. Аналогичные проблемы могут быть заданы и для других полей. Центральной проблемой диофантовой геометрии является структура множества целых или рациональных точек и их изучение, а первый вопрос, который нужно уточнить, состоит в том, является ли это множество конечным. В этой задаче ситуация обычно имеет конечное количество выполнений, если степень системы намного больше, чем число переменных. Это и есть основное предположение.

Неравенства на линиях и кривых

Группа X(K) может быть представлена ​​как прямая сумма свободной структуры ранга r и конечной группы порядка n. С 1930-х годов изучается вопрос о том, ограничены ли эти числа на множестве всех эллиптических кривых над данным полем K. Ограниченность кручения n была продемонстрирована в семидесятых годах. Существуют кривые произвольного высокого ранга в функциональном случае. В числовом случае по-прежнему нет ответа на этот вопрос.

Наконец, гипотеза Морделла утверждает, что количество интегральных точек является конечным для кривой рода g>1. В функциональном случае эта концепция была продемонстрирована Ю. И. Маниным в 1963 году. Основным инструментом, используемым при доказательстве теорем конечности в диофантовой геометрии, является высота. Из алгебраических многообразий размерности выше единицы абелевы многообразия, которые являются многомерными аналогами эллиптических кривых, были наиболее тщательно изучены.

А. Вейль обобщил теорему о конечности числа образующих группы рациональных точек на абелевы многообразия любой размерности (концепция Морделла-Вейля), распространив ее. В 1960-х годах появилась гипотеза Берча и Суиннертона-Дайера, усовершенствовавшая эту и группу и дзета-функции многообразия. Числовые доказательства подтверждают эту гипотезу.

Проблема разрешимости

Задача нахождения алгоритма, с помощью которого можно определить, имеет ли какое-либо диофантово уравнение способ решения. Существенной особенностью поставленной задачи является поиск универсального метода, который был бы подходящим для любого неравенства. Такой метод также позволил бы решать указанные выше системы, так как он эквивалентен P21+⋯+P2k=0.п1= 0 , ... , PK= 0п = 0,...,пК = 0 или п21+ ⋯ + P2К= 0 . п12+⋯+пК2=0. Проблема нахождения такого универсального способа обнаружения решений для линейных неравенств в целых числах была поставлена ​​Д. Гильбертом.

В начале 1950-х годов появились первые исследования, направленные на доказательство не существования алгоритма решения диофантовых уравнений. В это время появилась гипотеза Дэвиса, в которой говорилось, что любое перечислимое множество также принадлежит греческому ученому. Поскольку примеры алгоритмически неразрешимых множеств известны, но являются рекурсивно перечислимыми. Следует, что гипотеза Дэвиса верна и проблема разрешимости этих уравнений имеет отрицательное выполнение.

После этого для гипотезы Дэвиса осталось доказать, что существует метод преобразования неравенства, которое также (или не имело) в то же время решение. Было показано, что такое изменение диофантового уравнения возможно, если оно с указанными двумя свойствами: 1) в любом решении этого типа v uu ; 2) для любого k существует выполнение, в котором присутствует экспоненциальный рост.

Пример линейного диофантового уравнения этого класса завершил доказательство. Задача о существовании алгоритма разрешимости и распознавания в рациональных числах этих неравенств считается по-прежнему важным и открытым вопросом, который не изучен в достаточной степени.

Международная научно-практическая конференция

«Первые шаги в науку»

Исследовательская работа по математике по теме:

“Диофантовы уравнения, типы и способы решения»

Предметная область: математика

Работу выполнила:Хомякова Ольга, ученица 10 класса

Учитель:, учитель математики

Образовательное учреждение:

Брянск 2014

1. Введение-3

2.Основная часть.---5

1.Историческая справка-----5

2.Виды диофантовых уравнений и их классификация

3. Диофантовые уравнения в части С ЕГЭ-13

4. Практическое применение теории диофантовых ур-ний -16

Заключение

5. Литература

Введение

Актуальность исследования:

В школьном курсе математики диофантовы уравнения практически не изучаются, но, например, в заданиях группы С6 в ЕГЭ встречаются уравнения 2-ой степени. Также с этими заданиями я сталкивалась в математических олимпиадах. Я заинтересовалась этой темой для того, чтобы успешно сдать Единый Государственный Экзамен и принимать участие в олимпиадах и конкурсах. Помимо этого, меня заинтересовала практическая направленность области этой темы.

Предметная областью моего исследования является математика.

Объект работы - диофантовы уравнения, типы и способы их решения.

Цель работы:

1. Повысить уровень математической культуры ;

2. Развить в себе навыки исследовательской деятельности в области математики;

3. Научиться самой и научить других решать диофантовы уравнения эффективными методами;

4. Применять эти методы решения к задачам из повседневной жизни человека, а также к задачам, предлагаемым на вступительных экзаменах в ВУЗы и в олимпиадных заданиях;

5. Классифицировать методы решений дифференциальных уравнений;

6. Составить сборник задач с решениями в помощь ученикам нашей школы.

Задачи:

1. изучить исторические корни ;

2. научиться пользоваться научной литературой , строить графики в современных компьютерных программах, быстро и грамотно находить информацию в интернете;

3. исследовать методы решения задач, приводимых к уравнениям первой степени с двумя переменными, выбрав самые удобные и простые;

4. научиться решать задачи из повседневной жизни, вступительных экзаменов в ВУЗы экономического направления и олимпиадных заданий, применив изученные ранее методы;

5. разработать методическое пособие для всех интересующихся (подобрать или самим составить задачи с экономическим содержанием, приводящие к решению уравнений с двумя переменными).

Методы исследования : анализ, синтез, сравнение, противопоставление, ранжирование, прогнозирование, наблюдение.

Гипотеза: изучив типы, классифицировав диофантовы уравнения по способам решения можно успешно справиться с решением текстовых задач, задач с практическим содержанием и с частью заданий С6 ЕГЭ.

Этапы работы :

1. Изучение истории появления диофантовых уравнений, основной литературы по этой теме;

2. Изучение способов и методов решения диофантовых уравнений;

3. Попытка их классификации ;

4. Поиск практической значимости данной темы.

Основая часть.

1.Историческая справка.

Диофант(вероятно 3 в. н. э. – древнегреческий математик из Александрии)

Диофантовы уравнения – алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, у которых отыскиваются целые или рациональные решения.

Эти уравнения названы по имени Диофанта (вероятно 3 в. н. э. – древнегреческий математик из Александрии), изучавшего такие уравнения.

Диофант представляет одну из наиболее трудных загадок в истории науки. Нам неизвестно ни время, когда он жил, ни предшественники, которые работали бы в той же области. Достаточно решить уравнение первой степени с одним неизвестным – и мы узнаем, что Диофант прожил 84 года.

Наиболее загадочным представляется творчество Диофанта. До нас дошло шесть из тринадцати книг, которые были объединены в “Арифметику”, стиль и содержание этих книг резко отличается от классических античных сочинений по теории чисел и алгебры, образцы которых мы знаем по “Началам” Евклида, его “Данным”, леммам из сочинений Архимеда и Аполлония. “Арифметика”, несомненно, явилась результатом многочисленных исследований, которые остались совершенно неизвестными. Число неизвестных диофантовых уравнениях превосходит число уравнений, и поэтому иногда их называют неопределенными.

Диофантовы уравнения впервые обстоятельно исследовались в книге Диофанта “Арифметика”. Такие уравнения имеют некоторые особенности:

1. Они сводятся к уравнениям или системам уравнений с целочисленными коэффициентами.

2. Требуется найти только целые, часто натуральные решения.

2. Определение, виды диофантовых уравнений и способы их решений.

Итак, диофантовым уравнением для целочисленных переменных х 1 , х 2 , …, х n называется уравнение, которое может быть приведено к виду

P ( x 1 , x 2 , …, x n ) =0

Где Р - некоторый многочлен от указанных переменных с целыми коэффициентами.

Простейшим диофантовым уравнением является уравнение вида ax + by = c , где a и b – целые взаимно простые числа. Такое диофантово уравнение имеет бесконечное число решений: если x 0 и y 0 – одно решение, то числа x = x 0 + bn и y = y 0 - an (где n - любое целое число ) также будут решениями, которыми исчерпывается вся совокупность решений.

Виды диофантовых уравнений:

1.Однородные уравнения:

Пример 1:

Итак, я предлагаю рассмотреть решение следующего уравнения:

8 x +9 y =43

Так как 8 и 9 взаимно простые числа, т. е. наибольший общий делитель 8 и 9 равен 1 то решение существует. Одно из решений найдем подбором:

x 0 =2, y 0 =3. Остальные решения вычисляются по формулам:

x = x 0 + bn

y = y 0 - an

Отсюда х =2+9 n , y =3-8 n , n принадлежит Z .

Если наибольший общий делитель d коэффициентов а и b больше 1, асвободный член с не делится на d , то уравнение ах + by = c не имеет решений в целых числах.

Пример 2:

А теперь рассмотрим линейное диофантово уравнение, которое не имеет целых решений:

5 x+35y=17

Для доказательства того, что это уравнение не имеет целых решений, необходимо вынести за скобки общий множитель 5, получим 5( x +7 y )=17 . Тогда левая часть уравнения делится на 5, а правая часть на 5 не делится. Значит, уравнение не имеет решений в целых числах.

Любое уравнение ах + by = с , где НОД(а, b ) = 1, имеет хотя бы одно решение в целых числах.

Задача 1:

К диофантовому уравнению приводит и такая задача:

На покупку нескольких открыток по 11 рублей и конвертов по 13 рублей потратили всего 61 рубль. Сколько купили открыток?

Давайте обозначим число открыток через х , а число конвертов через y , то задача сводится к уравнению 11 x +13 y =61 . Очевидно, что по условию задачи здесь пригодны лишь целые положительные числа. Методом подбора найдем такие числа. Данное уравнение имеет только одно такое решение: x =2, y =3 .

Еще в Древнем Вавилоне родилась задача о построении прямоугольного треугольника с попарно соизмеримыми сторонами. Соизмеримость сторон означает, что найдется такой масштаб, в котором катеты и гипотенуза будут выражаться натуральными числами x и y , но тогда:

x^2+y^2=z^2 .

Таким образом, вавилонская задача сводится к задаче построения всех троек натуральных чисел x , y , z удовлетворяющих предыдущему уравнению. Пифагорейцы нашли способ построения всех его решений. Но, возможно, этот способ был найден еще раньше в Вавилоне и Индии. Так или иначе, решения (x , y , z ) уравнения x ^2+ y ^2= z ^2 принято называть пифагоровыми тройками: x =2 n +1; y =2 n ( n +1) ; z =2 n ^2+2 n +1 , n принадлежит Z . Примеры пифагорейских троек: 3, 4, 5 ; 6, 8, 10 ; 5, 12, 13 .

Однако эти формулы не дают возможности найти все пифагорейские тройки чисел, имеющие выбранное исходное число. Формулы Пифагора и Платона и их различные модификации дают только частные решения. Приведем еще примеры пифагорейских троек чисел, которые нельзя получить по указанным формулам: 72, 65, 97 ; 72, 320, 328 .

Эти и другие пифагорейские тройки чисел дает вавилонская клинописная табличка, относимая к эпохе гг. до н. э. Метод вавилонян дает возможность найти все пифагорейские тройки, содержащие выбранные исходные числа.

Известный в теории диофантовых уравнений является проблема Ферма (Пьер Ферма () – французский математик). Эта проблема носит название великой теоремы Ферма.

Теорема:

Для любого натурального числа n >2 уравнение x ^ n + y ^ n = z ^ n не имеет решений в целых положительных числах x , y , z .

Она была сформулирована Ферма примерно в 1630 году на полях книги Диофанта “Арифметика”. Общее доказательство получил английский математик Уайлс в 1995 году.

2уравнения второй степени:

Следующим типом диофантовых уравнений являются уравнения второй степени ax ^2+ bxy + cy ^2+ dx + ey + f =0 , где a , b , c , d , e , f – целые числа. Такие уравнения могут иметь бесконечно много решений, например, уравнение Пелля (Джон Пелль: английский математик): x ^2- Ay ^2=1 (A >0, A - неполный квадрат).

Пример 3, 4 , 5, 6:

Я предлагаю вам решить 4 уравнения:

1. x(x + y)=11

2. x(x – 3y)=2

3. (x + 2y)(2x – y)= -2

4. xy - 3y + x =5

Итак, попробуем найти решение для первого уравнения :

Так как число 11 имеет делители только 1 и 11, то возможны следующие сочетания сомножителей:

1. x =1,

x + y=11

Тогда x=1, y=10.

2. x=11,

x + y=1

Тогда x=11, y= -10

3. x= -1,

x + y= -11

Тогда x= -1, y= -10

4. x= -11

x = y= -1

Тогда x= -11, y= 10

Ответ запишем в следующем виде: (1;10), (11;-10), (-1;-10), (-11;10).

Задачу №2 я предлагаю решить аналогичным способом, при помощи 4 систем.

1. х=2,

Х – 3у=1

Тогда х=2, у=1/3 (т. е. система не имеет решения в целых числах).

2. х=1,

Х – 3у=2

Тогда х=1, у=-1/3 (т. е. система не имеет решения в целых числах).

3. х=-1,

Х – 3у=-2

Тогда х=-1, у=1/3 (т. е. система не имеет решения в целых числах).

4. х=-2,

Х - 3у=-1

Тогда х=-2, у=-1/3 (т. е. система не имеет решения в целых числах).

Из этих пар чисел видно, что уравнение не имеет решений в целых числах.

Задачу № 3 тоже можно решить при помощи 4 систем. Решив системы, получим следующие пары чисел: (0;-1), (0;1), ( y =4/5), (y = -4/5)

Последние две системы не имеют целых решений, следовательно, ответ: (0;-1),(0;1).

Последнее уравнение не похоже на 3 предыдущих.

Преобразуем заданное уравнение (вынесем за скобки y и вычтем и прибавим число 3):

y ( x – 3) + x – 3=5 -3 ;

В результате преобразований получаем уравнение:

(x – 3)(y + 1)=2

Так как число 2 может быть представлено 4 способами в виде произведения целых чисел 2= (-2) * (-1); 2=(-1) * (-2); 2=1 * 2; 2= 2*1, то возможны четыре системы. Из них получаем четыре пары чисел (1; -2), (2; -3), (4;1), (5;0). Ответом этого уравнения будут являться все 4 пары.

Пример 7:

9 x^2 – y^2= 14

Запишем данное уравнение в виде (3 x y ) * (3 x + y )=14 . Так как число 14 с учетом порядка следования множителей может быть представлено в виде произведения целых чисел следующим образом: 14=(-2) * (-7); 14=(-7) *(-2); 14=(-1) * ; 14= (-14) * (-1); 14= 2 * 7; 14= 7 * 2; 14= 1* 14; 14= 14* 1, то будет 8 случаев.

Решив все 8 систем, мы получаем дробные значения, а значит, что это уравнение не имеет решений в целых числах.

Пример 8:

3 x ^2 + 5 xy + 2 y ^2=7

Разложим левую часть заданного уравнения на линейные множители: Уравнение примет вид: (3 x + 2 y )( x + y )=7

Так как 7 число простое, то оно равно произведению двух целых чисел в четырех случаях. Решив все 4 системы, получим пары чисел (-5;4), (5; -4), (-13;20), (13;-20) . Эти числа и будут ответом.

Пример 9:

x^2 + y^2 – 2x + 4y=-5

В левой части уравнения выделим полный квадрат:

x^2 – 2x + 1 + y^2 + 4y + 4=0

(x – 1)^2 + (y + 2)^2=0

Сумма квадратов равна 0 лишь в одном случае

(x – 1) ^ 2=0 ,

(y + 2)^2=0

Решив систему, получим, что x = 1, y = -2

Ответ: (1 ; -2).

Пример 10:

x^2 – 6x + y^2 + 6y + 18=0

Докажем, что это уравнение имеет единственное целочисленное решение.

В левой части уравнения выделим полные квадраты:

(x – 3)^2 + (y + 3)^2=0

Данное уравнение имеет решение, когда

x – 3=0,

y + 3=0

Т. е. при x=3, y= -3.

Теперь я предлагаю рассмотреть графический метод решения диофантовых уравнений.

Алгоритм построения графика уравнения ах + by + с = 0:

1. Придать переменной х конкретное значение х= х1; найти из уравнения ах1 + by + c = 0 соответствующее значение y = y 1.

2. Придать переменной х другое значение х=х2; найти из уравнения ах2 + by + c = 0 соответствующее значение y = y 2.

3. Построить на координатной плоскости х Oy две точки (х1;у1) и (х2;у2).

4. Провести через эти две точки прямую – она и будет графиком уравнения ах + by + с = 0.

Пример 11:

Так, например, уравнение 5 x + 7 y =17 можно решить графическим методом, изобразив прямую 5 x + 7 y = 17, и определив на этой прямой точки, обе координаты которых будут в данном случае натуральными числами.

Целые решения: (2 ;1),(9;-4), (16;-9),(-5;6),(-12;11)

Наиболее изучены диофантовы уравнения первой и второй степени. Рассмотрим сначала уравнения первой степени. Так как решение линейного уравнения с одним неизвестным не представляет интереса, то обратимся к уравнениям с двумя неизвестными.Мы рассмотрим два метода решения этих уравнений.

Первый способ решения таких уравнений- алгоритм Евклида. Можно найти наибольший делитель натуральных чисел a и b, не раскладывая эти числа на простые множители, применяя процесс деления с остатком. Для этого надо разделить большее из этих чисел на меньшее, потом меньшее из чисел на остаток при первом делении, затем остаток при первом делении на остаток при втором делении и вести этот прицесс до тех пор, пока не произойдёт деление без остатка. Последний отличный от нуля остаток и есть искомый НОД(a,b). Чтобы доказать это утверждение, представим описанный процесс в виде следующей цепочки равенств:если a>b ,то

Здесь r1,….,rn-положительные остатки, убывающие с возрастанием номера. Из первого равенства следует,что общий делитель чисел a и b делит r1 и общий дилитель b и r1 делит а,поэтому НОД (a,b) = НОД (r1 ,r2)=….= НОД (rn-1, rn) = НОД (rn,0)= rn.Обратимся снова к системе(1).Из первого равенства, выразив остаток r1 чирез а и b ,получим r1=а- bq0. Подставляя его во второе равенство,найдём r2=b(1+q0q1)-aq1. Продолжая этот процесс дальше,мы сможем выразить все остатки через а и b, в том числе и последний rn=Аа+Вb. В результате нами доказано предложение:если d-наибольший общий делитель натуральных чисел а и b,то найдутся такие целые числа А и В,что d= Аа+Вb. Заметим,что коэффициенты А и В имеют разные знаки; если НОД(a,b)=1,то Аа+Вb=1. Как найти числа А и В видно из алгоритма Евклида.

Перейдём теперь к решению линейного уравнения с двумя неизвестными. Оно имеет вид:

Возможны два случая: либо c делится на d= НОД(a,b), либо нет. В первом случае можно разделить обе части на d и свести задачу к решению в целых числах уравнения a1x+b1y=c1, коэффициенты которого а1=а/d и b1=b/d взаимно просты. Во втором случае уравнение не имеет целочисленных решений: при любых целых x и y число аx+by делится на d и поэтому не может равнятся числу с,которое на d не делится. Итак, мы можем ограничиться случаем, когда в уравнении (2) коэффициенты взаимно просты. На основании предыдущего предложения найдутся такие целые числа x0 и y0,что ax0+by0=1, откуда пара (сx0,cy0) удовлетворяет уравнению (2) Вместе с ней уравнению (2) удовлетворяет бесконечное множество пар (x,y) целых чисел, которые можно найти по формулам

x=cx0+bt,y=cy0-at. (3)

Здесь t-любое целое число. Нетрудно показать,что других целочисленных решений нет уравнение ax+by=c не имеет. Решение, записанное в виде (3), называется общим решением уравнеия (2). Подставив вместо t конкретное целое число, получим его частное решение. Найдём, например, целочисленные решения уже встречавшегося нам уравнения 2x+5y=17. Применив к числам 2 и 5 алгоритм Евклида, получим 2*3-5=1. Значит пара cx0=3*17,cy0=-1*17 удовлетворяет уравнению 2x+5y=17. Поэтому общее решение исходного уравнения таково x=51+5t, y=-17-2t,где t принимает любые целые значения. Очевидно, неотрицательные решения отвечают тем t , для которых выполняются неравенства

Отсюда найдем -51 ?t? -17 . Этим неравенствам удовлетворяют числа -10, -9. 52

Соответствующие частные решения запишутся в виде пар (1,3), (6,1).

Применим этот же метод к решению одной из древних китайских задач о птицах.

Задача: Сколько можно купить на 100 монет петухов, кур и цыплят, если всего надо купить 100 птиц, причем петух стоит 5 монет, курица - 4, а 4 цыпленка - 1 монету?

Для решения этой задачи обозначим искомое число петухов через х, кур - через y, а цыплят через 4z (из условия видно, что число цыплят должно делится на 4). Составим систему уравнений:

которую надо решить в целых неотрицательных числах. Умножив первое уравнение системы на 4, а второе -- на (-- 1) и сложив результаты, придем к уравнению -- х+15z= 300 с целочисленными решениями х= -- 300+ 15t, z = t. Подставляя эти значения в первое уравнение, получим y = 400 -- 19t. Значит, целочисленные решения системы имеют вид х= --300+15t, y = 400--19t, z = t. Из условия задачи вытекает, что

откуда 20?t?21 1/19, т.е. t = 20 или t = 21. Итак, на 100 монет можно купить 20 кур и 80 цыплят, или 15 петухов, 1 курицу и 84 цыпленка

Второй метод решения диофантовых уравнений первой степени по своей сути не слишком отличается от рассмотренного в предыдущем пункте, но он связан с ещё одим интересным математическим понятием. Речь идёт о непрерывных или цепных дробях. Чтобы определить их вновь обратимся к алгоритму Евклида. Из первого равенства системы (1) вытекает, что дробь а/b можно записать в виде суммы целой части и правильной дроби: a/b=q0+r1/b . Но r1/b=1/b, и на основании второго равенства той же системы имем b/r1=q1+r2/r1. Значит, a/b=q0+1/q1+r2/r1. Далее получим a/b=q0+1/q1+1/q2+r3/r2. Продолжим этот процесс до тех пор, пока не придём к знаменателю qn. В результате мы представим обыкновенную дробь a/b в следующем виде: a/b=q0+1/q1+1/q2+1/…1/qn. Эйлер назвал дроби такого вида непрерывными. Приблизительно в то же время в Германии появился другой термин- цепная дробь. Так за этими дробями и сохранились оба названия. В качестве примера представим дробь 40/3t в виде цепной: 40/3t=1+9/3t=1/3t/9=1+1/3+4/9=1+1/3+1/9/4=1+1/3+1/2+1/4 .

Цепные дроби обладают следующим важным свойством: если действительное число а записать в виде непрерывной дроби, то подходящая дробь Pk/Qk даёт наилучщее приближение числа a среди всех дробей, знаменатели которых не превосходят Qk . Именно в процессе поиска наилучшего приблежения значений квадратных корней итальянский математик Пиетро Антонио Катальди (1552-1626) пришёл в 1623году к цепным дробям, с чего и началось их изучение. В заключение вернёмся к цепным дробям и отметим их преимущество и недостаток по сравнению, например, с десятичными. Удобство заключается в том, что их свойства не связаны ни с какой системой исчисления. По этой причине цепные дроби эффективно используются в теоретических исследованиях. Но широкого практического применения они не получили, так как для них нет удобных правил выполнения арифметических действий, которые имеются для десятичных дробей.

Рассмотрим Диофантовы уравнения и решим их.

1 Решить в целых числах уравнение 3x+5y=7.

x=7-5y/3=6-3y-2y+1/3=2-y+1-2y/3,

y=1-3k/2=1-2k-k/2=-k+1-k/2,

y=1-3(1-2t)/2=-1+3t,

x=7-5(-1+3t)/3=4-5t

(t-любое число).

2 Решить в целых числах уравнение 6xІ+5yІ=74.

6xІ-24=50-5yІ, или 6(xІ-4)=5(10-yІ), откуда xІ-4=5u,т.е. 4+5u?0, откуда u?-4/5.

Аналогично:

10-yІ=6u, т.е. 10-6u?0, u?5/3.

Целое число u удовлетворяет неравенству

4/5?u?5/3, значит. u=0 и u=1.

При u=0, получим 10=yІ, где y-не целое, что неверно. Пусть u=1, тогда xІ=9, yІ=4.

Ответ: {x1=3, {x2=3, {x3=-3, {x4=-3,

{y1=2, {y2=-2, {y3=2, {y4=-2 .

3 Решить в целых числах уравнение xі+yі-3xy=2.

Если x и y оба нечётны или одно из них нечётно, то левая часть уравнения есть нечётное число, а правая-чётное. Если же x=2m и y=2n, то 8mі+8nі-12mn=2, т.е. 2(2mі+2nі-3mn)=1, что невозможно ни при каких целых m и n.

4 Доказать, что уравнение 2xІ+5yІ=7 не имеет решений в целых числах.

Доказательство.

Из уравнения видно, что y должен быть нечётным числом. Положив y=2z+1, получим 2xІ-20zІ-20z-5=7, или xІ-10zІ-10z=6, откуда следует что x есть чётное число. Положим x=2u. Тогда 2uІ-5z(z=1)=3, что невозможно, так как z(z+1) есть чётное число.

5 Доказать, что при любом целом положительном значении а уравнение xІ+yІ=аі разрешимо в целых числах.

Доказательство.

Положим x+y=аІ, x-y=а, откуда x=a(a+1)/2 и y=a(a-1)/2. Поскольку при любом целом значении а в числителе каждой из данных дробей стоит произведение чётного и нечётного чисел, определённые таким образом x и y представляют сорбой целые числа и удовлетворяют исходному уравнению.

6 Решите в целых числах уравнение (x+1)(xІ+10=yі.

Непосредственно видим, что пары чисел (0;1) и (-1;0) являются решениями уравнения. Других решений нет, так как

xі<(x+1)(xІ+1)<(x+1)(x+1)І=(x+1) і, то (x+1)(xІ+1)?yі

ни для какого целого y (распологающегося между кубами последовательных целых чисел).

Министерство образования и науки

Научное Общество Учащихся

Секция «Алгебра»

Работа по теме:

«Диофантовы уравнения»

Выполнила:

ученица 10 «А» классаМОУ СОШ № 43

Булавина Татьяна

Научный руководитель:Пестова

Надежда Ивановна

Нижний новгород2010


Введение

О диофантовых уравнениях

Способы решения диофантовых уравнений

Список литературы

Введение

Я выбрала тему: «Диофантовы уравнения» потому, что меня заинтересовало, как зарождалась арифметика.

Диофант Александрийский (3 век)-греческий математик. Его книгу «Арифметика» изучали математики всех поколений.

Необычайный расцвет древнегреческой науки в IV-III вв. до н. э. сменился к началу новой эры постепенным спадом в связи с завоеванием Греции Римом, а потом и начавшимся разложением Римской империи. Но на фоне этого угасания еще вспыхивает яркий факел. В 3-ем веке новой эры появляется сочинение александрийского математика Диофанта «Арифметика». О жизни самого Диофанта нам известно только из стихотворения, содержащегося в «Палатинской антологии». В этой антологии содержалось 48 задач в стихах, собранных греческим поэтом и математиком VI в. Метродором. Среди них были задачи о бассейне, о короне Герона, о жизненном пути Диофанта. Последняя оформлена в виде эпитафии - надгробной надписи.

Прах Диофанта гробница покоит: дивись ей - и камень

Мудрым искусством его скажет усопшего век.

Волей богов шестую часть жизни он прожил ребенком

И половину шестой встретил с пушком на щеках.

Только минула седьмая, с подругою он обручился.

С нею пять, лет проведя, сына дождался мудрец.

Только полжизни отцовской возлюбленный сын его прожил.

Отнят он был у отца ранней могилой своей.

Дважды два года родитель оплакивал тяжкое горе.

Тут и увидел предел жизни печальной своей.

Трактат «Арифметика» занимает особое место в античной матиматике не только по времени своего появления, но и по содержанию. Большую часть его составляют разнообразные задачи по теории чисел и их решения. Но, главное, автор использует не геометрический подход, как это было принято у древних греков,-решения Диофанта предвосхищают алгебраические и теоретико- числовые методы. К сожалению, из 13 книг, составлявших «Арифметику», до нас дошли лишь первые 6, а остальные погибли в перипетиях тогдашнего бурного времени. Достаточно сказать, что через 100 лет после смерти Диофанта была сожжена знаменитая александрийская библиотека, содержавшая бесценные сокровища древнегреческой науки.


О диофантовых уравнениях.

Задачи Диофантовой «Арифметики» решаются с помощью уравнений, проблемы решения уравнеий скорее относятся к алгебре, чем к арифметике. Почему же тогда мы говорим, что эти уравнения относятся к арифметическим? Дело в том, что эти задачи имеют специфические особенности.

Во-первых, они сводятся к уравнениям или к системам уравнений с целыми коэффициентами. Как правило, эти системы неопределённые,т.е. число уравнений в них меньше числа неизвестных.

Во-вторых, решения требуется найти только целые, часто натуральные.

Для выделения таких решений из всего бесконечного их множества приходится пользоваться свойствами целых чисел,а это уже относится к области арифметики.Дадим определение диофантовым уравнениям.

Диофантовы уравнения-алгебраические уравнения или системы алгебраических уравнений с целыми коэффициентами, для которых надо найти целые или рациональные решения. При этом число неизвесных в уравнениях больше числа уравнений. Ни один крупный математик не прошёл мимо теории диофантовых уравнений.

Давайте рассмотрим современную простенькую задачу.

За покупку нужно уплатить 1700 р. У покупателя имеются купюры только по 200р. и по 500 р. Какими способами он может расплатиться? Для ответа на этот вопрос достаточно решить уравнение 2x + 5y=17 с двумя неизвестными x и y. Такие уравнения имеют бесконечное множество решений. В частности, полученному уравнению отвечает любая пара чисел вида (x, 17-2x/5). Но для этой практической задачи годятся только целые неотрицательные значения x и y. Поэтому приходим к такой постановке задачи: найти все целые неотрицательные решения уравнения 2x+5y=17. Ответ содержит уже не бесконечно много,авсего лишь две пары чисел (1, 3) и (6, 1).Диофант сам находил решения своих задач. Вот несколько задач из его «Арифметики».

1. Найти два числа так, чтобы их произведение находилось в заданном отношении к их сумме.

2. Найти три квадрата так, чтобы сумма их квадратов тоже была квадратом.

3. Найти два числа так, чтобы их произведение делалось кубом как при прибавлении, так и при вычитании их суммы.

4. Для числа 13=2²+3² найти два других,сумма квадратов которых равна 13.

Приведём диофантово решение последней задачи. Он полагает первое число (обозначим его через А) равным x+2, а второе число B равным 2x-3 , указывая, что коэффициент перед xможно взять и другой. Решая уравнения

(x+2)²+(kx-3)²=13,

Диофант находит x=8/5, откуда A=18/5,B=1/5. Воспользуемся указанием Диофанта и возьмём произвольный коэффициент перед x в выражении для B. Пусть снова А=x+2,а В=kx-3, тогда из уравнения

(x+2)²+(kx-3)²=13

x=2(3k-2)/k²+1.

А=2(k²+3k-1)/k²+1,

В=3k²-4k-3/k²+1.

Теперь становятся понятными рассуждения Диофанта. Он вводит очень удобную подстановку А=x+2, В=2x-3, которая с учётом условия 2²+3²=13 позволяет понизить степень квадратного уравнения. Можно было бы с тем же успехом в качестве В взять 2x+3 , но тогда получаются отрицательные значения для В,чего Диофант не допускал. Очевидно, k=2- наименьшее натуральное число, при котором А и В положительны.

Исследование Диифантовых уравнений обычно связано с большими трудностями. Более того, можно указать многочлен F (x,y1,y2 ,…,yn) c целыми коэффициентами такой, что не существует алгоритма, позволяющего по любому целому числу x узнавать, разрешимо ли уравнение F (x,y1,y2 ,…,yn)=0 относительно y1,…,y. Примеры таких многочленов можно выписать явно. Для них невозможно дать исчерпывающего описания решений.

Современной постановкой диофантовых задач мы обязанны Ферма. Именно он поставил перед европейскими математиками вопрос о решении неопределённых уравнений только в целых числах. Надо сказать, что это не было изобретением Ферма - он только возродил интерес к поиску целочисленных решений. А вообще задачи, допускающие только целые решения, были распространены во многих странах в очень далёкие от нас времена.В нынешней математике существует целое направление, занимающееся исследованиями диофантовых уравнений,поиском способов их решений.Называется оно диофантовым анализом и диофантовой геометрией, поскольку использует геометрические способы доказательств.

Простейшее Диофантово уравнение ax+by=1,где a и b – цельные взаимопростые числа, имеет бесконечно много решений (если x0 и y0-решение, то числа x=x0+bn, y=y0-an, где n- любое целое, тоже будут решениями).

Другим примером Диофантовых уравнений является

x 2 + у 2 = z 2 . (5)


Это Диофантово уравнение 2-й степени. Сейчас мы займёмся поиском его решений. Удобно записывать их в виде троек чисел (x,y,z). Они называются пифагоровыми тройками. Вообще говоря, уравнению (5) удовлетворяет бесконечное множество решений. Но нас будут интересовать только натуральные. Целые, положительные решения этого уравнения представляют длины катетов х, у и гипотенузы z прямоугольных треугольников с целочисленными длинами сторон и называются пифагоровыми числами. Наша задача состоит в том, чтобы найти все тройки пифагоровых чисел. Заметим, что если два числа из такой тройки имеют общий делитель, то на него делится и третье число. Поделив их все на общий делитель, вновь получим пифагороау тройку. Значит от любой пифагоровой тройки можно перейти к другой пифагоровой тройке, числа которой попарно взаимо просты. Такую тройку называют примитивной. Очевидно, для поставленной нами задачи достаточно найти общий вид примитивних пифагоровых троек. Ясно, что в примитивной пифагоровой тройке два числа не могут быть чётными, но в то же время все три числа не могут быть нечётными одновременно. Остаётся один вариант: два числа нечётные, а одно чётное. Покажем, что z не может быть чётным числом. Предположим противное: z=2m, тогда x и y-нечётные числа. x=2k+1, y=2t+1. В этом случае сумма x²+y²=4(k²+k+t²+t)+2 не делится на 4, в то время как z²=4m² делится на 4. Итак, чётным числом является либо x, либо y. Пусть x=2u, y и z- нечётные числа. Обозначим z+y=2v, z-y=2w . Числа v и wвзаимно простые. На самом деле, если бы они имели общий делитель d>1, то он был бы делителем и для z=w+v, и для y=v-w, что противоречит взаимной простоте y и z. Кроме того, v и w разной чётности: иначе бы y и z были бы чётными. Из равенства x²=(z+y)(z-y) следует, что u²=vw. Поскольку v и w взаимно просты, а их произведение является квадратом, то каждый из множителей является квадратом. Значит найдутся такие натуральные числа p и q, что v=p², w= q² . Очевидно, числа p и q взаимно просты и имеют разную чётность. Теперь имеем


z=p²+q² , y=p²-q²,

x²=(p²+q²)²-(p²-q²)²=4 p² q².

В результате мы доказали, что для любой примитивной пифагоровой тройки (x,y,z) найдутся взаимо простые натуральные числа p и qразной чётности, p>q , такие, что

х =2pq, у =p²-q², z = p 2 + q 2 .(6)

Все тройки взаимно простых пифагоровых чисел можно получить по формулам

х =2pq, у = p²-q², z = p 2 + q 2 ,

где m и n - целые взаимо простые числа. Все остальные его натуральные решения имеют вид:

x=2kpq,y=k(p²-q²),z=k(p 2 + q 2 ),

где k-произвольное натуральное число. Теперь рассмотрим следующую задачу: дано произвольное натуральное число m>2; существует ли пифагоров треугольник, одна из сторон которого равна m? Если потребовать, чтобы заданную длину m имел катет, то для любого m ответ положительный. Докажем это. Пусть сначала m-нечётное число. Положим p=m+1/2, q=m-1/2. Получаем пифагорову тройку

Диофант Александрийский - древнегреческий математик, который жил еще в III веке н. э. О нем говорят как об «отце алгебры». Это автор «Арифметики» - книги, которая посвящена нахождению положительных рациональных решений неопределённых уравнений. Диофант - первый греческий математик, который рассматривал дроби наравне с другими числами. Он первым среди античных учёных предложил развитую математическую символику, которая позволяла формулировать полученные им результаты в достаточно компактном виде. В честь Диофанта назван кратер на видимой стороне Луны.

Диофантово уравнение представляет собой алгебраическое уравнение с налагаемым дополнительным условием, состоящем в том, что все его решения должны представлять собой целые числа. В большинстве случаев данного рода уравнения решаются довольно сложно. Теорема Ферма - это прекрасный пример диофантового уравнения, которое так и не решено спустя 350 лет.

Допустим, нам необходимо решить в целых числах \[(x,y)\] уравнение:

Чтобы решить данного вида задание применим алгоритм Евклида, которое говорит, что для любых двух натуральных чисел \ таких, что \[Н.О.Д.(а,b) = 1\] существуют целые числа \ такие, что \[ах + bу = 1.\]

Этапы решения:

1. Найдем решение уравнения \ применив алгоритм Евклида.

2. Найдем частное решение уравнения (1) по правилу 2.

3. Запишем общее решение данного уравнения (1).

1. Найдем представление: \ Для решения применим алгоритм Евклида.

Из этого равенства выразим

\[ 1 = 3 - 2^1=3-(5-3)^1=3-5^1+3\cdot 1=3^2-5\cdot1=(8-5^1)^2 -5^1=8^2-5\cdot2-5^1=5^x(-3)-8\cdot(-2) \]

Итак, \

2. Частное решение уравнения \[(1): x_о = 19m; y_о =19n.\]

Отсюда получим: \[ x_о =19^x(-3)=57; у_о =19^x(-2)=-38 \]

Пара (-57; -38) - частное решение (1).

3.Общее решение уравнения (1):

\[\left\{\begin{matrix} x=-57+8n\\ y=-3+n, n \in Z \end{matrix}\right.\]

Где взять решение диофантова уравнения?

Решить уравнение вы можете на нашем сайте https://сайт. Бесплатный онлайн решатель позволит решить уравнение онлайн любой сложности за считанные секунды. Все, что вам необходимо сделать - это просто ввести свои данные в решателе. Так же вы можете посмотреть видео инструкцию и узнать, как решить уравнение на нашем сайте. А если у вас остались вопросы, то вы можете задать их в нашей групе Вконтакте http://vk.com/pocketteacher. Вступайте в нашу группу, мы всегда рады помочь вам.