Исследование эластических свойств легких при дифференциальной диагностике легочных заболеваний. Эластическое сопротивление - (Elastance) Эластическое и аэродинамическое сопротивление легких

До сих пор мы рассматривали только эластический или статический компонент работы органов дыхания. Однако имеется еще дополнительный неэластический или динамический компонент работы, на преодоление которого при нормальной частоте дыхания расходуется 30% всей затрачиваемой энергии. Неэластическое сопротивление состоит из двух основных компонентов: вязкостного сопротивления, возникающего при деформации тканей, и фрикционного сопротивления, связанного с газотоком по дыхательным путям. Фрикционное сопротивление дыхательных путей составляет 75-80% общей неэластической работы. Поскольку именно этот компонент наиболее часто изменяется при заболеваниях легких, вязкостное сопротивление тканей в дальнейшем не будет приниматься во внимание.

Сопротивление дыхательных путей у здорового взрослого человека составляет 1-3 см вод. ст. при газотоке 1 л/сек. Половина этой величины приходится на верхние дыхательные пути, другая половина - на нижние. В норме газоток в большей части бронхиального дерева носит ламинарный характер. Турбулентность наблюдается тогда, когда направление газотока резко изменяется или превышает определенную критическую линейную скорость. Хотя можно предположить, что турбулентность возникает главным образом в бронхиолах, в действительности при нормальном дыхании она проявляется почти всегда в области голосовой щели и трахеи. Это объясняется тем, что общая площадь поперечного сечения бронхиол значительно превышает площадь поперечного сечения трахеи и голосовой щели, благодаря чему линейная скорость в бронхиолах на много ниже критической величины. Снижение давления на протяжении дыхательных путей зависит от вязкости и плотности вдыхаемого газа, от длины и калибра дыхательных путей и от скорости газотока по ним. Вязкость газа является важным фактором, определяющим сопротивление при ламинарном газотоке. При турбулентном газотоке более важную роль играет плотность газа. Этим объясняется положительный эффект при применении газа с низкой плотностью, такого, как гелий, в составе дыхательной смеси в случаях локализованного нарушения проходимости верхних дыхательных путей. Сопротивление в значительной степени зависит от калибра дыхательных путей, причем при ламинарном газотоке оно увеличивается обратно пропорционально четвертой степени их радиуса. Следовательно, даже незначительные изменения просвета бронхов и бронхиол могут приводить к резкому изменению сопротивления. Например, во время приступа бронхиальной астмы сопротивление дыхательных путей может увеличиться в 20 раз.

Обычно просвет дыхательных путей зависит от градиента давления по обе стороны их стенки. Этот градиент можно представить как разницу между внутриплевральным давлением и давлением в дыхательных путях. Последняя величина изменчива, так как давление по ходу дыхательных путей снижается из-за сопротивления газотоку. Следовательно, давление растяжения, действующее через стенку дыхательных путей во время вдоха, наибольшее около ротовой полости, а во время выдоха - вблизи альвеол (рис. 3).

Рис. 3. Градиенты давлений вне и внутри дыхательных путей во время форсированного выдоха. В приведенных на схемах примерах сделан ряд допущений. Принято, Что дыхательные пути состоят из тонкостенной части (вблизи альвеол) и более ригидного отдела. Внутригрудное давление принято равным + 4 см вод. ст., давление, обусловленное эластичностью, + 2 см вод. ст. Поэтому общее давление в альвеолах равно +6 см вод. ст. При эмфиземе эластичность снижается, что приводит к уменьшению давления в альвеолах до +5 см вод. ст. Принято, что в норме падение давления на протяжении от альвеол до бронхиол (А Р) составляет 1 см вод. ст. Давление вне дыхательных путей превышает внутреннее давление только в ригидном отделе. Поэтому дыхательные пути остаются открытыми. Принято, что при эмфиземе сопротивление больше в том отделе дыхательных путей, который прилежит к альвеолам (ЛР= +2 см вод. ст.). Внешнее давление превышает внутреннее в тонкостенном отделе дыхательных путей, что приводит к их спадению. При бронхиальной астме дыхательные пути средней величины сужены бронхоспазмом и еще более сужаются градиентом давления (по Campbell, Martin, Riley, 1957). 1 - норма; 2-эмфизема; 3-астма.

Поскольку податливость легких и дыхательных путей почти одинакова, просвет последних расширяется параллельно увеличению объема легких, а их сопротивление при раздувании легких падает. Во время выдоха тонус дыхательных мышц, участвующих во вдохе, постепенно ослабевает, под влиянием эластической силы легкие спадаются и выталкивают воздух из альвеол, поддерживая давление в дыхательных путях выше, чем в плевральной полости. Если эластичность частично снижена или увеличено сопротивление в дыхательных путях, механизм пассивного выдоха становится менее эффективным. Компенсация может быть достигнута за счет большего растяжения легких, что увеличивает их эластическое противодействие, или активным сокращением выдыхательных мышц. Первый вариант является обычной реакцией и объясняет увеличение объема легких при бронхиальной астме и эмфиземе. Во втором случае при активном сокращении выдыхательных мышц нарастание скорости газотока на выдохе ограничено, так как повышение внутригрудного давления имеет точку приложения не только в терминальном отделе дыхательных путей, но и вне его. В результате этого уменьшается градиент давления, который в норме поддерживает определенный просвет дыхательных путей во время вдоха и выдоха. В конечном счете дыхательные пути во время выдоха могут спадаться, что приводит к образованию так зазываемых воздушных ловушек (air trapping) (Campbell, Martin, Riley, 1957).

Сужение просвета дыхательных путей вследствие сокращения выдыхательных мышц значительно увеличивает линейную скорость газотока, хотя объемная скорость может уменьшаться. Такое увеличение скорости газотока во время кашля способствует очищению дыхательных путей от секрета. Действительно, во время сильного кашля скорость воздушной струи может становиться «сверхзвуковой».

(1 оценок, среднее: 2,00 из 5)

Разграничение эластической и неэластической фракции работы дыхания позволяет дифференцировать преобладание обструктивных и рестриктивных нарушений вентиляции лёгких. В нормальных условиях эластическая фракция работы дыхания составляет 50-60% от общей работы дыхания.

Разграничение эластической и неэластической фракции работы дыхания позволяет дифференцировать преобладание обструктивных и рестриктивных нарушений вентиляции лёгких. В нормальных условиях эластическая фракция работы дыхания составляет 50-60% от общей работы дыхания. Если увеличение работы дыхания произошло за счет преимущественного увеличения неэластической фракции работы дыхания, то можно говорить об обструктивных нарушениях механики дыхания. Дыхательная петля при этом весьма широкая, а экспираторная часть ее выходит далеко за пределы эластического треугольника, свидетельствуя о повышенной работе дыхательной мускулатуры на выдохе.

При рестриктивных нарушениях механики дыхания процент эластической фракции работы дыхания увеличивается. Происходит как бы обучение легких работе при измененной пневмо-динамике. Общая работа дыхания увеличивается незначительно.

Сложной и малоразработанной является проблема дифференцирования отдельных видов механического сопротивления лёгких при исследовании биомеханики дыхания. Неэластическое сопротивление лёгких складывается из 3 основных видов сопротивления: 1) аэродинамического сопротивления; 2) тканевого трения; 3) инерции газа и тканей. Сейчас в классической физиологии дыхания неэластическое сопротивление лёгких принято рассматривать как бронхиальное сопротивление. Другими видами сопротивления обычно пренебрегают как малыми величинами. Такое упрощение нельзя считать правомерным, поскольку каждый из видов неэластического сопротивления, вероятно, может изменяться, например, увеличиваться, оказывая влияние на суммарную величину неэластического сопротивления лёгких. Не исключено, что в суммарном неэластическом сопротивлении лёгких скрываются еще неизвестные для науки виды сопротивления, например, в биологической механической системе возможно явление тиксотропии и антитиксотропии. Тем не менее на данном уровне развития учения о механике дыхания в определенной степени можно дифференцировать бронхиальное и тканевое неэластическое сопротивление.
Определение бронхиального сопротивления по альвеолярному давлению, рассчитанному из неэластического компонента транспульмонального давления, не имеет принципиального отличия от определения неэластического сопротивления по дыхательной петле, так как в расчет здесь берется разделение эластического и неэластического компонента транспульмонального давления с помощью эластической оси лёгких. Поэтому сопротивление, рассчитанное таким образом, правильнее называть общим неэластическим сопротивлением

Повышенный интерес к мониторингу параметров механики дыхания в последнее время связан с появлением многофункциональных («интеллектуальных») респираторов и обусловлен несколькими причинами.
Во-первых , эти респираторы позволяют регистрировать и отражать в виде графиков ряд важных, недоступных для большинства прежних респираторов, биомеханических параметров, таких как скорость газового потока, эластическое сопротивление дыхательных путей (торако-пульмональный комплайнс) и других.

Во-вторых , эти вентиляторы позволяют реализовать и представить в виде графиков различные варианты потока газовой смеси, влияющие на величины давления в дыхательных путях и отражающиеся на состоянии ряда вентиляционных параметров.

В-третьих , эти респираторы позволяют реализовать различные режимы респираторной поддержки, от традиционной механической вентиляции (CMV) до целого ряда режимов вспомогательной вентиляции, таких как синхронизированная вентиляция (SIMV), вентиляция поддержкой давлением (PCV), спонтанное дыхание с постоянным положительным давлением (СРАР, BIPAP) и др. Эти режимы направлены на оптимизацию механики дыхания пациента, в частности, на максимально экономный расход энергии дыхательных мышц (работу дыхания), ибо повышенной работе дыхательных мышц неизменно сопутствует повышенный расход кислорода, запасы которого в организме крайне ограничены.

У здорового человека с нормальной биомеханикой для поддержания спокойного дыхания затраты потребляемой энергии составляют всего 2 % от всех затрат энергии для поддержания жизнедеятельности организма. При повышенной функциональной нагрузке органов дыхания (мышечная работа, возрастание метаболических процессов), а также при патологии легких (обструктивные заболевания, паренхиматозные поражения) механика дыхания претерпевает существенные изменения, что приводит к значительному возрастанию работы дыхания и увеличению потребления кислорода. Существует даже специальный термин, характеризующий этот процесс, - «кислородная стоимость или цена дыхания».

В процессе дыхательного цикла основные затраты работы дыхания направлены на преодоление механического сопротивления движению газовой смеси по . Известны девять видов механического сопротивления, которые должна преодолевать работа дыхания.

Аэродинамическое сопротивление обусловлено наличием силы трения между молекулами газовой смеси и поверхностью дыхательных путей. Аэродинамическое сопротивление увеличивается при обструктивных поражениях дыхательной системы (отек слизистой бронхов, бронхоспазм, хронические воспалительные заболевания легких и др.). Частным случаем аэродинамического сопротивления является сопротивление, не связанное непосредственно с системой органов дыхания (приложенное извне), например, сопротивление интубационной трубки или трахеотомической канюли.

Эластическое сопротивление связано с наличием эластического каркаса грудной клетки и легких, на преодоление которого необходимо затратить работу во время вдоха. Оно увеличивается при повышении жесткости дыхательной системы, например, при отеке легких, паренхиматозных поражениях (пневмония, респираторный дистресс синдром и др.). В понятии «эластическое сопротивление» объединяется еще целый ряд различных видов сопротивлений, имеющих существенно меньшее практическое значение. Это вязкостно-эластическое, пластическо-эластическое сопротивление, сопротивление, обусловленное инерционностью, гравитацией, сжатием газов при обструкции дыхательных путей, сопротивление, обусловленное деформацией дыхательных путей.

Таким образом, в практической работе из параметров, характеризующих механику дыхания, помимо традиционных параметров, таких как:
дыхательный (VT) и минутный (VE) объемы вентиляции;
давление в дыхательных путях (Р);
частота дыхания (RR);
продолжительность фаз дыхательного цикла (1:Е). Целесообразно мониторировать дополнительно еще:
скорость газового потока (у);
аэродинамическое сопротивление дыхательных путей - резистанс (R);
растяжимость системы легкое-грудная клетка - комплайнс (С).

3.3.2. Выдох

Дыхательные мышцы расслабляются, под действием эластической тяги лёгких, силы тяжести грудной клетки объём её уменьшается, внутриплевральное давление становится менее отрицательным, объём легких уменьшается, давление в альвеолах становится выше атмосферного, и воздух из альвеол и дыхательных путей удаляется в атмосферу. Вдох происходит активно, а спокойный выдох - пассивно.

3.3.3. Значение отрицательного внутриплеврального

давления для дыхания

Легкие покрыты серозной оболочкой - плеврой, висцеральный листок которой непосредственно переходит в виде париетального листка на внутреннюю поверхность грудной стенки, образуя замкнутую плевральную полость. Плевра секретирует жидкость, имеющую близкий состав к лимфе, серозной жидкости перикарда и брюшины. Плевральная жидкость облегчает скольжение легких, уменьшая силы трения, обладает бактериоцидным действием. Благодаря эластической тяги легких, легкие не полностью заполняют грудную полость, и в герметичной плевральной полости сохраняется давление на 3 мм. рт. ст. ниже атмосферного в конце спокойного выдоха. Во время вдоха вследствие увеличения объема грудной полости оно возрастает до 6 - 9, а при максимально глубоком вдохе разность транспульмонального давления может составить 20 мм.рт.ст. Разница между внутриплевральным и атмосферным давлением отрицательна лишь потому, что представляет собой не абсолютную величину давления, а разницу между двумя значениями. Благодаря отрицательному давлению в плевральной полости, лёгкие постоянно находятся в растянутом состоянии и следуют за грудной клеткой, обеспечивая эффективность вдоха; отрицательное внутригрудное давление облегчает приток венозной крови и лимфы в сосуды, локализованные в грудной полости.

Пневмоторакс - это патологическое состояние, обусловленное потерей герметичности и попаданием воздуха в плевральную полость с выравниванием внутриплеврального давления с атмосферным. Виды пневмоторакса: открытый, закрытый, клапанный (напряжённый); односторонний, двусторонний; искусственный (лечебный или диагностический). При пневмотораксе на стороне повреждения транспульмональное давление уменьшается, при вдохе объем легкого не увеличивается, уменьшается вентиляция легкого, что создает предпосылки для развития кислородного голодания организма. Смещение органов средостения в сторону плевральной полости с более низким давлением может затруднить приток венозной крови к сердцу и вызвать опасное для жизни падение сердечного выброса. В сочетании с имеющим место при травмах кровотечением, болью все эти факторы могут привести к развитию плевро-пульмонального шока.

3.3.4. Эластическое и неэластическое сопротивление дыханию

Эластические элементы легких оказывают сопротивление при растяжении легких во время вдоха. Измеряется эластическое сопротивление приростом давления, необходимого для растяжения лёгкого.

Где: E - эластическое сопротивление,

dP- прирост давления,

dV- прирост объёма,

С - растяжимость лёгкого.

Растяжимость показывает, на сколько возрастает объём легкого при увеличении внутрилегочного давления. При увеличении транспульмональногодавления на 10 мм. вод. ст. объем легких у взрослого человека возрастает на 200 мл.

Эластические свойства лёгких определяются:

1) Упругостью ткани стенки альвеолы благодаря наличию в ней каркаса из эластических волокон.

2) Тонусом бронхиальных мышц.

3) Поверхностным натяжением слоя жидкости, покрывающей внутреннюю поверхность альвеолы.

Внутренняя поверхность альвеолы выстлана с у р ф а к т а н т о м, слоем толщиной до 0,1 мкм, состоящим из поперечно ориентированных молекул фосфолипидов. Присутствие сурфактанта снижает поверхностное натяжение в результате того, что гидрофильные головки этих молекул связаны с молекулами воды, а гидрофобные окончания слабо взаимодействуют между собой и другими молекулами. Таким образом, молекулы сурфактанта образуют на поверхности жидкости тонкий гидрофобный слой. Наличие сурфактанта препятствует спадению и перерастяжению альвеол. Заряды свободного участка молекулы за счёт сил отталкивания препятствуют сближению противоположных стенок альвеолы, а сила межмолекулярного взаимодействия противодействует перерастяжению альвеол. За счёт сурфактанта при растяжении лёгких сопротивление возрастает, а при уменьшении объёма альвеол - снижается. Участок молекулы со стороны альвеолярного просвета гидрофобен, отталкивает воду, поэтому водяные пары в альвеолярном воздухе не препятствуют газообмену.

Неэластическое сопротивление

При вдохе и выдохе дыхательная система преодолевает неэластическое (вязкое) сопротивление, которое складывается из:

1) аэродинамического сопротивления воздухоносных путей,

2) вязкого сопротивления тканей.

Неэластическое сопротивление дыханию обусловлено, главным образом, силами трения внутри воздушной струи и между потоком воздуха и стенками дыхательных путей. Поэтому его определяют как аэродинамическое сопротивление дыхательных путей. Измеряется силой (Р), которую нужно приложить, чтобы сообщить воздушной струе некоторую объемную скорость (V) и преодолеть сопротивление дыхательных путей (R).

Сопротивление дыхательных путей при скорости воздушного потока 0,5 л/с равно 1,7 см вод.ст./л в сек.

4. Легочные объемы

Дыхательный объём - это количество воздуха, которое человек вдыхает при спокойном дыхании (около 500 мл). Воздух, поступающий в легкие после окончания спокойного вдоха дополнительно, называется резервным объёмом вдоха (около 2500 мл), дополнительный выдох после спокойного выдоха - резервным объёмом выдоха (около 1000 мл). Воздух, остающийся после максимально глубокого выдоха - остаточный объём (около 1500 мл). Жизненная ёмкость лёгких - сумма дыхательного объёма и резервных объёмов вдоха и выдоха (около 3,5л). Сумма остаточного объема и жизненной емкости легких называется общей емкостью легких . У взрослого человека равняется примерно 4,2-6,0 л.

Объем легких после окончания спокойного выдоха называется функциональной остаточной емкостью . Она слагается из остаточного объема и резервного объема выдоха. Воздух, находящийся в спавшихся легких при пневмотораксе, называется минимальным объемом .

Аэродинамическое сопротивление возникает вследствие трения поступающего в легкие газа о стенки искусственных и естественных дыхательных путей. Ламинарный поток газа, когда слои его параллельны стенкам проводящей трубки, описан уравнением Пуазейля: F = Pрr 4 /8зL где F - поток, Р - давление, r - радиус трубки, з - вязкость газа и L - длина трубки. Исходя из уравнения видно, что поток увеличивается, при увеличении давления и, особенно, радиуса трубки, и уменьшается при увеличении вязкости газа и длины трубки. Аэродинамическое сопротивление любой трубки принято определять величиной давления необходимого для проведения через нее единицы объема газа за единицу времени (в медицине см. Н2О/литр в секунду). Преобразовав уравнение Пуазейля, получим: Р = FЧ8зЧL/рr 4 или Р = F8з/рЧL/r 4 . Если пропускать одинаковый газ с одинаковой скоростью через разные трубки, то величина F8з/р будет постоянной, а уравнение будет выглядеть Р = constЧL/r 4 , то есть аэродинамическое сопротивление прямо пропорционально длине трубки и обратно пропорционально ее радиусу в четвертой степени. Чтобы наглядно представить смысл этого уравнения решим задачу: У годовалого ребенка диаметр подсвязочного пространства = 4мм, после экстубации развился ларингит (слизистая отекла на 1мм, то есть диаметр уменьшился до 2мм), насколько увеличилось аэродинамическое сопротивление и работа дыхания? При Ш = 4мм, r = 2мм (r 4 = 16), при Ш = 2мм, r = 1 (r 4 =1), поскольку длина подсвязочного пространства, газ (воздух) и поток (чтобы обеспечить МОД) остались прежними, то уравнения будут выглядеть следующим образом: до развития отека Р = constЧL/16, а после Р = constЧL/1. Ответ: аэродинамическое сопротивление и работа дыхания увеличились в 16 раз. Однако эти расчеты справедливы, только если поток газа остается ламинарным.

Турбулентным поток становится, когда в слоях газа, прилежащих к стенке проводящей трубки, появляются вихревые вращательные движения. Условиями возникновения турбулентности являются высокие скорости потока, вязкость газа и наличие неровностей на стенках проводящей трубки. В клинических условиях это капли конденсата на стенках интубационной трубки, мокрота, кровь или меконий на стенках бронхов, бифуркации трахеи и бронхов при высокой скорости инспираторного потока. Турбулентный поток в дыхательных путях экспоненциально повышает Raw и снижает давление газа в зонах турбулентности, то есть может снижать доставку газа в альвеолы при коротком времени вдоха. На величину Raw влияют вязкость и влажность дыхательного газа. Так наименьшей вязкостью обладает сухая смесь кислорода с гелием, которая применялась в космической медицине, а также использовалась в экспериментальной медицине для купирования астматического статуса.

При легочной патологии Raw увеличивается при снижении общего количества функционирующих дыхательных путей, при бронхоконстрикции и отеке слизистой бронхов, что снижает площадь их общего сечения. Наличие же в дыхательных путях воспалительного секрета, крови и, особенно, мекония не только снижают площадь их общего сечения, но и способствуют возникновению турбулентности. Чем меньше размеры тела ребенка, тем меньше диаметр дыхательных путей, а следовательно и Raw . Из за малого калибра дыхательных путей Raw при легочной патологии у младенцев повышается гораздо сильнее, чем у взрослых.

В фазу вдоха интраторакальные дыхательные пути увеличиваются в диаметре, а в фазу выдоха уменьшаются, поэтому Raw при вдохе < Raw при выдохе.

Большая часть Raw (около 80%) приходится на первые 5 генераций трахеобронхиального дерева, то есть на зону высокоскоростных потоков, где возможно развитие турбулентности. Более дистальные дыхательные пути имеют гораздо большую площадь общего сечения (так общее сечение терминальных бронхиол в 30-50 раз больше сечения трахеи), то есть являются зоной низкоскоростных ламинарных потоков.

При проведении ИВЛ Raw = ДP/литр в секунду, где Дp = PIP - PEEP. В англоязычной литературе эта разница между PIP и РЕЕР часто именуется drive pressure - ведущее давление, так как именно оно определяет величину дыхательного объема..

Сравнительные величины Raw в см Н2О/литр в сек.

Здоровые взрослые 1 - 2

Годовалые дети 12 -16

Здоровые новорожденные 20 - 40

Стандартная ИТ Ш 3,5мм 50

Стандартная ИТ Ш 2,5мм 150

Длинные ИТ малого диаметра, имеющие резкие изгибы, но особенно, при наличии на внутренних стенках капель конденсата или мокроты, могут весьма значительно увеличивать Raw , а следовательно и работу дыхания при проведении СРАР через ИТ (по Грегори) или IMV (SIMV) c низкой частотой дыхательных циклов. Это может вызвать усталость дыхательной мускулатуры и падение респираторного драйва.

Получить представление о состоянии Raw у пациента можно, оценивая конфигурацию петли V/F (объем / поток) на дисплее дыхательного монитора и цифровые значения инспираторного и экспираторного потоков, а также по характеру кривой T/F (время / поток). Конфигурации петель V/F и варианты конфигурации графиков потока будут рассматриваться в разделе параметры вентиляции. Однако, ценность этой информации у детей раннего возраста ограничена, а петля V/F используется, в основном, для оценки степени обструкции дыхательных путей. Более информативно отслеживать динамику изменения конфигурации этой петли. Так, к примеру, можно оценить эффект от применения бронхолитиков при обструктивном синдроме. Современные дыхательные мониторы определяют Raw каждого дыхательного цикла с выводом цифровой информации на дисплей.