Снижает опсс что. Сосудистое сопротивление. Системные гормоны, регулирующие сосудистый тонус

8)классификация кровеносных сосудов.

Кровено́сные сосу́ды - эластичные трубчатые образования в теле животных и человека, по которым силой ритмически сокращающегося сердца или пульсирующего сосуда осуществляется перемещение крови по организму: к органам и тканям по артериям, артериолам, артериальным капиллярам, и от них к сердцу - по венозным капиллярам, венулам и венам.

Среди сосудов кровеносной системы различают артерии , артериолы , капилляры , венулы , вены и артериоло-венозные анастомозы ; сосуды системы микроциркуляторного русла осуществляют взаимосвязь между артериями и венами. Сосуды разных типов отличаются не только по своей толщине, но и по тканевому составу и функциональным особенностям.

    Артерии - сосуды, по которым кровь движется от сердца. Артерии имеют толстые стенки, в которых содержатся мышечные волокна, а также коллагеновые и эластические волокна. Они очень эластичные и могут сужаться или расширяться, в зависимости от количества перекачиваемой сердцем крови.

    Артериолы - мелкие артерии, по току крови непосредственно предшествующие капиллярам. В их сосудистой стенке преобладают гладкие мышечные волокна, благодаря которым артериолы могут менять величину своего просвета и, таким образом, сопротивление.

    Капилляры - это мельчайшие кровеносные сосуды, настолько тонкие, что вещества могут свободно проникать через их стенку. Через стенку капилляров осуществляется отдача питательных веществ икислорода из крови в клетки и переход углекислого газа и других продуктов жизнедеятельности из клеток в кровь.

    Венулы - мелкие кровеносные сосуды, обеспечивающие в большом круге отток обедненной кислородом и насыщенной продуктами жизнедеятельности крови из капилляров в вены.

    Вены - это сосуды, по которым кровь движется к сердцу. Стенки вен менее толстые, чем стенки артерий и содержат соответственно меньше мышечных волокон и эластических элементов.

9)Объемная скорость кровотока

Объемная скорость потока крови (кровотока) сердца - это динамический показатель деятельности сердца. Соответствующая этому показателю переменная физическая величина характеризует объёмное количество крови, проходящее через поперечное сечение потока (в сердце) за единицу времени. Объемную скорость кровотока сердца оценивают по формуле:

CO = HR · SV / 1000,

где: HR - частота сокращений сердца (1 / мин ), SV - систолический объём кровотока (мл , л ). Система кровообращения, или сердечно-сосудистая система представляет собой замкнутую систему (см. схему 1, схему 2, схему 3). Она состоит из двух насосов (правое сердце и левое сердце), соединенных между собой последовательнокровеносными сосудами большого круга кровообращения и кровеносными сосудами малого круга кровообращения(сосудами лёгких). В любом совокупном сечении этой системы протекает одно и то же количество крови. В частности, при одних и тех же условиях поток крови, протекающий через правое сердце, равен потоку крови, протекающей через левое сердце. У человека в состоянии покоя объёмная скорость кровотока (как правого, так и левого) сердца составляет ~4,5 ÷ 5,0 л / мин . Целью системы кровообращения является обеспечение непрерывного кровотока во всех органах и тканях в соответствии с потребностями организма. Сердце является насосом, перекачивающим кровь по системе кровообращения. Вместе с кровеносными сосудами сердце актуализирует цель системы кровообращения. Отсюда, объёмная скорость кровотока сердца является переменной, характеризующей эффективность работы сердца. Кровоток сердца управляется сердечно-сосудистым центром и зависит от ряда переменных. Главными из них являются:объёмная скорость потока венозной крови к сердцу (л / мин ), конечно-диастолический объём кровотока (мл ), систолический объём кровотока (мл ), конечно-систолический объём кровотока (мл ), частота сокращений сердца (1 / мин ).

10) Линейная скорость потока крови (кровотока) - это физическая величина, являющаяся мерой движения частиц крови, составляющих поток. Теоретически она равна расстоянию, проходимому частицей вещества, составляющего поток, в единицувремени: v = L / t . Здесь L - путь (м ), t - время (c ). Кроме линейной скорости кровотока различают объёмную скорость потока крови, или объёмную скорость кровотока . Средняя линейная скорость ламинарного кровотока (v ) оценивается интегрированием линейных скоростей всех цилиндрических слоев потока:

v = (dP · r 4 ) / (8η · l ),

где: dP - разница давления крови в начале и в конце участка кровеносного сосуда, r - радиус сосуда, η - вязкость крови, l - длина участка сосуда, коэффициент 8 - это результат интегрирования скоростей, движущихся в сосуде слоев крови. Объемная скорости кровотока (Q ) и линейная скорости кровотока связаныотношением:

Q = v · π · r 2 .

Подставив в это отношение выражение для v получим уравнение («закон») Хагена-Пуазейля для объёмной скорости кровтотка:

Q = dP · (π · r 4 / 8η · l ) (1).

Исходя из простой логики, можно утверждать, что объёмная скорость любого потока прямо пропорциональна движущейсиле и обратно пропорциональна сопротивлению потоку. Аналогично, объёмная скорость кровотока (Q ) прямо пропорциональна движущей силе (градиентдавления, dP ), обеспечивающей кровоток, и обратно пропорциональна сопротивлению кровотоку (R ): Q = dP / R . Отсюда R = dP / Q . Подставляя в это отношение выражение (1) для Q , получим формулу для оценки сопротивления кровотоку:

R = (8η · l ) / (π · r 4 ).

Из всех этих формул видно, что самой значимой переменной, определяющей линейную и объёмную скорости кровотока, является просвет (радиус) сосуда. Эта переменная является главной переменной в управлении кровотоком.

Сопротивление сосудов

Гидродинамическое сопротивление прямо пропорционально длине сосуда и вязкости крови и обратно пропорционально радиусу сосуда в 4-й степени, то есть больше всего зависит от просвета сосуда. Так как наибольшим сопротивлением обладают артериолы, ОПСС зависит главным образом от их тонуса.

Различают центральные механизмы регуляции тонуса артериол и местные механизмы регуляции тонуса артериол.

К первым относятся нервные и гормональные влияния, ко вторым - миогенная, метаболическаяи эндотелиальная регуляция.

На артериолы оказывают постоянный тонический сосудосуживающий эффект симпатические нервы. Величина этого симпатического тонуса зависит от импульсации, поступающей отбарорецепторов каротидного синуса, дуги аорты и легочных артерий.

Основные гормоны, в норме участвующие в регуляции тонуса артериол, - это адреналин инорадреналин, вырабатываемые мозговым веществом надпочечников.

Миогенная регуляция сводится к сокращению или расслаблению гладких мышц сосудов в ответ на изменения трансмурального давления; при этом напряжение в их стенке остается постоянным. Тем самым обеспечивается ауторегуляция местного кровотока - постоянство кровотока при меняющемся перфузионном давлении.

Метаболическая регуляция обеспечивает расширение сосудов при повышении основного обмена(за счет выброса аденозина и простагландинов) и гипоксии (также за счет выделения простагландинов).

Наконец, эндотелиальные клетки выделяют ряд вазоактивных веществ - окись азота,эйкозаноиды (производные арахидоновой кислоты), сосудосуживающие пептиды (эндотелин-1, ангиотензин II) и свободные радикалы кислорода.

12)давление крови в разных отделах сосудистого русла

Давление крови в различных участках сосудистой системы. Среднее давление в аорте поддерживается на высоком уровне (примерно 100 мм рт. ст.), поскольку сердце непрестанно перекачивает кровь в аорту. С другой стороны, артериальное давление меняется от систолического уровня 120 мм рт. ст. до диастолического уровня 80 мм рт. ст., поскольку сердце перекачивает кровь в аорту периодически, только во время систолы. По мере продвижения крови в большом круге кровообращения среднее давление неуклонно снижается, и в месте впадения полых вен в правое предсердие оно составляет 0 мм рт. ст. Давление в капиллярах большого круга кровообращения снижается от 35 мм рт. ст. в артериальном конце капилляра до 10 мм рт. ст. в венозном конце капилляра. В среднем «функциональное» давление в большинстве капиллярных сетей составляет 17 мм рт. ст. Этого давления достаточно для перехода небольшого количества плазмы через мелкие поры в капиллярной стенке, в то время как питательные вещества легко диффундируют через эти поры к клеткам близлежащих тканей. В правой части рисунке показано изменение давления в различных участках малого (легочного) круга кровообращения. В легочных артериях видны пульсовые изменения давления, как и в аорте, однако уровень давления значительно ниже: систолическое давление в легочной артерии - в среднем 25 мм рт. ст., а диастоли-ческое - 8 мм рт. ст. Таким образом, среднее давление в легочной артерии составляет всего 16 мм рт. ст., а среднее давление в легочных капиллярах равно примерно 7 мм рт. ст. В то же время общий объем крови, проходящий через легкие за минуту, - такой же, как и в большом круге кровообращения. Низкое давление в системе легочных капилляров необходимо для выполнения газообменной функции легких.

Если для описания движения крови в сосуде использовать фундаментальные физические законы, то, согласно закону Ома для электрической цепи:

Напряжение (скорость кровотока) = Разница давлений / Сопротивление сосуда .

Таким образом, с увеличением перепада давления скорость кровотока возрастает, а с увеличением сопротивления стенок сосуда, наоборот, снижается.

Сопротивление кровотоку возникает за счет внутреннего трения движении потока. Кровь относительно легко проходит по крупным сосудам, но небольшие артерии, и особенно артериолы и капилляры, обладают маленьким диаметром и, создавая сопротивление, замедляют кровоток (периферическое сопротивление). Таким образом, чем больше периферическое сопротивление, тем большим должно быть давление.

Кровоток в системе кровообращения создается за счет перепада давления между артериями и венами. Поскольку в системном круге среднее артериальное давление снижается от 100 мм рт. ст. до примерно 3 мм рт. ст., то перепад давления составляет 97 мм рт. ст. Поэтому при необходимости кровоток может оптимизироваться за счет изменения скорости (производительность работы сердца = сердечный выброс) и сопротивления сосудистой системы потоку крови (периферическое сопротивление). Отсюда для системного кровообращения получаем выражение:

Сердечный выброс = Перепад кровяного давления / Периферическое сопротивление.

Поскольку повышенное давление крови в системном кровотоке создает значительную нагрузку на стенки сосуда, оно поддерживается на относительно постоянном уровне.

Адаптация системы кровообращения к изменившимся условиям происходит, главным образом, за счет изменения темпа сердечной деятельности или периферического сопротивления.

Распределение сердечного выброса

Приток крови к различным органам в состоянии покоя или при нагрузке сильно колеблется и зависит от функции конкретного органа (степени потребления кислорода, интенсивности обменных процессов) и от местных анатомических особенностей.

Так, система легочного круга получает весь объем сердечного выброса (СВ), а параллельно связанные органы системного круга (мозг, желудочно-кишечный тракт, почки, мышцы, кожа) только его часть. Как правило, работающая мышца должна лучше снабжаться кровью, чем находящаяся в состоянии покоя, хотя кровоснабжение некоторых органов, например, почек, все время должно быть максимально высоким.

Распределение сердечного выброса по органам зависит от величины сопротивления системы сосудов, снабжающих конкретный орган кровью. Это сопротивление изменяется в широких пределах. Например, к мышцам, находящимся в покое, направляется 15-20% сердечного выброса, а при физической нагрузке эта величина может увеличиваться до 75%.

Относительно большая часть сердечного выброса поступает в желудочно-кишечный тракт при переваривании пищи. При физических нагрузках или при подъеме окружающей температуры также усиливается кровоснабжение кожи.

Такие органы, как головной мозг, крайне чувствительны к кислородной недостаточности и нуждаются в постоянном адекватном кровоснабжении (около 15% сердечного выброса). Для поддержания контрольной и выделительной функций почки должны получать 20-25 % сердечного выброса. Таким образом, по отношению к весу почек (0,5% от веса тела) степень их кровоснабжения очень высокая.

5. ОБЩЕЕ ПЕРИФЕРИЧЕСКОЕ СОПРОТИВЛЕНИЕ

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол. Однако изменения тонуса в различных отделах сердечнососудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других - вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических нарушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта - бесконечно большое ОПСС и отсутствие его току крови. При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС. При нулевом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5-6 раз и более. Однако в живом организме ОПСС никогда не может стать равным 0, как и бесконечно большим. В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.

Деление сосудов по их функциональному значению. Все сосуды организма можно разделить на две группы: сосуды сопротивления и емкостные сосуды. Первые регулируют величину ОПСС, АД и степень кровоснабжения отдельных органов и систем организма; вторые, вследствие большой емкости, участвуют в поддержании венозного возврата к сердцу, а следовательно, и МОС.

Сосуды «компрессионной камеры» - аорта и ее крупные ветви - поддерживают градиент давления вследствие растяжимости во время систолы. Это смягчает пульсирующий выброс и делает поступление крови на периферию более равномерным. Прекапиллярные сосуды сопротивления - мелкие артериолы и артерии - поддерживают гидростатическое давление в капиллярах и тканевый кровоток. На их долю выпадает большая часть сопротивления кровотоку. Прекапиллярные сфинктеры, изменяя число функционирующих капилляров, меняют площадь обменной поверхности. В них находятся а-рецепторы, которые при воздействии катехоламинов вызывают спазм сфинктеров, нарушение кровотока и гипоксию клеток. а-адреноблокаторы являются фармакологическими средствами, снижающими раздражение а-рецепторов и снимающими спазм в сфинктерах.

Капилляры являются наиболее важными сосудами обмена. Они осуществляют процесс диффузии и фильтрации - абсорбции. Растворенные вещества проходят через их стенку в обоих направлениях. Они относятся к системе емкостных сосудов и в патологических состояниях могут вмещать до 90 % объема крови. В нормальных условиях они содержат до 5-7 % крови.

Посткапиллярные сосуды сопротивления - мелкие вены и венулы - регулируют гидростатическое давление в капиллярах, вследствие чего осуществляется транспорт жидкой части крови и межтканевой жидкости. Гуморальный фактор является основным регулятором микроциркуляции, но нейрогенные раздражители также оказывают действие на пре- и посткапиллярные сфинктеры.

Венозные сосуды, вмещающие до 85 % объема крови, не играют значительной роли в сопротивлении, а выполняют функцию емкости и наиболее подвержены симпатическим влияниям. Общее охлаждение, гиперадреналинемия и гипервентиляция приводят к венозному спазму, что имеет большое значение в распределении объема крови. Изменение емкости венозного русла регулирует венозный возврат крови к сердцу.

Шунтовые сосуды - артериовенозные анастомозы - во внутренних органах функционируют только в патологических состояниях, в коже выполняют терморегулирующую функцию.

6. ОБЪЕМ ЦИРКУЛИРУЮЩЕЙ КРОВИ

Определить понятие «объем циркулирующей крови» довольно трудно, так как он является динамической величиной и постоянно изменяется в широких пределах. В состоянии покоя не вся кровь принимает участие в циркуляции, а только определенный объем, совершающий полный кругооборот в относительно короткий промежуток времени, необходимый для поддержания кровообращения. На этом основании в клиническую практику вошло понятие «объем циркулирующей крови».

У молодых мужчин ОЦК равен 70 мл/кг. Он с возрастом уменьшается до 65 мл/кг массы тела. У молодых женщин ОЦК равен 65 мл/кг и тоже имеет тенденцию к уменьшению. У двухлетнего ребенка объем крови равен 75 мл/кг массы тела. У взрослого мужчины объем плазмы составляет в среднем 4-5 % массы тела. Таким образом, у мужчины с массой тела 80 кг объем крови в среднем 5600 мл, а объем плазмы - 3500 мл. Более точные величины объемов крови получаются с учетом площади поверхности тела, так как отношение объема крови к поверхности тела с возрастом не меняется. У тучных пациентов ОЦК в пересчете на 1 кг массы тела меньше, чем у пациентов с нормальной массой. Например, у полных женщин ОЦК равен 55-59 мл/кг массы тела. В норме 65-75 % крови содержится в венах, 20 % - в артериях и 5-7 % - в капиллярах (табл. 2).

Потеря 200-300 мл артериальной крови у взрослых, равная примерно 1/3 ее объема, может вызвать выраженные гемодинамические сдвиги, такая же потеря венозной крови составляет всего l/10-1/13 часть ее и не приводит к каким-либо нарушениям кровообращения.

Таблица 2.

Распределение объемов крови в орга­низме

Уменьшение объема крови при кровопотере обусловлено потерей эритроцитов и плазмы, при дегидратации - потерей воды, при анемии - потерей эритроцитов и при микседеме - снижением числа эритроцитов и объема плазмы. Гиперволемия характерна для беременности, сердечной недостаточности и полиглобулии.

Метаболизм и кровообращение. Существует тесная корреляционная зависимость между состоянием кровообращения и метаболизмом. Величина кровотока в любой части тела возрастает пропорционально уровню метаболизма. В различных органах и тканях кровоток регулируется разными веществами: для мышц, сердца, печени регуляторами являются кислород и энергетические субстраты, для клеток головного мозга - концентрация углекислого газа и кислород, для почек - уровень ионов и азотистых шлаков. Температура тела регулирует кровоток в коже. Несомненным, однако, является факт высокой степени корреляции между уровнем кровотока в любой части тела и концентрацией кислорода в крови. Повышение потребности тканей в кислороде приводит к возрастанию кровотока. Исключением является ткань мозга. Как недостаток кислорода, так и избыток углекислого газа в равной степени являются мощными стимуляторами мозгового кровообращения. Клетки различно реагируют на недостаток тех или иных веществ, участвующих в метаболизме. Это связано с разной потребностью в них, разными утилизацией и резервом их в крови.

Величина резерва того или иного вещества называется «коэффициентом безопасности», или «коэффициентом утилизации». Данный резерв вещества утилизируется тканями в чрезвычайных условиях и полностью зависит от состояния МОС. При постоянном уровне кровотока транспорт кислорода и его утилизация могут возрасти в 3 раза за счет более полной отдачи кислорода гемоглобином. Иными словами, резерв кислорода может увеличиться только в 3 раза без повышения МОС. Поэтому «коэффициент безопасности» для кислорода равен 3. Для глюкозы он также равен 3, а для других веществ он значительно выше - для углекислого газа - 25, аминокислот - 36, жирных кислот - 28, продуктов белкового обмена - 480. Разница между «коэффициентом безопасности» кислорода с глюкозой и таковым других веществ огромна.

Термин «общее периферическое сопротивление сосудов» обозначает суммарное сопротивление артериол.

Од­нако изменения тонуса в различных отделах сердечно-сосудистой системы различны. В одних сосудистых областях может быть выраженная вазоконстрикция, в других - вазодилатация. Тем не менее ОПСС имеет важное значение для дифференциальной диагностики вида гемодинамических на­рушений.

Для того чтобы представить важность ОПСС в регуляции МОС, необходимо рассмотреть два крайних варианта - бесконечно большое ОПСС и отсутствие его току крови.

При большом ОПСС кровь не может протекать через сосудистую систему. В этих условиях даже при хорошей функции сердца кровоток прекращается. При некоторых патологических состояниях кровоток в тканях уменьшается в результате возрастания ОПСС. Прогрессирующее возрастание последнего ведет к снижению МОС.

При нуле­вом сопротивлении кровь могла бы свободно проходить из аорты в полые вены, а затем в правое сердце. В результате давление в правом предсердии стало бы равным давлению в аорте, что значительно облегчило бы выброс крови в артериальную систему, а МОС возрос бы в 5-6 раз и более.

Одна­ко в живом организме ОПСС никогда не может стать равным 0, как и бес­конечно большим.

В некоторых случаях ОПСС снижается (цирроз печени, септический шок). При его возрастании в 3 раза МОС может уменьшиться наполовину при тех же значениях давления в правом предсердии.

  • ДИССЕМИНИРОВАННОЕ ВНУТРИСОСУДИСТОЕ СВЕРТЫВАНИЕ (ДВС-СИНДРОМ)
  • ДИССЕМИНИРОВАННОЕ ВНУТРИСОСУДИСТОЕ СВЕРТЫВАНИЕ КРОВИ
  • Диссеминированное внутрисосудистое свертывание крови (ДВС)
  • Диссеминированное внутрисосудистое свертывание крови (ДВС-синдром)
  • Изменение личности при заболеваниях: эпилепсия, шизофрения, травматическое и сосудистое поражение головного мозга.
  • Начало терапии. Обучение и информирование клиента. Особенности работы с сопротивлением и переносом в начале терапии
  • Под влиянием физических нагрузок существенно изменяется сосудистое сопротивление. Увеличение мышечной активности при­водит к усилению кровотока через сокращающиеся мышцы, при-


    чем местный кровоток увеличивается в 12-15 раз по сравнению с нормой (А. Оиутоп е! а1., "№. 5т.атзЬу, 1962). Одним из важнейших факторов, способствующих усилению кровотока при мышечной работе, является резкое уменьшение сопротивления в сосудах, что приводит к значительному снижению общего периферического со­противления (см. табл. 15.1). Снижение сопротивления начинает­ся через 5-10 с после начала сокращения мышц и достигает макси­мума через 1 мин или позже (А. Оиу!оп, 1969). Это связано с рефлекторным расширением сосудов, недостатком кислорода в клетках стенок сосудов работающих мышц (гипоксия). Во время работы мышцы поглощают кислород быстрее, чем в спокойном со­стоянии.

    Величина периферического сопротивления различна на разных участках сосудистого русла. Это обусловлено прежде всего изме­нением диаметра сосудов при разветвлении и связанными с ним изменениями характера движения и свойств движущейся по ним крови (скорость кровотока, вязкость крови и др.). Основное сопро­тивление сосудистой системы сосредоточено в ее прекапиллярной части - в мелких артериях и артериолах: 70-80% общего падения давления крови при движении ее от левого желудочка до правого предсердия приходится на этот участок артериального русла. Эти. сосуды называются поэтому сосудами сопротивления или резистив-ными сосудами.

    Кровь, представляющая собой взвесь форменных элементов в коллоидно-солевом растворе, обладает определенной вязкостью. Выявлено, что относительная вязкость крови уменьшается с уве­личением скорости ее течения, что связывают с центральным рас­положением эритроцитов в потоке и их агрегацией при движении

    Замечено также, что чем менее эластична артериальная стенка (т. е. чем труднее она растягивается, например при атеросклеро­зе), тем большее сопротивление приходится преодолевать сердцу для проталкивания каждой новой порции крови в артериальную систему и тем выше поднимается давление в артериях при систоле.

    Дата добавления: 2015-05-19 | Просмотры: 949 | Нарушение авторских прав


    | | | 4 | | |