Теория множеств диаграммы эйлера венна. Диаграммы Эйлера—Венна

Диаграммы Эйлера-Венна

Пример диаграммы Эйлера. B - живое существо, A - человек, C - неживая вещь.

Но достаточно основательно развил этот метод сам Л. Эйлер. Методом кругов Эйлера пользовался и немецкий математик Эрнст Шрёдер ( -) в книге «Алгебра логики». Особенного расцвета графические методы достигли в сочинениях английского логика Джона Венна ( -), подробно изложившего их в книге «Символическая логика», изданной в Лондоне в 1881 году . Поэтому такие схемы иногда называют Диаграммы Эйлера - Венна .

Примечания

Ссылки


Wikimedia Foundation . 2010 .

Смотреть что такое "Диаграммы Эйлера-Венна" в других словарях:

    ДИАГРАММЫ ВEHHА графический способ задания и анализа логико математических теорий и их формул. Строятся путем разбиения части плоскости на ячейки (подмножества) замкнутыми контурами (кривьми Жордана). В ячейках представляется информация,… … Философская энциклопедия

    Пример кругов Эйлера. Буквами обозначены, например, свойства: живое существо, человек, неживая вещь Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения … Википедия

    Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия

    Диаграмма Венна, показывающая все пересечения греческого, русского и латинского алфавитов (буквы заглавные) Диаграмма Венна … Википедия

    Графический (геометрический, точнее топологический) аппарат математической логики (См. Логика). Идея Л. д. была известна ещё в средние века, развивалась затем Г. В. Лейбницем, но впервые достаточно подробно и обоснованно была изложена Л.… … Большая советская энциклопедия

    - (или принцип включений исключений) комбинаторная формула, позволяющая определить мощность объединения конечного числа конечных множеств, которые в общем случае могут пересекаться друг с другом … Википедия

    Над множествами, как и над многими другими математическими объектами, можно совершать различные операции, которые иногда называют теоретико множественными операциями или сет операциями. В результате операций из исходных множеств получаются новые … Википедия

    - (Carroll), настоящие имя и фамилия Чарлз Латуидж Доджсон (Dodgson) (1832 1898), английский писатель, математик и логик. В повестях сказках, продолжающих традицию гротескной «поэзии бессмыслиц», «Алиса в стране чудес» (1865) и «В Зазеркалье»… … Энциклопедический словарь

Книги

  • Логикум: визуальная математика , Сухомлинова Т.. Данное пособие из серии "Интеллект-активити" предназначено для работы с учениками начальной школы 1-4 классов и направлено на развитие логического мышления и вычислительных навыков.. В…

Чтобы лучше представить себе множество, можно использовать рисунок, называемый диаграммой Эйлера_Венна.Это замкнутая линия, внутри которой расположены элементы данного множества, а с наружи -элементы, не пренадлежащие множеству.

Скачать:

Предварительный просмотр:

Чтобы пользоваться предварительным просмотром презентаций создайте себе аккаунт (учетную запись) Google и войдите в него: https://accounts.google.com


Подписи к слайдам:

Диаграмма Венна Знаки ∈ и ∉ 3 класс Математика Петерсон Л.Г.

Любое множество А можно изобразить графически в виде замкнутой линии. Считается, что элементы множества (А) расположены внутри этой линии, а все элементы, которые не принадлежат множеству (А), - снаружи. Такая схема называется диаграммой Венна. a 2 m Например, диаграмму множества В = { 2, m , } можно нарисовать так: В

Знаки ∈ и ∉ a 2 m Предложение «Число 2 принадлежит множеству В» записывают короче: 2 ∈ В. Знак ∈ читают: «принадлежит» Предложение «Буква а не принадлежит множеству В» также можно записать короче: а ∉ В. Знак ∉ читают: «не принадлежит» В

e 8 b A 4 На рисунке изображена диаграмма множества А. Какие элементы принадлежат множеству А, а какие ему не принадлежат? b … A e … A … A 8 … A 4 … A … A ∈ ∈ ∈ ∉ ∉ ∉ ∉ ∉ Прочти ещё раз полученные записи.

Отметь элементы, d, 10 , 5 на диаграмме множества С, если известно, что: ∈ С ∉ С С d ∉ C 10 ∈ C ∈ C 5 ∉ С d 10 5

Имеется множество М = {а, b, c, }. Какой знак поставить: ∈ или ∉ ? a … M … M c … M … M … M 8 … M ∈ ∈ ∈ ∉ ∉ ∉

D – множество двузначных чисел. Являются ли числа 26, 307, 8, 940, 15, 60 элементами множества D ? 26 … D 8 … D 15 … D 307 … D 940 … D 60 … D ∈ ∈ ∈ ∉ ∉ ∉ Отметим эти числа на диаграмме. 26 307 8 940 15 60 Назовите самое маленькое и самое большое число множества D. D = { 10 , …, …, … 99}

А – множество бабочек, а В – множество роз. Как построить диаграммы множеств А и В? Сколько бабочек принадлежит множеству А? Сколько роз принадлежит множеству В? Сколько общих элементов у множеств А и В?

Задание на дом. Стр.12 №11, 12

ДИАГРАММА ВЕННА, схематическое представление отношений между математическими МНОЖЕСТВАМИ или логическими утверждениями, названное по имени английского логика Джона Венна (1834 1923). Множества изображаются в виде геометрических фигур, обычно… …

диаграмма Венна - Иллюстрирующая логические операции и операции булевой алгебры Boolean algebra Тематики нефтегазовая промышленность EN Venn diagram … Справочник технического переводчика

диаграмма Венна - Venn o diagrama statusas T sritis automatika atitikmenys: angl. Venn diagram vok. Venn Diagramm, n rus. диаграмма Венна, f pranc. diagramme de Venn, m ryšiai: sinonimas – Veno diagrama … Automatikos terminų žodynas

ДИАГРАММА ЭЙЛЕРА, простая диаграмма, используемая в логике для демонстрации силлогизмов. Классы предметов изображаются в виде кругов, и утверждения типа «Некоторое а находится в b» представляется двумя пересекающимися кругами, представляющими а и … Научно-технический энциклопедический словарь

Графический способ изображения формул математич. логики, прежде всего формул исчисления высказываний. В. д. ппеременных классич. логики высказываний представляет собой такой набор замкнутых контуров (го меоморфных окружностям), к рый разбивает… … Математическая энциклопедия

Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия

Пример диаграммы Эйлера. B живое существо, A человек, C неживая вещь. Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения между подмножествами, для наглядного представления. Изобретены Эйлером. Используется в… … Википедия

ДИАГРАММЫ ВEHHА графический способ задания и анализа логико математических теорий и их формул. Строятся путем разбиения части плоскости на ячейки (подмножества) замкнутыми контурами (кривьми Жордана). В ячейках представляется информация,… … Философская энциклопедия

Пример кругов Эйлера. Буквами обозначены, например, свойства: живое существо, человек, неживая вещь Круги Эйлера геометрическая схема, с помощью которой можно изобразить отношения … Википедия

1. Введение

В курсе Информатики и ИКТ основной и старшей школы рассматриваются такие важные темы как “Основы логики” и “Поиск информации в Интернет”. При решении определенного типа задач удобно использовать круги Эйлера (диаграммы Эйлера-Венна).

Математическая справка. Диаграммы Эйлера-Венна используются прежде всего в теории множеств как схематичное изображение всех возможных пересечений нескольких множеств. В общем случае они изображают все 2 n комбинаций n свойств. Например, при n=3 диаграмма Эйлера-Венна обычно изображается в виде трех кругов с центрами в вершинах равностороннего треугольника и одинаковым радиусом, приблизительно равным длине стороны треугольника.

2. Представление логических связок в поисковых запросах

При изучении темы “Поиск информации в Интернет” рассматриваются примеры поисковых запросов с использованием логических связок, аналогичным по смыслу союзам “и”, “или” русского языка. Смысл логических связок становится более понятным, если проиллюстрировать их с помощью графической схемы – кругов Эйлера (диаграмм Эйлера-Венна).

Логическая связка Пример запроса Пояснение Круги Эйлера
& - “И” Париж & университет Будут отобраны все страницы, где упоминаются оба слова: Париж и университет Рис.1
| - “ИЛИ” Париж | университет Будут отобраны все страницы, где упоминаются слова Париж и/или университет Рис.2

3. Связь логических операций с теорией множеств

С помощью диаграмм Эйлера-Венна можно наглядно представить связь логических операций с теорией множеств. Для демонстрации можно воспользоваться слайдами в Приложение 1.

Логические операции задаются своими таблицами истинности. В Приложении 2 подробно рассматриваются графические иллюстрации логических операций вместе с их таблицами истинности. Поясним принцип построения диаграммы в общем случае. На диаграмме – область круга с именем А отображает истинность высказывания А (в теории множеств круг А – обозначение всех элементов, входящих в данное множество). Соответственно, область вне круга отображает значение “ложь” соответствующего высказывания. Что бы понять какая область диаграммы будет отображением логической операции нужно заштриховать только те области, в которых значения логической операции на наборах A и B равны “истина”.

Например, значение импликации равно “истина” в трех случаях (00, 01 и 11). Заштрихуем последовательно: 1) область вне двух пересекающихся кругов, которая соответствует значениям А=0, В=0; 2) область, относящуюся только к кругу В (полумесяц), которая соответствует значениям А=0, В=1; 3) область, относящуюся и к кругу А и к кругу В (пересечение) – соответствует значениям А=1, В=1. Объединение этих трех областей и будет графическим представлением логической операции импликации.

4. Использование кругов Эйлера при доказательстве логических равенств (законов)

Для того, чтобы доказать логические равенства можно применить метод диаграмм Эйлера-Венна. Докажем следующее равенство ¬(АvВ) = ¬А&¬В (закон де Моргана).

Для наглядного представления левой части равенства выполним последовательно: заштрихуем оба круга (применим дизъюнкцию) серым цветом, затем для отображения инверсии заштрихуем область за пределами кругов черным цветом:

Рис.3 Рис.4

Для визуального представления правой части равенства выполним последовательно: заштрихуем область для отображения инверсии (¬А) серым цветом и аналогично область ¬В также серым цветом; затем для отображения конъюнкции нужно взять пересечение этих серых областей (результат наложения представлен черным цветом):

Рис.5 Рис.6 Рис.7

Видим, что области для отображения левой и правой части равны. Что и требовалось доказать.

5. Задачи в формате ГИА и ЕГЭ по теме: “Поиск информации в Интернет”

Задача №18 из демо-версии ГИА 2013.

В таблице приведены запросы к поисковому серверу. Для каждого запроса указан его код – соответствующая буква от А до Г. Расположите коды запросов слева направо в порядке убывания количества страниц, которые найдет поисковый сервер по каждому запросу.

Код Запрос
А (Муха & Денежка) | Самовар
Б Муха & Денежка & Базар & Самовар
В Муха | Денежка | Самовар
Г Муха & Денежка & Самовар

Для каждого запроса построим диаграмму Эйлера-Венна:

Запрос А Запрос Б Запрос В Запрос Г

Ответ: ВАГБ.

Задача В12 из демо-версии ЕГЭ-2013.

В таблице приведены запросы и количество найденных по ним страниц некоторого сегмента сети Интернет.

Запрос Найдено страниц (в тысяч)
Фрегат | Эсминец 3400
Фрегат & Эсминец 900
Фрегат 2100

Какое количество страниц (в тысячах) будет найдено по запросу Эсминец ?

Считается, что все запросы выполнялись практически одновременно, так что набор страниц, содержащих все искомые слова, не изменялся за время выполнения запросов.

Ф – количество страниц (в тысячах) по запросу Фрегат ;

Э – количество страниц (в тысячах) по запросу Эсминец ;

Х – количество страниц (в тысячах) по запросу, в котором упоминается Фрегат и не упоминается Эсминец ;

У – количество страниц (в тысячах) по запросу, в котором упоминается Эсминец и не упоминается Фрегат.

Построим диаграммы Эйлера-Венна для каждого запроса:

Запрос Диаграмма Эйлера-Венна Количество страниц
Фрегат | Эсминец Рис.12 3400
Фрегат & Эсминец Рис.13 900
Фрегат Рис.14 2100
Эсминец Рис.15 ?

Согласно диаграммам имеем:

  1. Х+900+У = Ф+У = 2100+У = 3400. Отсюда находим У = 3400-2100 = 1300.
  2. Э = 900+У = 900+1300= 2200.

Ответ: 2200.

6. Решение логических содержательных задач методом диаграмм Эйлера-Венна

В классе 36 человек. Ученики этого класса посещают математический, физический и химический кружки, причем математический кружок посещают 18 человек, физический - 14 человек, химический - 10. Кроме того, известно, что 2 человека посещают все три кружка, 8 человек - и математический и физический, 5 и математический и химический, 3 - и физический и химический.

Сколько учеников класса не посещают никаких кружков?

Для решения данной задачи очень удобным и наглядным является использование кругов Эйлера.

Самый большой круг – множество всех учеников класса. Внутри круга три пересекающихся множества: членов математического (М ), физического (Ф ), химического (Х ) кружков.

Пусть МФХ – множество ребят, каждый из которых посещает все три кружка. МФ¬Х – множество ребят, каждый из которых посещает математический и физический кружки и не посещает химический. ¬М¬ФХ - множество ребят, каждый из которых посещает химический кружок и не посещает физический и математический кружки.

Аналогично введем множества: ¬МФХ, М¬ФХ, М¬Ф¬Х, ¬МФ¬Х, ¬М¬Ф¬Х.

Известно, что все три кружка посещают 2 человека, следовательно, в область МФХ впишем число 2. Т.к. 8 человек посещают и математический и физический кружки и среди них уже есть 2 человека, посещающих все три кружка, то в область МФ¬Х впишем 6 человек (8-2). Аналогично определим количество учащихся в остальных множествах:

Просуммируем количество человек по всем областям: 7+6+3+2+4+1+5=28. Следовательно, 28 человек из класса посещают кружки.

Значит, 36-28 = 8 учеников не посещают кружки.

После зимних каникул классный руководитель спросил, кто из ребят ходил в театр, кино или цирк. Оказалось, что из 36 учеников класса двое не были ни в кино. ни в театре, ни в цирке. В кино побывало 25 человек, в театре - 11, в цирке 17 человек; и в кино, и в театре - 6; и в кино и в цирке - 10; и в театре и в цирке - 4.

Сколько человек побывало и в кино, и в театре, и в цирке?

Пусть х – количество ребят, которые побывали и в кино, и в театре, и в цирке.

Тогда можно построить следующую диаграмму и посчитать количество ребят в каждой области:

В кино и театре побывало 6 чел., значит, только в кино и театре (6-х) чел.

Аналогично, только в кино и цирке (10-х) чел.

Только в театре и цирке (4-х) чел.

В кино побывало 25 чел., значит, из них только в кино были 25 - (10-х) – (6-х) – х = (9+х).

Аналогично, только в театре были (1+х) чел.

Только в цирке были (3+х) чел.

Не были в театре, кино и цирке – 2 чел.

Значит, 36-2=34 чел. побывали на мероприятиях.

С другой стороны можем просуммировать количество человек, которые были в театре, кино и цирке:

(9+х)+(1+х)+(3+х)+(10-х)+(6-х)+(4-х)+х = 34

Отсюда следует, что только один человек побывал на всех трех мероприятиях.

Таким образом, круги Эйлера (диаграммы Эйлера-Венна) находят практическое применение при решении задач в формате ЕГЭ и ГИА и при решении содержательных логических задач.

Литература

  1. В.Ю. Лыскова, Е.А. Ракитина. Логика в информатике. М.: Информатика и Образование, 2006. 155 с.
  2. Л.Л. Босова. Арифметические и логические основы ЭВМ. М.: Информатика и образование, 2000. 207 с.
  3. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 8 класса: БИНОМ. Лаборатория знаний, 2012. 220 с.
  4. Л.Л. Босова, А.Ю. Босова. Учебник. Информатика и ИКТ для 9 класса: БИНОМ. Лаборатория знаний, 2012. 244 с.
  5. Сайт ФИПИ: http://www.fipi.ru/

ДИАГРАММЫ ВЕННА - графический способ задания и анализа логико-математических теорий и их формул. Строятся путем разбиения части плоскости на ячейки (подмножества) замкнутыми контурами (кривыми Жордана). В ячейках представляется информация, характеризующая рассматриваемую теорию или формулу. Цель построения диаграмм не только иллюстративная, но и операторная - алгоритмическая переработка информации. Аппарат диаграмм Венна обычно используется вместе с аналитическим.

Способ разбиения, количество ячеек, а также проблемы записи в них информации зависят от рассматриваемой теории, которая тоже может вводиться (описываться) графически - некоторыми диаграммами Венна, задаваемыми первоначально, в частности, вместе с алгоритмами их преобразований, когда одни диаграммы могут выступать как операторы, действующие на другие диаграммы. Например, в случае классической логики высказываний для формул, составленных из п различных пропозициональных переменных, часть плоскости (универсум) делится на 2" ячеек, соответствующих конституэнтам (в конъюнктивной или в дизъюнктивной форме). Диаграммой Венна каждой формулы считается такая плоскость, в ячейках которой ставится (или не ставится) звездочка *. Так, формулу

(¬ а& ¬ b&c) V (а&¬ b&c) V (¬ a&b&¬ c)

с тремя пропозициональными переменными a, b и c определяет диаграмма, изображенная на рисунке, где звездочки в ячейках соответствуют конъюнктивным составляющим этой совершенной нормальной дизъюнктивной формулы. Если отмеченных звездочками ячеек нет, то диаграмме Венна сопоставляется, напр., тождественно ложная формула, скажем (a&¬ a).

Индуктивный способ разбиения плоскости на 2" ячеек восходит к трудам английского логика Дж. Венна, называется способом Венна и состоит в следующем:

1. При n = 1, 2, 3 очевидным образом используются окружности. (На приведенном рисунке n = 3.)

2. Предположим, что при n = k (k ≥ 3), указано такое рас-положение к фигур, что плоскость разделена на 2k ячеек.

Тогда для расположения k+1 фигуры на этой плоскости достаточно, во-первых, выбрать незамкнутую кривую (ср без точек самопересечения, т.е. незамкнутую кривую Жордана, принадлежащую границам всех 2k ячеек и имеющую с каждой из этих границ только один общий кусок. Во-вторых, обвести φ замкнутой кривой Жордана Ψ k+1 так, чтобы кривая Ψ k+1 проходила через все 2k ячейки и пересекала границу каждой ячейки только два раза. Таким образом получится расположение n= k+1 фигур такое, что плоскость разделится на 2k+1 ячеек.

Для представления других логико-математических теорий метод венновских диаграмм расширяется. Сама теория записывается так, чтобы выделить элементы ее языка в пригодной для графического изображения форме. Напр., атомарные формулы классической логики предикатов записываются как слова вида P(Y1..Yr), где P - предикатная, а Y1,..., Yr - предметные переменные, не обязательно различные; слово Y1,..., Yr - предметный инфикс. Очевидный теоретико-множественный характер диаграмм Венна позволяет представлять и исследовать с их помощью, в частности, теоретико-множественные исчисления, напр., исчисление ZF теории множеств Цермело-Френкеля. Графические методы в логике и математике развивались издавна. Таковы, в частности, логический квадрат, круги Эйлера и оригинальные диаграммы Л. Кэрролла. Однако метод диаграмм Венна существенно отличается от известного метода кругов Эйлера, используемого в традиционной силлогистике. В основе венновских диаграмм лежит идея разложения булевской функции на конституэнты - центральная в алгебре логики, обуславливающая их оперативный характер. Свои диаграммы Венн применял прежде всего для решения задач логики классов. Его диаграммы можно эффективно использовать и для решения задач логики высказываний и предикатов, обзора следствий из посылок, решения логических уравнений, а также других вопросов, вплоть до проблемы разрешимости. Аппарат диаграмм Венна находит применение в приложениях математической логики и теории автоматов, в частности при решении задач, связанных с нейронными цепями и проблемой синтеза надежных схем из относительно мало надежных элементов.

А. С. Кузичев

Новая философская энциклопедия. В четырех томах. / Ин-т философии РАН. Научно-ред. совет: В.С. Степин, А.А. Гусейнов, Г.Ю. Семигин. М., Мысль, 2010, т. I, А - Д, с. 645.

Литература:

Venn J. Symbolic logic. L., 1881. Ed. 2, rev. L., 1894;

Кузичев А. С. Диаграммы Венна. История и применения. М., 1968;

Он же. Решение некоторых задач математической логики с помощью диаграмм Венна. - В кн.: Исследование логических систем. М., 1970.