Солнечная система и ее происхождение. Реферат: Происхождение Солнечной системы

Гипотеза об образовании Солнечной системы из газопылевого облака - небулярная гипотеза - первоначально была предложена в XVIII веке Эммануилом Сведенборгом, Иммануилом Кантом и Пьером-Симоном Лапласом. В дальнейшем её развитие происходило с участием множества научных дисциплин, в том числе астрономии, физики, геологии и планетологии. С началом космической эры в 1950-х годах, а также с открытием в 1990-х годах планет за пределами Солнечной системы (), эта модель подверглась многократным проверкам и улучшениям для объяснения новых данных и наблюдений.

Согласно общепринятой в настоящее время гипотезе, формирование Солнечной системы началось около 4,6 млрд лет назад с гравитационного коллапса небольшой части гигантского межзвёздного газопылевого облака. В общих чертах, этот процесс можно описать следующим образом:

  • Спусковым механизмом гравитационного коллапса стало небольшое (спонтанное) уплотнение вещества газопылевого облака (возможными причинами чего могли стать как естественная динамика облака, так и прохождение сквозь вещество облака ударной волны от взрыва , и др.), которое стало центром гравитационного притяжения для окружающего вещества - центром гравитационного коллапса. Облако уже содержало не только первичные водород и гелий, но и многочисленные тяжёлые элементы (Металличность), оставшиеся после звёзд предыдущих поколений. Кроме того, коллапсирующее облако обладало некоторым начальным угловым моментом.
  • В процессе гравитационного сжатия размеры газопылевого облака уменьшались и, в силу закона сохранения углового момента, росла скорость вращения облака. Из-за вращения скорости сжатия облака параллельно и перпендикулярно оси вращения различались, что привело к уплощению облака и формированию характерного диска.
  • Как следствие сжатия росла плотность и интенсивность столкновений друг с другом частиц вещества, в результате чего температура вещества непрерывно возрастала по мере сжатия. Наиболее сильно нагревались центральные области диска.
  • При достижении температуры в несколько тысяч кельвинов, центральная область диска начала светиться - сформировалась протозвезда. Вещество облака продолжало падать на протозвезду, увеличивая давление и температуру в центре. Внешние же области диска оставались относительно холодными. За счёт гидродинамических неустойчивостей, в них стали развиваться отдельные уплотнения, ставшие локальными гравитационными центрами формирования планет из вещества протопланетного диска.
  • Когда температура в центре протозвезды достигла миллионов кельвинов, в центральной области началась реакция термоядерного синтеза гелия из водорода. Протозвезда превратилась в обычную звезду главной последовательности. Во внешней области диска крупные сгущения образовали планеты, вращающиеся вокруг центрального светила примерно в одной плоскости и в одном направлении.

Последующая эволюция

Раньше считалось, что все планеты сформировались приблизительно на тех орбитах, где находятся сейчас, однако в конце XX - начале XXI века эта точка зрения радикально изменилась. Сейчас считается, что на заре своего существования Солнечная система выглядела совсем не так, как она выглядит сейчас. По современным представлениям, внешняя Солнечная Система была гораздо компактнее по размеру чем сейчас, был гораздо ближе к Солнцу, а во внутренней Солнечной системе помимо доживших до настоящего времени небесных тел существовали и другие объекты, по размеру не меньшие чем .

Планеты земного типа

Гигантское столкновение двух небесных тел, возможно, породившее спутник Земли Луну

В конце эпохи формирования планет внутренняя Солнечная система была населена 50-100 протопланетами с размерами, варьирующимися от лунного до марсианского. Дальнейший рост размеров небесных тел был обусловлен столкновениями и слияниями этих протопланет между собой. Так, например, в результате одного из столкновений Меркурий лишился большей части своей мантии, в то время как в результате другого т.н. гигантского столкновения (возможно, с гипотетической планетой Тейя) был рождён спутник . Эта фаза столкновений продолжалась около 100 миллионов лет до тех пор, пока на орбитах не осталось 4 массивных небесных тела, известных сейчас.

Одной из нерешённых проблем данной модели является тот факт, что она не может объяснить, как начальные орбиты протопланетных объектов, которые должны были обладать высоким эксцентриситетом, чтобы сталкиваться между собой, смогли в результате породить стабильные и близкие к круговым орбиты оставшихся четырёх планет. По одной из гипотез, эти планеты были сформированы в то время, когда межпланетное пространство ещё содержало значительное количество газо-пылевого материала, который за счёт трения снизил энергию планет и сделал их орбиты более гладкими. Однако этот же самый газ должен был предотвратить возникновение большой вытянутости в первоначальных орбитах протопланет. Другая гипотеза предполагает, что коррекция орбит внутренних планет произошла не за счёт взаимодействия с газом, а за счёт взаимодействия с оставшимися более мелкими телами системы. По мере прохождения крупных тел сквозь облако мелких объектов последние из-за гравитационного влияния стягивались в регионы с более высокой плотностью, и создавали таким образом «гравитационные гребни» на пути прохождения крупных планет. Увеличивающееся гравитационное влияние этих «гребней», согласно этой гипотезе, заставляло планеты замедляться и выходить на более округлую орбиту.

Пояс астероидов

Внешняя граница внутренней Солнечной системы располагается между 2 и 4 а.е. от Солнца и представляет собой . Выдвигались, но в итоге не были подтверждены гипотезы о существовании планеты между и (например, гипотетической планеты Фаэтон), которая на ранних этапах формирования Солнечной системы разрушилась так, что её осколками стали астероиды, сформировавшие пояс астероидов. Согласно современным воззрениям, единой протопланеты-источника астероидов не было. Изначально астероидный пояс содержал достаточное количество материи, чтобы сформировать 2-3 планеты размером с Землю. Эта область содержала большое количество планетозималей, которые слипались между собой, образуя всё более крупные объекты. В результате этих слияний в поясе астероидов сформировалось около 20-30 протопланет с размерами от лунного до марсианского. Однако начиная с того времени, когда в относительной близости от пояса сформировалась планета Юпитер, эволюция этой области пошла по другому пути. Мощные орбитальные резонансы с Юпитером и , а также гравитационные взаимодействия с более массивными протопланетами этой области разрушали уже сформированные планетозимали. Попадая в область действия резонанса при прохождении поблизости планеты-гиганта планетозимали получали дополнительное ускорение, врезались в соседние небесные тела и дробились вместо того чтобы плавно сливаться.

По мере миграции Юпитера к центру системы возникающие возмущения имели всё более выраженный характер. В результате этих резонансов планетозимали меняли эксцентриситет и наклонение своих орбит и даже выбрасывались за пределы астероидного пояса. Некоторые из массивных протопланет также были выброшены Юпитером за пределы пояса астероидов, в то время как другие протопланеты, вероятно, мигрировали во внутреннюю Солнечную систему, где сыграли финальную роль в увеличении массы нескольких оставшихся планет земного типа. В течение этого периода истощения влияние планет-гигантов и массивных протопланет заставило астероидный пояс «похудеть» до всего лишь 1 % от Земной массы, которую составляли в основном маленькие планетозимали. Эта величина, однако, в 10-20 раз больше современного значения массы астероидного пояса, которая теперь составляет 1/2000 массы Земли. Считается, что второй период истощения, который и привёл массу астероидного пояса к текущим значениям, наступил, когда Юпитер и Сатурн вошли в орбитальный резонанс 2:1.

Вполне вероятно, что период гигантских столкновений в истории внутренней Солнечной системы сыграл важную роль в получении Землёй её запасов воды (~6·10 21 кг). Дело в том, что вода - слишком летучее вещество, чтобы возникнуть естественным образом во время формирования Земли. Скорее всего она была занесена на Землю из внешних, более холодных областей Солнечной системы. Возможно, именно протопланеты и планетозимали, выброшенные Юпитером за пределы астероидного пояса, занесли воду на Землю. Другими кандидатами на роль главных доставщиков воды являются также главного пояса астероидов, обнаруженные в 2006 году, в то время как кометы из пояса Койпера и из других отдалённых областей предположительно занесли на Землю не более 6 % воды.

Планетная миграция

В соответствии с небулярной гипотезой, две внешние планеты Солнечной системы находятся в «неправильном» месте. и , «ледяные гиганты» Солнечной системы, располагаются в области, где пониженная плотность вещества туманности и длительные орбитальные периоды делали формирование таких планет весьма маловероятным событием. Считается, что эти две планеты изначально сформировались на орбитах вблизи Юпитера и Сатурна, где имелось гораздо больше строительного материала, и только спустя сотни миллионов лет мигрировали на свои современные позиции.

Симуляция, показывающая расположение внешних планет и пояса Койпера: a) Перед орбитальным резонансом 2:1 Юпитера и Сатурна b) Разбрасывание объектов древнего пояса Койпера по Солнечной системе после сдвига орбиты Нептуна c) После выбрасывания Юпитером объектов пояса Койпера за пределы системы

Планетная миграция в состоянии объяснить существование и свойства внешних регионов Солнечной системы. За Нептуном Солнечная система содержит пояс Койпера, и , представляющие собой рассеянные скопления маленьких ледяных тел и дающие начало большинству наблюдаемых в Солнечной системе комет. Сейчас пояс Койпера располагается на расстоянии 30-55 а.е. от Солнца, рассеянный диск начинается в 100 а.е. от Солнца, а облако Оорта - в 50 000 а.е. от центрального светила. Однако в прошлом пояс Койпера был гораздо плотнее и ближе к Солнцу. Его внешний край находился примерно в 30 а.е. от Солнца, в то время как его внутренний край располагался непосредственно за орбитами Урана и Нептуна, которые в свою очередь были также ближе к Солнцу (приблизительно 15-20 а.е.) и, кроме того, располагались в противоположном порядке: Уран был дальше от Солнца чем Нептун.

После формирования Солнечной системы орбиты всех планет-гигантов продолжали медленно изменяться под влиянием взаимодействий с большим количеством оставшихся планетозималей. Спустя 500-600 миллионов лет (4 миллиарда лет назад) Юпитер и Сатурн вошли в орбитальный резонанс 2:1; Сатурн совершал один оборот вокруг Солнца в точности за то время, за которое Юпитер совершал 2 оборота. Этот резонанс создал гравитационное давление на внешние планеты, вследствие чего Нептун вырвался за пределы орбиты Урана и врезался в древний пояс Койпера. По этой же причине планеты стали отбрасывать окружающие их ледяные планетозимали вовнутрь Солнечной системы, в то время как сами стали отдаляться вовне. Этот процесс продолжался аналогичным образом: под действием резонанса планетозимали выбрасывались вовнутрь системы каждой последующей планетой, которую они встречали на своём пути, а орбиты самих планет отдалялись все дальше. Этот процесс продолжался до тех пор, пока планетозимали не вошли в зону непосредственного влияния Юпитера, после чего огромная гравитация этой планеты отправила их на высокоэллиптические орбиты или даже выбросила их за пределы Солнечной системы. Эта работа в свою очередь слегка сдвинула орбиту Юпитера вовнутрь. Объекты, выброшенные Юпитером на высокоэллиптические орбиты, сформировали облако Оорта, а тела, выброшенные мигрирующим Нептуном, сформировали современный пояс Койпера и рассеянный диск. Данный сценарий объясняет, почему рассеянный диск и пояс Койпера имеют малую массу. Некоторые из катапультированных объектов, включая , со временем вошли в гравитационный резонанс с орбитой Нептуна. Постепенно трение с рассеянным диском сделало орбиты Нептуна и Урана вновь гладкими.

Существует также гипотеза о пятом газовом гиганте, претерпевшем радикальную миграцию и вытолкнутом при формировании современного облика Солнечной системы на её далёкие окраины (ставшим гипотетической планетой Тюхе или другой «Планетой X») или даже за её пределы (ставшим планетой-сиротой).

Подтверждение теории о массивной планете за орбитой Нептуна нашли Констанин Батыгин и Майкл Браун 20 января 2016 года на основе орбит шести транснептуновых объектов. Её масса, использующаяся в расчётах составляла примерно 10 земных масс, а оборот вокруг Солнца предположительно занимал от 10.000 до 20.000 земных лет.

Считается, что в отличие от внешних планет внутренние тела системы не претерпевали значительных миграций, поскольку после периода гигантских столкновений их орбиты оставались стабильными.

Поздняя тяжёлая бомбардировка

Гравитационное разрушение древнего астероидного пояса, вероятно, положило начало периоду тяжёлой бомбардировки, происходившему около 4 миллиардов лет назад, через 500-600 миллионов лет после формирования Солнечной системы. Этот период длился несколько сотен миллионов лет и его последствия видны до сих пор на поверхности геологически неактивных тел Солнечной системы, таких как Луна или Меркурий, в виде многочисленных кратеров ударного происхождения. А самое древнее свидетельство жизни на Земле датируется 3,8 миллиардами лет назад - почти сразу после окончания периода поздней тяжёлой бомбардировки.

Гигантские столкновения являются нормальной (хоть и редкой в последнее время) частью эволюции Солнечной системы. Доказательствами этого служат столкновение кометы Шумейкера-Леви с Юпитером в 1994, падение на Юпитер небесного тела в 2009 и метеоритный кратер в Аризоне. Это говорит о том, что процесс аккреции в Солнечной системе ещё не закончен, и, следовательно, представляет опасность для жизни на Земле.

Формирование спутников

Естественные спутники образовались у большинства планет Солнечной системы, а также у многих других тел. Различают три основных механизма их формирования:

  • формирование из около-планетного диска (в случае газовых гигантов)
  • формирование из осколков столкновения (в случае достаточно крупного столкновения под малым углом)
  • захват пролетающего объекта

Юпитер и Сатурн имеют много спутников, таких как , и , которые, вероятно, сформировались из дисков вокруг этих планет-гигантов по тому же принципу, как и сами эти планеты сформировались из диска вокруг молодого Солнца. На это указывают их большие размеры и близость к планете. Эти свойства невозможны для спутников, приобретённых путём захвата, а газообразная структура планет делает невозможной и гипотезу формирования лун путём столкновения планеты с другим телом.

Будущее

По оценкам астрономов Солнечная система не будет претерпевать экстремальных изменений до тех пор, пока Солнце не израсходует запасы водородного топлива. Этот рубеж положит начало переходу Солнца с главной последовательности диаграммы Герцшпрунга - Рассела в фазу . Однако и в фазе главной последовательности звезды Солнечная система продолжает эволюционировать.

Долговременная устойчивость

Солнечная система является хаотичной системой, в которой орбиты планет непредсказуемы на очень длинном отрезке времени. Одним из примеров такой непредсказуемости является система Нептун-Плутон, находящаяся в орбитальном резонансе 3:2. Несмотря на то, что сам по себе резонанс будет оставаться стабильным, невозможно предсказать хоть с каким-нибудь приближением положение Плутона на орбите более чем на 10-20 миллионов лет (время Ляпунова). Другим примером может служить наклон оси вращения Земли, который по причине трения внутри Земной мантии, вызванного приливными взаимодействиями с Луной, невозможно высчитать начиная с некоторого момента между 1.5 и 4.5 миллиардами лет в будущем.

Орбиты внешних планет хаотичны на больших временных масштабах: их время Ляпунова составляет 2-230 миллионов лет. Это не только означает, что позицию планеты на орбите начиная с этого момента в будущем невозможно определить хоть с каким-нибудь приближением, но и орбиты сами по себе могут экстремально измениться. Наиболее сильно хаос системы может проявиться в изменении эксцентриситета орбиты, при котором орбиты планет становятся более или менее эллиптическими.

Солнечная система является устойчивой в том смысле, что никакая из планет не может столкнуться с другой или быть выброшенной за пределы системы в ближайшие несколько миллиардов лет. Однако за этими временными рамками, например, в течение 5 миллиардов лет, эксцентриситет орбиты Марса может вырасти до значения 0,2, что приведёт к пересечению орбит Марса и Земли, а значит, и к реальной угрозе столкновения. В этот же период времени эксцентриситет орбиты Меркурия может увеличиться ещё больше, и впоследствии близкое прохождение около может выбросить Меркурий за пределы Солнечной системы, или вывести на курс столкновения с самой Венерой или с Землёй.

Спутники и кольца планет

Эволюция лунных систем планет определяется приливными взаимодействиями между телами системы. Из-за разности силы гравитации, воздействующей на планету со стороны спутника, в разных её областях (более удалённые области притягиваются слабее, в то время как более близкие - сильнее), форма планеты изменяется - она как бы слегка вытягивается в направлении спутника. Если направление обращения спутника вокруг планеты совпадает с направлением вращения планеты, и при этом планета вращается быстрее чем спутник, то этот «приливный бугор» планеты будет постоянно «убегать» вперёд по отношению к спутнику. В этой ситуации угловой момент вращения планеты будет передаваться спутнику. Это приведёт к тому, что спутник будет получать энергию и постепенно удаляться от планеты, в то время как планета будет терять энергию и вращаться все медленнее и медленнее.

Земля и Луна являются примером такой конфигурации. Вращение Луны приливно-закреплено по отношению к Земле: период обращения Луны вокруг Земли (в настоящее время примерно 29 дней) совпадает с периодом вращения Луны вокруг своей оси, и поэтому Луна всегда повёрнута к Земле одной и той же стороной. Луна постепенно отдаляется от Земли, в то время как вращение Земли постепенно замедляется. Через 50 миллиардов лет, если они переживут расширение Солнца, Земля и Луна станут приливно-закреплены по отношению друг к другу. Они войдут в так называемый спин-орбитальный резонанс, при котором Луна будет обращаться вокруг Земли за 47 дней, период вращения обоих тел вокруг своей оси будет одинаков, и каждое из небесных тел будет всегда видимо только с одной стороны для своего партнёра.

Другими примерами такой конфигурации являются системы Галилеевых спутников Юпитера, а также большинство крупных лун Сатурна.

Нептун и его спутник Тритон, заснятый при пролёте миссии Вояджер-2. В будущем, вероятно, этот спутник будет разорван на части приливными силами, породив новое кольцо вокруг планеты.

Иной сценарий ожидает системы, в которых спутник движется вокруг планеты быстрее, чем она вращается вокруг себя, или в которых спутник движется в направлении противоположном направлению вращения планеты. В таких случаях приливная деформация планеты постоянно отстаёт от позиции спутника. Это меняет направление переноса углового момента между телами на противоположное. что в свою очередь приведёт к ускорению вращения планеты и сокращению орбиты спутника. С течением времени спутник будет приближаться по спирали к планете, пока в какой-то момент либо не упадёт на поверхность или в атмосферу планеты, либо не будет разорван приливными силами на части, породив таким образом планетарное кольцо. Такая судьба ожидает спутник Марса (через 30-50 миллионов лет), спутник Нептуна (через 3,6 миллиарда лет), и Юпитера, и, как минимум, 16 мелких лун Урана и Нептуна. Спутник Урана при этом может быть даже столкнётся с луной-соседкой.

Ну и, наконец, в третьем типе конфигурации планета и спутник приливно-закреплены по отношению друг к другу. В этом случае «приливный бугор» расположен всегда точно под спутником, передача углового момента отсутствует, и, как следствие, орбитальный период не меняется. Примером такой конфигурации является Плутон и .



НАШЕ МЕСТО ВО ВСЕЛЕННОЙ

Это сейчас люди достаточно "легко" представляют себе свое место в безграничных просторах Космоса.
Они шли к таким представлениям многие тысячи лет - от первых вопрошающих взглядов первобытного человека на ночное небо Земли, до создания мощнейших телескопов во всех диапазонах частот ЭМ-колебаний.

Для исследования свойств космического пространства сейчас используются так же другие типы волновых процессов (гравитационные волны) и элементарные частицы (нейтринные телескопы). Используются космические разведчики - межпланетные космические аппараты, которые продолжают свою работу уже за пределами Солнечной системы и несут сведения о нашей планете тем обитателям Галактики (Вселенной), которые станут обладателями этих КА в будущем.

Изучая природу (др. греч. φύσις ), человечеству пришлось переходить от простого созерцания и мудрствования (натуральная философия) к созданию полноценной науки — физики — экспериментальной и теоретической (Г. Галилей). Физика смогла предсказывать будущее в развитии природных процессов.

Физика по своей сути является основой для всех наук, в том числе и математики, которая не может существовать отдельно от природы, поскольку черпает свои темы из природы и является инструментом для ее исследования. По мере разгадывания тайн движения планет были созданы новые разделы математики (И. Ньютон, Г. Лейбниц), которые с большим успехом используют сейчас во всех без исключения разделах деятельности людей, в том числе и в познании законов мироздания. Понимание этих законов и позволило определить наше место во Вселенной.

Процесс познания продолжается и не может остановиться, пока существует человек и его природное любопытство - он хочет знать, из чего всё сделано и как устроено (галактики, звезды, планеты, молекулы, атомы, электроны, кварки...), откуда всё берётся (физический вакуум), куда исчезает (чёрные дыры) и т.д. Для этого учёными создаются новые физико-математические теории, например, теория суперструн (М– теория)
(Э. Виттен, П. Таунсенд, Р. Пенроуз и др.), которые объясняют устройство и Макро– и Микромиров.

Итак, наша Галактика (Млечный путь) входит в так называемую местную группу галактик. Размеры галактик и расстояния между ними громадны и требуют специальных единиц измерения (см. в колонке справа).


наши соседи из местной группы галактик (увеличить картинку )

Наша Галактика — Млечный путь представляет собой гигантский диск, состоящий из звезд разного типа, звездных скоплений, межзвездного вещества, состоящего из различного типа излучений, элементарных частиц, атомов и молекул, тёмной материи, над тайной которой бьются сейчас астрофизики. В центре нашей Галактики существует чёрная дыра (по крайней мере одна) — ещё одна из астрофизических проблем современности.

На схема ниже показано устройство Галактики (рукава, ядро, гало), её размеры и место, которое занимают в ней Солнце, Земля и другие планеты — спутники Солнца.


расположение Солнечной системы в Галактике Млечный путь (схема)
увеличить картинку


схема рукавов (ветвей) Млечного пути (Солнечная система выделена)
увеличить картинку

КОСМОГОНИЯ (греч. κοσµογόνια от греч. κόσµος - порядок, мир, Вселенная и γονή - рождение - происхождение мира) - раздел астрономии, посвященный происхождению и развитию небесных тел.

ПРОИСХОЖДЕНИЕ СОЛНЕЧНОЙ СИСТЕМЫ

Полноценной теории образования Солнечной системы до сих пор не существует. Все гипотезы, начиная с Р. Декарта (1644), существовали определённое время, и когда они не могли объяснить некоторые явления, происходящие в Солнечной системе то, либо отвергались полностью, либо развивались и дополнялись другими учеными.

Первая серьезная космогоническая гипотеза о происхождении Солнечной системы была создана и опубликована в 1755 г. немецким философом Иммануилом Кантом (1724-1804), считавшим, что Солнце и планеты сформировались из твердых частиц огромного облака, которые сближались и слипались между собой под действием взаимного тяготения.

Вторая космогоническая гипотеза была выдвинута в 1796 г. французским физиком и астрономом Пьером Симоном Лапласом (1749-1827). Принимая кольцо Сатурна за газовое, отделившееся от планеты при ее вращении вокруг оси, Лаплас полагал, что Солнце возникло из газовой туманности, скорость вращения которой увеличивалась при ее сжатии, и из-за этого от Солнца отделялись кольца газового вещества (похожие на кольца Сатурна), породившие планеты.

Эта гипотеза просуществовала более 100 лет. Однако, подобно гипотезе Канта, она была отвергнута, так как не объясняла закономерностей Солнечной системы. А достоверная гипотеза должна объяснить следующие основные закономерности Солнечной системы:

1) планеты обращаются вокруг Солнца по почти круговым орбитам, мало наклоненным к плоскости земной орбиты, составляющей с плоскостью солнечного экватора угол в 7° (исключение - [карликовая] планета Плутон, орбита которой наклонена к плоскости земной орбиты на 17°);

2) планеты обращаются вокруг Солнца в направлении его вращения вокруг оси (с запада к востоку), и в этом же направлении вращается большинство планет (исключение - Венера, Уран и Плутон, вращающиеся с востока к западу);

3) масса Солнца составляет 99,87% массы всей Солнечной системы;

4) произведение массы каждой планеты на ее расстояние от Солнца и ее орбитальную скорость называется моментом импульса этой планеты; произведение массы Солнца на его радиус и линейную скорость вращения представляет собой момент импульса Солнца. В общей сумме эти произведения дают момент импульса Солнечной системы, из которого 98% сосредоточено в планетах, а на долю Солнца приходится лишь 2%, т.е. Солнце вращается очень медленно (линейная скорость его экватора равна 2 км/с);

5) физические свойства планет земной группы и планет-гигантов различны.

Гипотезы Канта и Лапласа не смогли объяснить всех этих закономерностей и поэтому были отвергнуты.
Так, например, Нептун удален от Солнца на среднее расстояние d = 30 а.е. и его линейная скорость по орбите v = 5,5 км/с. Следовательно, при отделении породившего его кольца Солнце должно было иметь такой же радиус и такую же линейную скорость своего экватора.
Сжимаясь далее, Солнце последовательно порождало другие планеты, и в настоящее время имеет радиус R≈0,01 а.е.
Согласно законам физики, линейная скорость солнечного экватора должна была бы быть

т.е. во много превосходить действительную скорость 2 км/с. Уже этот пример показывает несостоятельность гипотезы Лапласа.

В начале XX в. были выдвинуты и другие гипотезы, но все они оказались несостоятельными, так как не смогли объяснить всех основных закономерностей Солнечной системы.

По современным представлениям, образование Солнечной системы связано с формированием Солнца из газопылевой среды. Считается, что газопылевое облако, из которого около 5 млрд. лет назад образовалось Солнце, медленно вращалось. По мере сжатия скорость вращения облака увеличивалась, и оно приняло форму диска. Центральная часть диска дала начало Солнцу, а его внешние области - планетам. Этой схемой вполне объясняется различие в химическом составе и массах планет земной группы и планет-гигантов.

Действительно, по мере разгорания Солнца легкие химические элементы (водород, гелий) под действием давления излучения покидали центральные области облака, уходя к его периферии. Поэтому планеты земной группы сформировались из тяжелых химических элементов с малыми примесями легких и получились небольших размеров.

Из-за большой плотности газа и пыли излучение Солнца слабо проникало к периферии протопланетного облака, где царила низкая температура и пришедшие газы намерзали на твердые частицы. Поэтому далекие планеты-гиганты сформировались крупными и в основном из легких химических элементов.

Эта космогоническая гипотеза объясняет и ряд других закономерностей Солнечной системы, в частности распределение ее массы между Солнцем (99,87%) и всеми планетами (0,13%), современные расстояния планет от Солнца, их вращение и др.

Она разработана в 1944-1949 гг. советским академиком Отто Юльевичем Шмидтом (1891-1956) и впоследствии развита его сотрудниками и последователями.

Текст работы размещён без изображений и формул.
Полная версия работы доступна во вкладке "Файлы работы" в формате PDF

Введение

Солнечная система образовалась около 4,6 млрд. лет назад. Она состоит из небесных тел - это звезды, в том числе и Солнце, 8 планет и их спутников, а так же астероиды и кометы. Планеты располагаются в порядке удаления от Солнца следующим образом: Меркурий, Венера, Земля, Марс, Юпитер, Сатурн, Уран, Нептун, Плутон. Все небесные тела обращаются вокруг массивной звезды (Солнце) по эллиптическим(рис.15) орбитам.

Центральным объектом Солнечной системы является Солнце, к которой сосредоточена подавляющая часть всей массы системы, оно удерживает своим тяготением планеты и прочие тела, принадлежащие к Солнечной системе. Иногда Солнечную систему разделяют на регионы. Внутренняя часть Солнечной системы включает четыре планеты земной группы и пояс астероидов. Внешняя часть начинается за пределами пояса астероидов и включает четыре газовых гиганта. Планеты внутри области астероидов иногда называют внутренними, а вне пояса — внешними.

Один из важных вопросов, связанных с изучением нашей планетной системы — проблема ее происхождения. В настоящее время при проверке той или иной гипотезы о происхождении Солнечной системы в значительной мере основывается на данных о химическом составе и возрасте пород Земли и других тел Солнечной системы. Решение данной проблемы имеет естественно-научное, мировоззренческое и философское значение. Наша цель - установить хронологию развития представлений о происхождении Солнечной системы.

Анализ развития гипотез о происхождении Солнечной системы

Время

Личность

История личности

Суть гипотезы

384 г. до н. э.

Аристотель (рис.1)

Древнегреческий философ, ученик Платона.

Утверждал, что Земля - это центр Вселенной.

Клавдий Птолемей (рис.2)

Птолемей жил и работал в Александрии, где проводил астрономические наблюдения. Он был астрономом, астрологом, математиком, механиком, оптиком, теоретиком музыки и географом. В источниках нет никаких упоминаний о его жизни и деятельности.

Птолемей первый предложил модель Вселенной. Согласно этой модели, центральное положение во Вселенной занимает неподвижная Земля, а вокруг нее в разных сферах вращаются Солнце, Луна, планеты и звёзды. Его модель была принята христианскими богословами и, по сути, канонизирована - возведена в ранг абсолютных истин.

Николай Коперник (рис.3)

Польский астроном, математик, механик, экономист, каноник эпохи Возрождения. Он наиболее известен, как автор гелиоцентрической системы мира, положившей начало первой научной революции.Гелиоцентрическая система мира (гелиоцентризм) — это представление о том, что Солнце является центральным небесным телом, вокруг которого обращается Земля и другие планеты.

Николай Коперник опровергнул гипотезу Клавдия Птолемея и научно доказал, что Земля не является центром Вселенной. В центр Коперник поместил Солнце и создал гелиоцентрическую модель Вселенной. Коперник боялся гонений церкви и поэтому отдал в печать свой труд незадолго до смерти. Но церковь официально запретила его книгу.

Галилео Галилей (рис.4)

Итальянский физик, механик, астроном, философ, математик, оказавший значительное влияние на науку своего времени. Он первым использовал телескоп для наблюдения небесных тел и сделал ряд выдающихся астрономических открытий.

Галилео Галилей был сторонником учения Коперника. Он впервые использовал для изучения звездного неба телескоп и увидел, что Вселенная значительно больше, чем предполагалось раньше, и что вокруг планет есть спутники, которые, подобно планетам вокруг Солнца, вращаются вокруг своих планет. Галилей экспериментально изучал законы движения. Но церковь устроила гонения на ученого и учинила над ним суд инквизиции.

Джордано Бруно (рис.5)

Итальянский монах-доминиканец, философ-пантеист и поэт, а так же признан выдающимся мыслителем эпохи Возрождения.

Джордано Бруно создал учение о том, что звёзды подобны Солнцу, что вокруг звезд по орбитам движутся тоже планеты. Так же он утверждал, что во Вселенной существует множество обитаемых миров, что кроме человека во Вселенной есть и другие мыслящие существа. Но за это Джордано был осужден христианской церковью и сожжен на костре.

Рене Декарт (рис.6)

Французский философ, математик, механик, физик и физиолог, создатель аналитической геометрии и современной алгебраической символики.

Декарт считал, что Вселенная целиком заполнена движущейся материей. По его представлениям, Солнечная система образовалась из первичной туманности, имевшей форму диска и состоявшей из газа и пыли. Эта теория имеет заметное сходство с теорией, признанной в настоящее время.

Бюффон Жорж Луи Леклерк (рис.7)

Французский натуралист, биолог, математик, естествоиспытатель и писатель. В 1970 г. в честь Бюффона назван кратер на Луне.

В 1745 г. Бюффон предположил, что вещество, из которого образованы планеты, было отторгнуто от Солнца какой-то слишком близко проходившей большой кометой или звездой. Но если бы Бюффон оказался прав, то появление такой планеты, к примеру, как наша, было бы событием чрезвычайно редким, а вероятность найти жизнь где-нибудь во Вселенной стала бы ничтожно мала.

Иммануил Кант (рис.8)

Немецкий философ и родоначальник немецкой классической философии. Кантом были написаны фундаментальные философские работы, принёсшие учёному репутацию одного из выдающихся мыслителей XVIII века и оказавшие огромное влияние на дальнейшее развитие мировой философской мысли.

Известными теориями стали теории математика Лапласа и философа Канта, суть которых в том, что звезды и планеты образовались из космической пыли путем постепенного сжатия первоначальной газопылевой туманности. Но гипотезы Канта и Лапласа отличались.

Кант исходил из эволюционного развития холодной пылевой туманности, в ходе которого сначала возникло центральное тело - Солнце, а потом планеты. А вот гипотеза Лапласа…

Пьер-Симон Лаплас (рис.9)

Французский математик, механик, физик и астроном. Он известен работами в области небесной механики, один из создателей теории вероятностей и “Парадокса демона Лапласа”. Его имя внесено в список величайших учёных Франции, помещённый на первом этаже Эйфелевой башни.

Согласно Лапласу, планеты образовались раньше, чем Солнце. То есть первоначальная туманность была газовой и горячей и быстро вращалась. Из-за центробежных сил в экваториальном поясе от нее последовательно отделялись кольца. В дальнейшем эти кольца конденсировались, и получились планеты.(рис.17)

Джеймс Хопвуд Джинс (рис.10)

Британский физик-теоретик, астроном и математик. Сделал важный вклад в нескольких областях физики, включая квантовую теорию, теорию теплового излучения и эволюции звёзд.

Гипотеза Джинса полностью противоположна гипотезе Канта и Лапласа. Она объясняет образование Солнечной системы случайностью, считая ее редчайшим явлением. Вещество, из которого в дальнейшем образовались планеты, было выброшено из довольно "старого" Солнца. Благодаря приливным силам, действовавшим со стороны налетевшей звезды, которая случайно проходила вблизи Солнца, из поверхностных слоев Солнца была выброшена струя газа. Эта струя осталась в сфере притяжения Солнца. В дальнейшем струя сконденсировалась, и получились планеты. Но если бы гипотеза Джинса была правильной, то планетных систем в Галактике было бы значительно меньше. Поэтому гипотезу Джинса следует отвергнуть.(рис.16,19)

Вулфсоном предполагал, что газовая струя, из которой образовались планеты, была выброшена из пролетевшей мимо рыхлой звезды огромных размеров. Расчеты показывают, что если бы планетные системы образовывались таким образом, то их в Галактике было бы очень мало.(рис.19)

Ханнес Улоф Йёста Альвен (рис.12)

Шведский физик, специалист по физике плазмы, а так же лауреат Нобелевской премии по физике в 1970 году за работы в области теории магнитогидродинамики. В 1934 году преподавал физику в университете Уппсалы и в 1940 году стал профессором по теории электромагнетизма и электрических измерений в Королевском технологическом институте в Стокгольме.

Спасая гипотезу Канта и Лапласа, Альвен предположил, что Солнце обладало очень сильным электромагнитным полем. Туманность, окружающая Солнце, состояла из нейтральных атомов. Под действием излучений и столкновений - атомы ионизировались. А ионы попадали в ловушки из магнитных силовых линий и увлекались вслед за вращающимся Солнцем. Постепенно Солнце теряло свой вращательный момент, передавая его газовому облаку.

Отто Юльевич Шмидт (рис.13)

Советский математик, географ, геофизик, астроном. Один из основателей и главный редактор Большой советской энциклопедии. С 28 февраля 1939 года по 24 марта 1942 года был вице-президентом АН СССР.

В 1944 г. Шмидт предложил гипотезу, согласно которой планетная система образовалась из вещества, захваченного из газово-пылевой туманности, через которую некогда проходило Солнце, уже тогда имевшее почти "современный" вид. В этой гипотезе нет трудностей с вращательным моментом.(рис.18,20)

Литлтон Реймонд Артур (рис.14)

Начиная с 1961 г., гипотезу Шмидта развивал английский космогонист Литлтон. Следует заметить: чтобы Солнце захватило достаточно много вещества, его скорость по отношению к туманности должна быть очень маленькой, порядка ста метров в секунду. Попросту, Солнце должно застрять в этом облаке и двигаться вместе с ним. В этой гипотезе образование планет не связывается с процессом звездообразования.

Заключение

Вот мы и пришли к заключению проекта. Процесс образования Солнечной системы нельзя считать досконально изученным. Происхождение Солнечной системы, формирования галактик и возникновения Вселенной еще далеко до завершения. А дело в том, что ученые наблюдают за огромным количеством звезд, которые находятся на разных стадиях эволюции. О солнечной системе и ее происхождении изучаются во многих институтах мира. Этой теме уделяется важное место в жизни.

Из проекта можно выделить две теории происхождения Солнечной Системы и самой Вселенной в целом. Первая гласит о теории Большого взрыва, а вторая о том, что материя, энергия, пространство и время существовали всегда.

Все мы вправе полагать, что есть и другие планеты, на которых может существовать жизнь, в том числе и разумная. В начале проекта мы говорили, что нашей целью является установить хронологию развития представлений о происхождении Солнечной системы. И вот мы можем с уверенностью сказать, что наша цель достигнута.

Список литературы

    Агекян Т.А. Звезды, Галактики, Метагалактика. - М.: Наука, 1970.

    Вайнберг С. Первые три минуты. Современный взгляд на происхождение Вселенной (пер. с англ. Я. Зельдовича). - М.: Энергоиздат, 1981.

    Горелов А.А. Концепции современного естествознания. - М.: Центр, 1997.

    Каплан С.А. Физика звезд. - М.: "Наука", 1970.

    Ксанфомалити Л.В. Планеты, открытые заново. - М.: Наука, 1978.

    Новиков И.Д. Эволюция Вселенной. - М.: Наука, 1983.

    Осипов Ю.С. Гравитационный захват // Кварк. - 1985. - № 5.

    Редже Т. Этюды о Вселенной. - М.: Мир, 1985.

    Филиппов Е.М. Вселенная, Земля, жизнь. - Киев: "Наукова думка", 1983.

    Шкловский И.С. Вселенная, жизнь, разум. - М.: Наука, 1980

    http://mirznanii.com/a/183/proiskhozhdenie-solnechnoy-sistemy 1

    http://ukhtoma.ru/universe8.htm 2

    https://ru.wikipedia.org 3

4. 5. 6. 7. 8. 9.

1 Звезда проходит рядом с Солнцем,вытягивая из него вещество (рис. А и В); планеты формируются

из этого материала (рис. С)



3.Основные этапы геологической истории: эволюция литосферы, атмосферы, гидросферы и живого мира.

3.1.Эволюция литосферы.
3.2.Эволюция атмосферы.
3.3.Эволюция гидросферы.

1.Строение Вселенной и Солнечной системы.

Вселенной или космосом называется весь окружающий материальный мир (греч. « космос » -мир). Вселенная бесконечна в пространстве и во времени. Материя во вселенной распределена неравномерно и представлена звездами, планетами, пылью, метеоритами, кометами, газами. Доступная для изучения часть Вселенной называется Метагалактикой, включающая свыше миллиарда звездных скоплений галактик (греч. « галактика » -молочный, млечный).

Наша Галактика носит название Млечного пути и относится к типу спиральных и включает свыше 150 млрд. звезд. Она представляет собой широкую белесую полосу звезд. Возраст Галактики ~ 12 млрд. лет.

Масса Солнца -99,87% от всей массы Галактики (Юпитер -крупнейшая планета -0,1%), поэтому оно центр притяжения всех космических тел. Физически Солнце -плазменный шар. Химический состав -70 элементов; главные: водород и гелий; средняя t ° С ~5600 ° С; возраст -6-6,5 млрд. лет. Тепловая энергия Солнца обусловлена термоядерными процессами превращения водорода в гелий.

Тепло и свет излучаемые Солнцем оказывают большое влияние на геологические процессы. Непрерывная взрывная деятельность на Солнце вызывает образование так называемого солнечного ветра (движение в пространстве заряженных частиц), с которым связаны полярное сияние и магнитные явления в атмосфере Земли.

В состав Солнечной системы входят 9 планет, 42 спутника, около 50 тысяч астероидов, множество метеоров и комет.

Орбиты планет располагаются в одной плоскости, совпадающей с экваториальной плоскостью Солнца и направлением обращения вокруг Солнца, кроме Венеры и Урана, оно обратное и совпадает с направлением вращения Солнца вокруг своей оси.

2.Гипотезы происхождения Солнечной системы и Земли.

Немецкий философ Эммануил Кассет в 1755 г. высказал идею происхождения Вселенной из первичной материи, состоящей из мельчайших частиц. Образование звезд, Солнца и других космический тел, по его мнению, произошло под воздействием сил притяжения и отталкивания в условиях хаотического движения частиц. Французский математик П. Лаплас (1796 г.) связывал образование солнечной системы с вращательным движением разряженной и раскаленной газообразной туманности, приведшим к возникновению сгустков материи -зародышей планет. По гипотезе Канта-Лапласа, первоначально раскаленная Земля охлаждалась, сжималась, что привело к деформации земной коры.

По гипотезе О. Ю. Шмидта (1943 г.) планетная система образовалась из пылевой и метеорной материи при попадании ее в сферу Солнца. Первоначально холодные Земля и другие планеты постепенно разогревались под воздействием энергии радиоактивного распада гравитационных и других процессов, а затем остывали.

Советский астроном В. Г. Фесенков в 50-е годы предложил решение проблемы с точки зрения образования Солнца и планет из общей среды, возникшей в результате уплотнения газопылевой материи. При этом предполагалось, что Солнце образовалось из центральной части сгущения, а планеты -из внешней частей.

По современным представлениям, тела Солнечной системы формировались из первично холодной космической твердой и газообразной материи путем уплотнения и сгущения до образования Солнца и прото планет. Астероиды и Метеориты считаются исходным материалом планет Земной группы (Меркурий, Венера, Земля, и Марс -небольшие по размерам; высокая плотность, малая масса атмосферы, небольшая скорость вращения вокруг своей оси); а кометы и метеоры -планет-гигантов (Юпитер, Сатурн, Уран, Нептун, Плутон -огромные размеры, низкая плотность, плотная атмосфера с H 2 , Ge и метаном, высокая скорость вращения). Формирование современных оболочек Земли связывается с процессами гравитационной дифференциации первоначального однородного вещества.

Самая передовая гипотеза -это объяснение возникновения Вселенной теорией Большого взрыва . В соответствии с этой теорией ~ 15 млрд. лет назад наша Вселенная была сжата в комок, в миллиарды раз меньше булавочной головки. По математическим расчетам ее диаметр был равен, а плотность близка к бесконечности. Такое состояние называется сингулярным -бесконечная плотность в точечном объеме. Неустойчивое исходное состояние вещества привело к взрыву, породившему скачкообразный переход к расширяющейся Вселенной.

Самый ранний этап развития Вселенной называется инфляционным -его период до 10 -33 секунды после взрыва. В результате возникают пространство и время. Размеры Вселенной в несколько раз превышают размеры современной, вещество отсутствует.

Следующий этап — горячий . Выброс тела связан с высвободившейся энергией при Большом взрыве. Излучение нагрело Вселенную до 1027 К. Затем наступил период остывания Вселенной в течение ~500 тысяч лет. В результате возникла однородная Вселенная. Переход от однородной к структурной происходил от 1 до 3 млрд. лет.

3.Основные этапы геологической истории: эволюция литосферы,

атмосферы, гидросферы и живого мира.

Геологическое развитие Земли характеризуется направленностью и необратимостью всех геологических событий, в том числе и тектонических, которые привели к формированию современной сложной структуры литосферы. Известный российский тектонист В. Е. Хаин. Виктор Ефимович (1914 г.р.) в 1973 году выделил этапы ее развития:

I. догеологический (4,6 -4,5 млрд. лет);

II. лунный; от образования земной коры до формирования гидросферы (4,5 -4,0 млрд. лет);

III. катархейский, образуется первичная континентальная литосфера, слагающая ядра будущих материков (4,0 -3,5 млрд. лет);

IV. подзднеархейско-раннепротерозойский или раннегеосинклинальный: образование протогеосинклиналей и первых платформ (3,5 -2,0 млрд. лет);

V. среднепротерозойский -раннерифейский или раннеплатформенный, консолидация первичной континентальной коры, 2,0 -1,4 млрд. лет;

VI. позднепротерозойский -палеозойский или геосинклинально-платформенный; обособление древних платформ и их развитие (1,4 -0,2 млрд.лет);

VII. мезозойско-кайнозойский или континентально-океанический; оформление современных континентов, создание на палеозойских и раннемезозойских складчатых структур молодых платформ; образование молодых океанов (0,2 млрд. лет).

В геологическом развитии последних этапов истории Земли наблюдается определенная направленность: постоянно увеличивается объем литосферы и верхней мантии, а также размеры устойчивых плит, несмотря на прослеживание противоположного процесса -океанизация за счет обрушения и развития облаков материков.

Для направленного развития литосферы характерна цикличность процессов, которые проявляются преимущественно на различных территориях. Т. о. в истории Земли наблюдаются определенные этапы развития литосферы, на протяжении которых тектонические процессы приводят к тектонической перестройке то одних участков литосферы то других.

При этом в истории литосферы можно выделить периоды интенсивных тектонических деформаций, в ходе которых происходжит горообразование. Это явление объясняют длительной аккумуляцией напряжений в литосфере и последующей их разрядкой в виде тектонических процессов.

Этапы тектоногенеза.

Длительные периоды, по завершении которых тектонические процессы, в т.ч. и горообразование, проявляются наиболее интенсивно, называются тектоническими циклами или циклами (этапами) тектоногенеза. Они носят планетарный характер.

В истории Земли выделяют 11 основных циклов тектоногенеза: от раннеархического до альпийского (или кайнозойского) незавершенного. В долембрии они имеют продолжительность 300-600 млн. лет, в фалерозое -140-170 млн. лет, в кайнозое -80 млн. лет.

Каждый тектонический цикл состоит из двух частей: длительного эволюционного развития и кратковременных активных тектонических деформаций , которые сопровождаются региональным метаморфизмом, горообразованием.

Завершающая часть цикла называется эпохой складчатости , для которой характерно окончание развития отдельных геосинклинальных систем и их превращение в эпигеосинклинальный ороген, после чего развивается плит форма или образуются внегеосинклинальные горные сооружения.

Для эволюционных этапов характерно:

— длительное прогибание геос-их (подвижных) областей и накопление в них мощных осадочных и осадочно-вулканических толщ;

— выравнивание рельефа суши (разрушение гор, плоскостной смыв с платформенных равнин и т.д.);

— обширные опускания окраин платформ, прилегающих к геосинклинальным областям, затопление их водами эпиконтинентальных морей;

— выравнивание климатических условий, что связано с широким распространением мелких темных эпиконтинентальных морей и увлажнением климата материков; в нижних слоях атмосферы происходит аккумуляция солнечной энергии; исчезают области определения;

— возникновение благоприятных условий для жизни и широкого расселения фауны и флоры.

Эти этапы эволюционного развития Земли называют таласократическими. Для них характерно широкое развитие морских отложений, развитие растительности и соотв. Формирование угольных залежей, бурное развитие жизни в морях, формирование нефтегазоносных толщ, карб. Пород в теплых морях.

Эпохам складчатости и горообразования присущи следующие черты:

— широкое развитие горообразовательных движений в геос. областях, колебательных движений на платформах;

— проявление мощного интрузивного, а затем и эффузивного магматизма;

— поднятие окраин платформ, прилегающих к эпиогеосинклинальным областям, регрессии эпиконтинентальных морей и усложнение рельефов суши;

— континентализация климатов, успокоение климатических условий, усиление зональности, расширение пустынь и появление областей континентального оледенения (в горах и у помостов).

— ухудшение условий для развития органического мира, в результате чего происходит вымирание господствующих и высокоспециализированных форм и появление новых.

Условия этих эпох складчатости называются геократическими, т.е. этапы относительного увеличения суши.

На Земле развиты континентальные отложения с частыми красно цветными образованиями (иногда карбональными, загипсованными и засоленными), имеющими разнообразный генезис (образование в пустынях, лагунах, солоноватых или пресных озерах, дельтах рек, на равнинах и предгорьях).

3.2.Эволюция атмосферы

Атмосфера не всегда имела современный состав и строение. Первичная гелиево-водородная атмосфера была утеряна Землей при разогреве. Из образовавшего планету вещества, при ее формировании выделялись различные газы. Особенно интенсивно это происходило в процессе тектонической деятельности: при образовании трещин и разломов.

Вероятно, атмосфера и гидросфера разделись не сразу. Некоторое время Землю обволакивал мощный слой из водяного пара и газов (CO, CO 2 , HF, H 2 , S, NH 3 , CH 4); малопроницаемых для солнечных лучей. Эта оболочка имела температуру ~ +100 ° С. При понижении температуры произошло разделение этой оболочки на атмосферу и гидросферу. Свободного кислорода в этой атмосфере не было. Он должен был выделяться из земного вещестьва и образовывался за счет размножения молекул водяного пара, но расходовался на процессы окисления. Из-за отсутствия озона атмосфера не предохраняла Землю от коротковолнового излучения Солнца. Значительное количество соединений водорода на Земле -последствия его преобладания в первичной атмосфере.

Вулканические процессы обогатили атмосферу углекислым газом. Понадобилось длительное время, прежде чем в результате реакции с другими элементами и фотосинтеза произошло поглощение большого количества углерода из атмосферы. В конце PZ состав атмосферы в целом уже мало отличался от современного: она стала азотно-кислородной. Состав современной атмосферы как и в ранние геологические эпохи регулируется организмами.

Атмосфера находится в непрерывном взаимодействии с другими оболочками Земли, обмениваясь веществом и энергией, и постоянно испытывает влияние Космоса и Солнца.

3.3.Эволюция гидросферы.

Гидросфера -водная оболочка Земли, включающая химически не связанную воду независимо от ее состояния: жидкую, твердую, газообразную.

Земля -самая водная планета Солнечной системы: более 70% ее поверхности покрыто водами Мирового океана.

Вероятно, гидросфера образовалась одновременно с литосферой и атмосферой в результате остывания и дегазации вещества мантии. Химически связанная вода была уже в веществе холодного газово-пылевого протопланетного облака. Под влиянием глубинного тепла Земли она выделялась и перемещалась к поверхности Земли. Первичный океан, возможно, покрывал почти всю Землю, но не был глубоким. Океаническая вода, вероятно, была теплой, высоко минерализованной. Океан углублялся, а площадь его сокращалась. С поверхности Океана испарялась влага, выпадали обильные дожди.

Пресная вода на суше -результат прохождения океанской воды через атмосферу. Выделение воды из магмы продолжается до настоящего времени. При извержении вулканов выделяется в среднем за год 1,310 8 т воды. Термальные источники и фумаролы выносят 10 8 т.

Если допустить, что поступление воды из мантии в литосферу и на ее поверхность было равномерным и составляло в год на 1 см 2 поверхности планеты всего 0,00011г, то и этого достаточно, чтобы за время существования Земли образовалась гидросфера.

Предполагают также поступления воды из космоса в результате падения на Землю ледяных ядер комет, но ее количество в этом случае невелико.

Гидросфера также теряет воду с испарением ее в Космос, где под действием у/ф лучей H 2 O распадается на H 2 и O 2 .

3.4.Эволюция животного мира (биосферы).

Активное взаимодействие атмосферы, гидросферы и литосферы при участии солнечной энергии и внутреннего тепла Земли было важнейшей предпосылкой возникновения жизни.

Данные палеонтологических исследований позволяют предполагать, что примитивнейшие организмы сформировались из белковых структур в конце AR 1 (т.е. ~3 млрд. лет назад). Первые одноклеточные организмы, способные к фотосинтезу, возникли около 2,7 млрд. лет назад, а первые многоклеточные животные — не менее чем на 1-1,5 млрд. лет позже.

В условиях отсутствия озонового экрана местами развития жизни вероятно были прибрежные части морей и внутренние водоемы, на дно которых проникал солнечный свет, а вода не пропускала у/фиолетовую радиацию. Из соединений образовались многомолекулярные системы, взаимодействующие со средой.

В ходе эволюции они приобрели свойства живых организмов: размножение, обмен веществ, рост и т.д.

Водная среда способствовала обмену веществ, была опорой для организмов без скелета. Первые живые организмы появились в условиях теплого и влажного климата (в при экваториальной широте), поскольку колебания температуры губительны для зарождающейся жизни.

Длительное время жизнь « размещалась » в географической оболочке пятнами, « пле нка жизни » была очень прерывистой. Со временем масса живого вещества быстро увеличивалась, формы жизни становились сложнее и разнообразнее, области ее распространения расширялись, усложнялись взаимосвязи с другими компонентами географической оболочки.

Широкому и быстрому распространению жизни на Земле способствовали приспособляемость к среде и возможности размножения.

(теперь, когда обнаружено около 100 планетных систем, при-нято говорить не о Солнечной, а о планетной системе) начала решаться около 200 лет назад, когда два выда-ющихся учёных — философ И. Кант, математик и астроном П. Лаплас почти одновременно сформулировали первые научные гипотезы её проис-хождения. Нужно сказать, что сами гипотезы и дискуссия вокруг них и других гипотез (например, Дж. Джин-са) носили вполне умозрительный характер. Только в 50-х гг. XX в. было собрано достаточно данных, позволивших сформулировать сов-ременную гипотезу.

Всеобъемлющей гипотезы о происхож-дении планетной системы, которая бы детально объясняла такие вопро-сы, как различие химического и изо-топного составов планет и их атмо-сфер, до настоящего времени не существует. В то же время современ-ные представления о происхождении планетной системы достаточно уверенно трактуют такие вопросы, как разделение планет на две группы, основные различия в химическом составе, динамиче-скую историю планетной системы.

Образование планет происходит очень быстро; так, для фор-мирования Земли потребовалось около 100 000 000 лет. Расчёты, проведённые в последние годы , показали, что современная гипотеза формирования планет достаточно хорошо обоснована.

Сли-пание частиц

В сформировавшемся протопланетном диске начиналось сли-пание частиц. Слипание обеспечивается строением частиц. Они представляют собой углеродную, силикатную или железную пылинки, на которых нарастает снежная (вода, метан и др.) «шуба». Скорость обращения пылинок вокруг Солнца была достаточно велика (это кеплерова скорость, составляющая де-сятки километров в секунду), но относительные скорости очень малы, и при столкновениях частицы слипались в небольшие комочки. Материал с сайта

Появление планет

Очень быстро решающую роль в увеличении комочков на-чинали играть силы притяжения. Это привело к тому, что ско-рость роста образующихся агрегатов пропорциональна их мас-се примерно в пятой степени. В результате на каждой орбите осталось одно крупное тело — будущая планета и, возможно, ещё несколько тел значительно меньшей массы, которые ста-ли её спутниками.

Бомбардировка планет

На са-мом последнем этапе на Землю и другие планеты падали уже не частицы, а тела астероидных размеров. Они способствова-ли уплотнению вещества, разогреву недр и появлению на их поверхностях следов в виде морей и кратеров. Этот период —