Зрительные трубы. Оптические приборы Не слишком удаленные предметы

С помощью зрительных труб обычно рассматривают удаленные предметы, лучи от которых образуют почти параллельные слабо расходящиеся пучки. Основной задачей является увеличение углового расхождения этих пучков для того, чтобы их источники оказались на сетчатке разрешенными (не слившимися в точку).

На рисунке показан ход лучей в трубе Кеплера , состоящей из двух собирающих линз, задний фокус объектива совпадает с передним фокусом окуляра. Предположим, мы рассматриваем две точки удаленного тела, например Луны. Первая точка испускает пучок, параллельный главной оптической оси (не показан), а вторая, нарисованный на чертеже косой пучок, идущий под малым углом φ к первому. Если угол φ меньше 1’, то изображения обеих точек на сетчатке сольются. Нужно увеличить угол расхождения пучков. Как это сделать – показано на чертеже. Косой пучок собирается в общей фокальной плоскости, затем расходится. Но затем преобразуется второй линзой в параллельный. После второй линзы этот параллельный пучок идет под гораздо большим углом φ’ к осевому пучку. Простые геометрические рассуждения позволяют найти приборное (угловое) увеличение.

Точка фокальной плоскости, в которой собирается наклонный пучок определяется центральным лучом пучка, идущим без преломления через первую линзу. Чтобы определить угол прохождения этого пучка через вторую линзу, достаточно рассмотреть вспомогательный источник в этой точке фокальной плоскости. Испускаемые им лучи превратятся после второй линзы в параллельный пучок. Он будет параллелен центральному лучу второй линзы (рисунок). Значит пучок, нарисованный на верхнем рисунке пойдет под тем же углом φ’ к оптической оси. Видно, что и , поэтому . Приборное увеличение трубы Кеплера равно отношению фокусных расстояний, поэтому объектив всегда имеет гораздо большее фокусное расстояние. Для правильного описания действия трубы необходимо рассматривать наклонные пучки. Параллельный оси пучок преобразуется трубой в пучок меньшего диаметра.

Поэтому в зрачок глаза попадает больше световой энергии, чем при непосредственном наблюдении, например, звезд. Звезды настолько малы, что их изображения всегда формируются на одном «пикселе» глаза. С помощью трубы мы не можем получить протяженного изображения звезды на сетчатке. Однако, свет слабосветящихся звезд может быть «сконцентрирован». Поэтому в трубу можно увидеть звезды, невидимые глазом. Таким же образом объясняется, почему в трубу можно наблюдать звезды даже днем, когда при наблюдении простым глазом их слабый свет не виден на фоне ярко светящейся атмосферы.

Труба Кеплера обладает двумя недостатками, исправленными в трубе Галилея . Во-первых, длина тубуса трубы Кеплера равна сумме фокусных расстояний объектива и окуляра. То есть это максимально возможная длина. Во-вторых, что наиболее важно, этой трубой неудобно пользоваться в земных условиях, поскольку она дает перевернутое изображение. Идущий вниз пучок лучей преобразуется в идущий вверх. Для астрономических наблюдений это не так важно, а в зрительных трубах для наблюдения земных объектов приходится делать специальные «переворачивающие» системы из призм.


Труба Галилея устроена иначе (левый рисунок).

Она состоит из собирающей (объектива) и рассеивающей (окуляра) линз, причем их общий фокус находится теперь справа. Теперь длина тубуса – это не сумма, а разность фокусных расстояний объектива и окуляра. Кроме того, поскольку лучи отклоняются от оптической оси в одну сторону, изображение получается прямым. Ход луча и его преобразование, увеличение угла φ показано на рисунке. Проведя чуть более сложные геометрические рассуждения, мы придем к той же формуле для приборного увеличения трубы Галилея. .

Для наблюдения астрономических объектов приходится решать еще одну задачу. Астрономические объекты, как правило, слабосветящиеся. Поэтому в зрачок глаза попадает очень малый световой поток. Чтобы его увеличить, необходимо «собирать» свет с как можно большей поверхности, на которую он падает. Поэтому диаметр линзы-объектива делают как можно большим. Но линзы большого диаметра очень тяжелые, и кроме того, их трудно изготовить и они чувствительны к изменениям температуры и механическим деформациям, которые искажают изображение. Поэтому вместо телескопов-рефракторов (refract-преломлять), чаще стали использовать телескопы-рефлекторы (reflect- отражать). Принцип действия рефлектора состоит в том, что роль объектива, дающего действительное изображение, играет не собирающая линза, а вогнутое зеркало. На рисунке справа показан переносной телескоп-рефлектор весьма остроумной конструкции Максутова. Широкий пучок лучей собирается вогнутым зеркалом, но, не доходя до фокуса, поворачивается плоским зеркальцем так, что его ось становится перпендикулярной оси трубы. Точка s является фокусом окуляра – небольшой линзы. После этого пучок, ставший почти параллельным, наблюдается глазом. Зеркальце почти не мешает входящему в трубу световому потоку. Конструкция компактна и удобна. Телескоп направляется в небо, а зритель смотрит в него сбоку, а не вдоль оси. Поэтому луч зрения горизонтален и удобен для наблюдения.

В больших телескопах не удается создавать линзы диаметром более метра. Качественное вогнутое металлическое зеркало можно сделать диаметром до 10 м. Зеркала более устойчивы к воздействиям температуры, поэтому все самые мощные современные телескопы – рефлекторы.

Ход лучей в трубе Галилея.

Услышав об изобретении зрительной трубы, знаменитый итальянский ученый Галилео Галилей писал в 1610 г.: «Месяцев десять тому назад дошел до наших ушей слух, что некий бельгиец построил перспективу (так Галилей называл телескоп), при помощи которой видимые предметы, далеко расположенные от глаз, становятся отчетливо различимы, как будто они были близко». Принципа работы телескопа Галилей не знал, но хорошо осведомленный в законах оптики, он вскоре догадался о его устройстве и сам сконструировал зрительную трубу. «Сначала я изготовил свинцовую трубку, - писал он, - на концах которой я поместил два очковых стекла, оба плоские с одной стороны, с другой стороны одно было выпукло-сферическим, другое же вогнутым. Помещая глаз у вогнутого стекла, я видел предметы достаточно большими и близкими. Именно, они казались в три раза ближе и в десять раз больше, чем при рассмотрении естественным глазом. После этого я разработал более точную трубу, которая представляла предметы увеличенными больше чем в шестьдесят раз. За этим, не жалея никакого труда и никаких средств, я достиг того, что построил себе орган настолько превосходный, что вещи казались через него при взгляде в тысячу раз крупнее и более чем в тридцать раз приближенными, чем при рассмотрении с помощью естественных способностей». Галилей первый понял, что качество изготовления линз для очков и для зрительных труб должно быть совершенно различно. Из десяти очковых лишь одна годилась для использования в зрительной трубе. Он усовершенствовал технологию изготовления линз до такой степени, какой она еще никогда не достигала. Это позволило ему изготовить трубу с тридцатикратным увеличением, в то время как зрительные трубы очковых мастеров увеличивали всего в три раза.

Галилеева зрительная труба состояла из двух стекол, из которых обращенное к предмету (объектив) было выпуклое, то есть собирающие световые лучи, а обращенное к глазу (окуляр) – вогнутое, рассеивающее стекло. Лучи, идущие от предмета, преломлялись в объективе, но прежде, чем дать изображение, они падали на окуляр, который их рассеивал. При таком расположении стекол лучи не делали действительного изображения, оно составлялось уже самим глазом, который составлял здесь как бы оптическую часть самой трубы.

Из рисунка видно, что объектив О давал в своем фокусе действительное изображение ba наблюдаемого предмета (это изображение обратное, в чем можно было бы убедиться, приняв его на экран). Однако вогнутый окуляр О1, установленный между изображением и объективом, рассеивал лучи, идущие от объектива, не давал им пересечься и тем препятствовал образованию действительного изображения ba. Рассеивающая линза образовывала мнимое изображение предмета в точках А1 и В1, которое находилось на расстоянии наилучшего зрения. В результате Галилей получал мнимое, увеличенное, прямое изображение предмета. Увеличение телескопа равно отношению фокусных расстояний объектива к фокусному расстоянию окуляра. Исходя их этого может показаться, что можно получать сколь угодно большие увеличения. Однако предел сильному увеличению кладут технические возможности: очень трудно отшлифовать стекла большого диаметра. Кроме того для слишком больших фокусных расстояний требовалась чрезмерно длинная труба, с которой было невозможно работать. Изучение зрительных труб Галилея, которые хранятся в музее истории науки во Флоренции, показывают, что его первый телескоп давал увеличение в 14 раз, второй – в 19,5 раза, а третий – в 34,6 раза.

Несмотря на то, что Галилея нельзя считать изобретателем зрительной трубы, он, несомненно, был первым, кто создал ее на научной основе, пользуясь теми знаниями, которые были известны оптике к началу 17 века, и превратил ее в мощный инструмент для научных исследований. Он был первым человеком, посмотревшим на ночное небо сквозь телескоп. Поэтому он увидел то, что до него еще не видел никто. Прежде всего Галилей постарался рассмотреть Луну. На ее поверхности оказались горы и долины. Вершины гор и цирков серебрились в солнечных лучах, а длинные тени чернели в долинах. Измерение длины теней позволило Галилею вычислить высоту лунных гор. На ночном небе он обнаружил множество новых звезд. Например, в созвездии Плеяд оказалось более 30 звезд, в то время как прежде числилось всего семь. В созвездии Ориона – 80 вместо 8. Млечный Путь, который рассматривали раньше как светящиеся пары, рассыпался в телескопе на громадное количество отдельных звезд. К великому удивлению Галилея звезды в телескопе казались меньше по размерам, чем при наблюдении простым глазом, так как они лишились своих ореолов. Зато планеты представлялись крошечными дисками, подобным Луне. Направив трубу на Юпитер, Галилей заметил четыре небольших светила, перемещающихся в пространстве вместе с планетой и изменяющих относительно нее свои положения. Через два месяца наблюдений Галилей догадался, что это – спутники Юпитера и предположил, что Юпитер своими размерами во много раз превосходит Землю. Рассматривая Венеру, Галилей открыл, что она имеет фазы, подобные лунным и потому должна вращаться вокруг Солнца. Наконец, наблюдая сквозь фиолетовое стекло Солнце, он обнаружил на его поверхности пятна, а по их движению установил, что солнце вращается вокруг своей оси.

Все эти поразительные открытия были сделаны Галилеем за сравнительно короткий промежуток времени благодаря телескопу. На современников они произвели ошеломляющие впечатление. Казалось, что покров тайны спал с мироздания и оно готово открыть перед человеком свои сокровенные глубины. Насколько велик был в то время интерес к астрономии видно из того, что только в Италии Галилей сразу получил заказ на сто инструментов своей системы. Одним из первых оценил открытия Галилея другой выдающийся астроном того времени Иоганн Кеплер. В 1610 г. Кеплер придумал принципиально новую конструкцию зрительной трубы, состоявшую из двух двояковыпуклых линз. В том же году он выпустил капитальный труд «Диоптрика», где подробно рассматривалась теория зрительных труб и вообще оптических приборов. Сам Кеплер не мог собрать телескоп – для этого у него не было ни средств, ни квалифицированных помощников. Однако в 1613 г. по схеме Кеплера построил свой телескоп другой астроном – Шейнер.

Зрительная труба (телескоп-рефрактор) предназначена для проведения наблюдений за удаленными предметами. Труба состоит из 2 -х линз: объектива и окуляра.

Определение 1

Объектив - это собирающая линза с большим фокусным расстоянием.

Определение 2

Окуляр - это линза с малым фокусным расстоянием.

В качестве окуляра используются собирающие или рассеивающие линзы.

Компьютерная модель зрительной трубы

С помощью компьютерной программы можно составить модель, демонстрирующую работу зрительной трубы Кеплера из 2 -х линз. Телескоп предназначен для проведения астрономических наблюдений. Поскольку прибор показывает перевернутое изображение, то это неудобно для наземных наблюдений. Программа настроена так, что глаз наблюдателя аккомодирован на бесконечное расстояние. Потому в зрительной трубе выполняется телескопический ход лучей, то есть параллельный пучок лучей от удаленной точки, который входит в объектив под углом ψ . Выходит из окуляра точно также параллельным пучком, однако по отношению к оптической оси уже под другим углом φ .

Угловое увеличение

Определение 3

Угловое увеличение зрительной трубы - это отношение углов ψ и φ , которое выражается формулой γ = φ ψ .

Следующая формула показывает угловое увеличение зрительной трубы через фокусное расстояние объектива F 1 и окуляра F 2:

γ = - F 1 F 2 .

Отрицательный знак, который стоит в формуле углового увеличения перед объективом F 1 означает, что изображение перевернуто.

При желании можно менять фокусные расстояния F 1 и F 2 объектива и окуляра и угол ψ . На экране прибора указываются значения угла φ и углового увеличения γ .

Если вы заметили ошибку в тексте, пожалуйста, выделите её и нажмите Ctrl+Enter



16.12.2009 21:55 | В. Г. Сурдин , Н. Л. Васильева

В эти дни мы отмечаем 400-летие создания оптического телескопа - самого простого и самого эффективного научного прибора, распахнувшего перед человечеством дверь во Вселенную. Честь создания первых телескопов по праву принадлежит Галилею.

Как известно, Галилео Галилей занялся экспериментами с линзами в середине 1609 г., после того как узнал, что в Голландии для потребностей мореплавания была изобретена зрительная труба. Ее изготовили в 1608 году, возможно, независимо друг от друга голландские оптики Ганс Липперсгей, Яков Мециус и Захария Янсен. Всего за полгода Галилею удалось существенно усовершенствовать это изобретение, создать на его принципе мощный астрономический инструмент и сделать ряд изумительных открытий.

Успех Галилея в совершенствовании телескопа нельзя считать случайным. Итальянские мастера стекла уже основательно прославились к тому времени: еще в XIII в. они изобрели очки. И именно в Италии была на высоте теоретическая оптика. Трудами Леонардо да Винчи она из раздела геометрии превратилась в практическую науку. «Сделай очковые стекла для глаз, чтобы видеть Луну большой», - писал он в конце XV в. Возможно, хотя и нет этому прямых подтверждений, Леонардо удалось осуществить телескопическую систему.

Оригинальные исследования по оптике провел в середине XVI в. итальянец Франческо Мавролик (1494-1575). Его соотечественник Джованни Батиста де ла Порта (1535-1615) посвятил оптике два великолепных произведения: «Натуральная магия» и «О преломлении». В последнем он даже приводит оптическую схему телескопа и утверждает, что ему удавалось видеть на большом расстоянии мелкие предметы. В 1609 г. он пытается отстаивать приоритет в изобретении зрительной трубы, но фактических подтверждений этому оказалось недостаточно. Как бы то ни было, работы Галилея в этой области начались на хорошо подготовленной почве. Но, отдавая должное предшественникам Галилея, будем помнить, что именно он сделал из забавной игрушки работоспособный астрономический инструмент.

Свои опыты Галилей начал с простой комбинации положительной линзы, в качестве объектива, и отрицательной линзы, в качестве окуляра, дающей трехкратное увеличение. Сейчас такая конструкция называется театральным биноклем. Это самый массовый оптический прибор после очков. Разумеется, в современных театральных биноклях в качестве объектива и окуляра применяются высококачественные просветленные линзы, иногда даже сложные, составленные из нескольких стекол. Они дают широкое поле зрения и отличное изображение. Галилей же использовал простые линзы как для объектива, так и для окуляра. Его телескопы страдали сильнейшими хроматической и сферической аберрациями, т.е. давали размытое на краях и не сфокусированное в различных цветах изображение.

Однако Галилей не остановился, подобно голландским мастерам, на «театральном бинокле», а продолжил эксперименты с линзами и к январю 1610 г. создал несколько инструментов с увеличением от 20 до 33 раз. Именно с их помощью он совершил свои замечательные открытия: обнаружил спутники Юпитера, горы и кратеры на Луне, мириады звезд в Млечном Пути, и т. д. Уже в середине марта 1610 г. в Венеции на латинском языке тиражом 550 экземпляров вышел труд Галилея «Звездный вестник», где были описаны эти первые открытия телескопической астрономии. В сентябре 1610 г. ученый открывает фазы Венеры, а в ноябре обнаруживает признаки кольца у Сатурна, хотя и не догадывается об истинном смысле своего открытия («Высочайшую планету тройною наблюдал», - пишет он в анаграмме, пытаясь закрепить за собой приоритет открытия). Пожалуй, ни один телескоп последующих столетий не дал такого вклада в науку, как первый телескоп Галилея.

Однако те любители астрономии, кто пытался собирать телескопы из очковых стекол, нередко удивляются малым возможностям своих конструкций, явно уступающих по «наблюдательным возможностям» кустарному телескопу Галилея. Нередко современные «Галилеи» не могут обнаружить даже спутники Юпитера, не говоря уже о фазах Венеры.

Во Флоренции, в Музее истории науки (рядом со знаменитой картинной галереей Уффици) хранятся два телескопа из числа первых, построенных Галилеем. Там же находится и разбитый объектив третьего телескопа. Эта линза использовалась Галилеем для многих наблюдений в 1609-1610 гг. и была подарена им Великому герцогу Фердинанду II. Позже линза была случайно разбита. После смерти Галилея (1642 г.) эта линза хранилась у принца Леопольда Медичи, а после его смерти (1675 г.) была присоединена к коллекции Медичи в галерее Уффици. В 1793 г. коллекция передали Музею истории науки.

Очень интересна декоративная фигурная рамка из слоновой кости, изготовленная для галилеевской линзы гравером Витторио Кростеном. Богатый и причудливый растительный орнамент перемежается с изображениями научных инструментов; в узор органично включены несколько латинских надписей. Вверху ранее находилась лента, ныне утраченная, с надписью «MEDICEA SIDERA» («Звезды Медичи»). Центральную часть композиции венчает изображение Юпитера с орбитами 4 его спутников, окруженное текстом «CLARA DEUM SOBOLES MAGNUM IOVIS INCREMENTUM» («Славное [молодое] поколение богов, великое потомство Юпитера»). Слева и справа - аллегорические лики Солнца и Луны. Надпись на ленте, оплетающей венок вокруг линзы, гласит: «HIC ET PRIMUS RETEXIT MACULAS PHEBI ET IOVIS ASTRA» («Он первым открыл и пятна Феба (т.е. Солнца), и звезды Юпитера»). На картуше внизу текст: «COELUM LINCEAE GALILEI MENTI APERTUM VITREA PRIMA HAC MOLE NON DUM VISA OSTENDIT SYDERA MEDICEA IURE AB INVENTORE DICTA SAPIENS NEMPE DOMINATUR ET ASTRIS» («Небо, открытое зоркому разуму Галилея, благодаря этой первой стеклянной вещи показало звезды, до сих пор невидимые, по праву названные их первооткрывателем Медицейскими. Ведь мудрец властвует и над звездами»).

Информация об экспонате содержится на сайте Музея истории науки: ссылка №100101 ; ссылка №404001 .

В начале ХХ века хранящиеся во флорентийском музее телескопы Галилея были изучены (см. табл.). С ними были даже проведены астрономические наблюдения.

Оптические характеристики первых объективов и окуляров телескопов Галилея (размеры в мм)

Оказалось, что первая труба имела разрешающую способность 20" и поле зрения 15". А вторая, соответственно, 10" и 15". Увеличение первой трубы было 14-кратным, а второй 20-кратным. Разбитый объектив третьей трубы с окулярами от первых двух труб давал бы увеличение в 18 и 35 раз. Итак, мог ли Галилей сделать свои изумительные открытия, используя столь несовершенные инструменты?

Исторический эксперимент

Именно таким вопросом задался англичанин Стивен Рингвуд и, чтобы выяснить ответ, создал точную копию лучшего телескопа Галилея (Ringwood S. D. A Galilean telescope // The Quarterly Journal of the Royal Astronomical Society, 1994, vol. 35, 1, p. 43-50). В октябре 1992 года Стив Рингвуд воссоздал конструкцию третьего телескопа Галилея и в течение года проводил с ним всевозможные наблюдения. Объектив его телескопа имел диаметр 58 мм и фокусное расстояние 1650 мм. Как и Галилей, Рингвуд диафрагмировал свой объектив до диаметра апертуры D = 38 мм, чтобы получить лучшее качество изображения при сравнительно небольшой потере проницающей способности. Окуляром служила отрицательная линза с фокусным расстоянием -50 мм, дающая увеличение в 33 раза. Поскольку в такой конструкции телескопа окуляр размещается перед фокальной плоскостью объектива, полная длина трубы составила 1440 мм.

Самым большим недостатком телескопа Галилея Рингвуд считает его малое поле зрения - всего 10", или третья часть лунного диска. Причем на краю поля зрения качество изображения очень низкое. При использовании простого критерия Рэлея, описывающего дифракционный предел разрешающей способности объектива, можно было бы ожидать качества изображения в 3,5-4,0". Однако хроматическая аберрация снизила его до 10-20". Проницающая сила телескопа, оцененная по простой формуле (2 + 5lg D ), ожидалась около +9,9 m . Однако в действительность не удалось обнаружить звезд слабее +8 m .

При наблюдении Луны телескоп показал себя неплохо. В него удалось разглядеть даже больше деталей, чем было зарисовано Галилеем на его первых лунных картах. «Возможно, Галилей был неважный рисовальщик, или его не очень интересовали детали лунной поверхности?» - удивляется Рингвуд. А может быть, опыт изготовления телескопов и наблюдения с ними был у Галилея еще недостаточно велик? Нам кажется, что причина именно в этом. Качество стекол, отполированных собственными руками Галилея, не могло соперничать с современными линзами. Ну и, конечно, Галилей не сразу научился смотреть в телескоп: визуальные наблюдения требуют немалого опыта.

Кстати, а почему создатели первых зрительных труб - голландцы - не совершили астрономических открытий? Предприняв наблюдения с театральным биноклем (увеличение 2,5-3,5 раза) и с полевым биноклем (увеличение 7-8 раз), вы заметите, что между их возможностями пролегает пропасть. Современный высококачественный 3-кратный бинокль позволяет (при наблюдении одним глазом!) с трудом заметить крупнейшие лунные кратеры; очевидно, что голландская труба с таким же увеличением, но более низким качеством, не могла и этого. Полевой бинокль, дающий приблизительно те же возможности, что и первые трубы Галилея, показывает нам Луну во всей красе, со множеством кратеров. Усовершенствовав голландскую трубу, добившись в несколько раз более высокого увеличения, Галилей перешагнул через «порог открытий». С тех пор в экспериментальной науке этот принцип не подводит: если вам удастся улучшить ведущий параметр прибора в несколько раз, вы обязательно сделаете открытие.

Безусловно, самым замечательным открытием Галилея явилось обнаружение четырех спутников Юпитера и диска самой планеты. Вопреки ожиданиям, низкое качество телескопа не сильно помешало наблюдениям системы юпитеровых спутников. Рингвуд ясно видел все четыре спутника и смог, как и Галилей, каждую ночь отмечать их перемещение относительно планеты. Правда, не всегда удавалось одновременно хорошо сфокусировать изображение планеты и спутника: очень мешала хроматическая аберрация объектива.

А вот что касается самого Юпитера, то Рингвуд, как и Галилей, не смог обнаружить никаких деталей на диске планеты. Слабоконтрастные широтные полосы, пересекающие Юпитер вдоль экватора, оказались полностью замыты в результате аберрации.

Очень интересный результат получил Рингвуд при наблюдении Сатурна. Как и Галилей, при увеличении в 33 раза он увидел лишь слабые вздутия («загадочные придатки», как писал Галилей) по бокам планеты, которые великий итальянец, конечно же, не мог интерпретировать как кольцо. Однако дальнейшие эксперименты Рингвуда показали, что при использовании других окуляров с большим увеличением, все же можно различить более ясные признаки кольца. Сделай это в свое время Галилей - и открытие колец Сатурна состоялось бы почти на полстолетия раньше и не принадлежало бы Гюйгенсу (1656 г.).

Впрочем, наблюдения Венеры доказали, что Галилей быстро стал искусным астрономом. Оказалось, что в наибольшей элонгации фазы Венеры не видны, ибо слишком мал ее угловой размер. И только когда Венера приблизилась к Земле и в фазе 0,25 ее угловой диаметр достиг 45", стала заметна ее серпообразная форма. В это время ее угловое удаление от Солнца уже было не так велико, и наблюдения затруднены.

Самым же любопытным в исторических изысканиях Рингвуда, пожалуй, явилось разоблачение одного старого заблуждения по поводу наблюдений Галилеем Солнца. До сих пор считалось общепринятым, что в телескоп системы Галилея невозможно наблюдать Солнце, спроецировав его изображение на экран, ибо отрицательная линза окуляра не может построить действительного изображения объекта. Только изобретенный немного позже телескоп системы Кеплера из двух положительных линз дал такую возможность. Считалось, что впервые наблюдал Солнце на экране, помещенном за окуляром, немецкий астроном Кристоф Шейнер (1575-1650). Он одновременно и независимо от Кеплера создал в 1613 г. телескоп аналогичной конструкции. А как наблюдал Солнце Галилей? Ведь именно он открыл солнечные пятна. Долгое время существовало убеждение, что Галилей наблюдал дневное светило глазом в окуляр, пользуясь облаками как светофильтрами или подкарауливая Солнце в тумане низко над горизонтом. Считалось, что потеря Галилеем зрения в старости частично была спровоцирована именно его наблюдениями Солнца.

Однако Рингвуд обнаружил, что и телескоп Галилея может давать вполне приличную проекцию солнечного изображения на экран, причем солнечные пятна видны очень отчетливо. Позже, в одном из писем Галилея, Рингвуд обнаружил подробное описание наблюдений Солнца путем проекции его изображения на экран. Странно, что этого обстоятельства не отмечали раньше.

Думаю, что каждый любитель астрономии не откажет себе в удовольствии на несколько вечеров «стать Галилеем». Для этого нужно всего лишь сделать Галилеев телескоп и попытаться повторить открытия великого итальянца. В детстве один из авторов этой заметки делал из очковых стекол кеплеровы трубы. А уже в зрелом возрасте не удержался и соорудил инструмент, похожий на телескопа Галилея. В качестве объектива была использована насадочная линза диаметром 43 мм силой в +2 диоптрии, а окуляр с фокусным расстоянием около -45 мм был взят от старинного театрального бинокля. Телескоп получился не очень мощный, с увеличением всего в 11 раз, но и у него поле зрения оказалось маленькое, диметром около 50", а качество изображения неровное, значительно ухудшающееся к краю. Однако изображения стали значительно лучше при диафрагмировании объектива до диаметра 22 мм, и еще лучше - до 11 мм. Яркость изображений, разумеется, понизилась, но наблюдения Луны от этого даже выиграли.

Как и ожидалось, при наблюдении Солнца в проекции на белый экран этот телескоп действительно давал изображение солнечного диска. Отрицательный окуляр увеличил эквивалентное фокусное расстояние объектива в несколько раз (принцип телеобъектива). Поскольку не сохранилось сведений о том, на каком штативе Галилей устанавливал свой телескоп, автор наблюдал, удерживая трубу в руках, а в качестве опоры для рук использовал ствол дерева, забор или раму открытого окна. При 11-кратном увеличении этого было достаточно, но при 30-кратном, очевидно, у Галилея могли быть проблемы.

Можно считать, что исторический эксперимент по воссозданию первого телескопа удался. Теперь мы знаем, что телескоп Галилея был довольно неудобным и скверным прибором с точки зрения современной астрономии. По всем характеристикам он уступал даже нынешним любительским инструментам. У него было лишь одно преимущество - он был первым, а его создатель Галилей «выжал» из своего инструмента все, что возможно. За это мы чтим Галилея и его первый телескоп.

Стань Галилеем

Нынешний 2009 год был объявлен Международным годом астрономии в честь 400-летия рождения телескопа. В компьютерной сети, вдобавок к существующим, появилось много новых замечательных сайтов с изумительными снимками астрономических объектов.

Но как бы ни были насыщены интересной информацией сайты Интернета, главной целью МГА было продемонстрировать всем желающим реальную Вселенную. Поэтому в числе приоритетных проектов оказался выпуск недорогих телескопов, доступных любому желающему. Самым массовым стал «галилеоскоп» - маленький рефрактор, спроектированный высокопрофессиональными астрономами-оптиками. Это не точная копия телескопа Галилея, а скорее - его современная реинкарнация. У «галилеоскопа» двухлинзовый стеклянный ахроматический объектив диаметром 50 мм и фокусным расстоянием 500 мм. Четырехлинзовый пластиковый окуляр дает увеличение 25x, а 2x линза Барлоу доводит его до 50x. Поле зрения телескопа 1,5 o (или 0,75 o с линзой Барлоу). С таким инструментом легко можно «повторить» все открытия Галилея.

Впрочем, сам Галилей с таким телескопом сделал бы их значительно больше. Цена инструмента в 15-20 долл. США делает его действительно общедоступным. Любопытно, что со штатным положительным окуляром (даже с линзой Барлоу) «галилеоскоп» в действительности представляет собой трубу Кеплера, но при использовании в качестве окуляра одной лишь линзы Барлоу он оправдывает свое название, становясь 17x трубой Галилея. Повторить открытия великого итальянца в такой (оригинальной!) конфигурации - задача не из легких.

Это весьма удобный и вполне массовый инструмент, пригодный для школ и начинающих любителей астрономии. Его цена значительно ниже, чем у существовавших ранее телескопов с аналогичными возможностями. Было бы весьма желательно приобрести такие инструменты для наших школ.