Какой отдел сетчатки обеспечивает максимальную остроту зрения. Функции зрительного анализатора и методика их исследования. Виды функциональной способности глаза

14969 0

Предметное зрение начинает проявляться у детей примерно со второго месяца жизни, когда ребенок живо реагирует на мать. К 6—8 мес дети начинают отличать простые геометрические фигуры, а с начала второго года жизни или позже различают рисунки. В 3-летнем возрасте острота зрения, равная 1, обнаруживается в среднем у 5—10% детей, в 7-летнем — у 45—55%, в 9-летнем — у 60%, в 11-летнем — у 80% и в 14-летнем — у 90% детей.

Разрешающая способность глаза, а следовательно, в известной мере и острота зрения зависят не только от его строения, но и от флюктуации света, количества квантов, попадающих на светочувствительную часть сетчатки, клинической рефракции, сферической и хроматической аберрации, дифракции и др. Отчетливое восприятие предмета слагается также из безусловнорефлекторных двигательных актов глаза (рис. 32).

Исключительно важным и совершенно обязательным моментом для оценки состояния здоровья новорожденных является исследование их зрения.

Естественно, что определить наличие или отсутствие зрения как врач, так и средний медицинский персонал могут лишь по доступным, простым, но достаточно информативным признакам (табл. 3).

Таблица 3. Состояние зрения у детей различного возраста [по Ковалевскому Е. И.]



Современные таблицы для проверки остроты зрения, как для детей (рис. 33), так и для взрослых построены по десятичной системе. В них самые мелкие знаки видны под углом, равным 5 мин (а их штрихи — 1 мин) с расстояния в 5 м. Если эти знаки различаются, то по формуле:
V=d/D острота зрения равна 5/5, т. е. 1,0. Это 10-я строка в таблице. Над ней 9-я строка знаков построена таким образом, что с 5 м их можно прочесть при остроте зрения, меньшей на 0,1, т.е. 0,9 и т.д. Самая верхняя строка таблицы различима при остроте зрения 0,1.



Рис. 33. Таблица Орловой для определения остроты зрения у детей.


При нормальной остроте зрения буквы этой строки можно прочесть с расстояния в 50 м. По приведенной выше формуле острота зрения в этом случае равна т. е. 0,1.



Рис. 34. Прибор Ковалевского для дистанционного определения остроты зрения


Перед исследованием остроты зрения по таблицам определяют на близком расстоянии при обоих открытых глазах, знает ли ребенок картинки (буквы, знаки). Затем исследуют зрение каждого глаза с дальнего расстояния (5 м) и остроту зрения при обоих открытых глазах. Острота зрения обоими глазами почти всегда несколько выше (на 0,1—0,3), чем та, которая достигается каждым глазом в отдельности.

Если исследуемый не различает с расстояния 5 м даже первой строки таблицы, необходимо приблизить его к таблице до тех пор, пока не будет виден ясно первый ряд, и далее произвести расчет по формуле. Существует множество простых и более сложных аппаратов с элементами автоматизации (рис. 34) для определения остроты зрения. Особенно удобны и более точны для определения остроты зрения у детей старшего возраста и у взрослых автоматизированные проекторы знаков (фороптеры).

При помутнении сред глаза (роговица, хрусталик) острота зрения может быть снижена до светоощущения, однако проекция света почти всегда остается уверенной. Отсутствие правильной проекции света (perceplio el proecllo lucis incerta) или полное отсутствие светоощущсния (vis abs-О) указывает на поражение зрительно-нервного аппарата глаза и бесперспективность оптико-реконструктивных операций.

Для объективной регистрации остроты зрения и количественного ее определения применяют методы оптокинетического нистагма (ОКН). Он основан на регистрации движений глаз в ответ на движения удаленных на различное расстояние и разных по величине тест-объектов.

Ковалевский Е.И.

ЗРЕНИЕ- процесс восприятия животным организмом предметов внешнего мира при помощи органа зрения - глаза. В основе этих восприятий лежит действие на глаз света, отражаемого или излучаемого предметами внешнего мира. Сущность зрения сводится к следующему: лучи света, идущие в глаз от предметов внешнего мира, пройдя через прозрачные среды глаза (роговую оболочку, хрусталик, стекловидное тело) и преломившись в них, падают на светочувствительную оболочку глаза - сетчатую оболочку, и вызывают в ее клетках - палочках и колбочках фотохимическую реакцию (распад в этих клетках светочувствительных веществ), в результате которой световая энергия превращается в нервное возбуждение. Это возбуждение в виде ритмических нервных импульсов передается из сетчатой оболочки по проводящим путям (зрительный нерв) в зрительные центры затылочной и других частей коры головного мозга, где световые раздражения воспринимаются в виде определенных образов. Колбочки являются элементами дневного зрения, палочки же - элементами сумеречного или ночного зрения. Такое двойственное зрение обеспечивает глазу огромную широту (диапазон) восприятия света - от едва мерцающего вдали до света, идущего от таких могучих его источников, как солнце. Вся сетчатая оболочка способна воспринимать форму предметов (форменное зрение). Однако это восприятие неодинаково на различных ее участках. Форменное зрение главным образом присуще той части сетчатой оболочки, которая находите» у заднего полюса глаза и называется «желтым пятном»; имеющейся в центре желтого пятна «центральной ямке», состоящей только из колбочек, присуще наивысшее форменное зрение - центральное зрение. Остальным периферическим частям сетчатой оболочки присуще менее четкое зрение, которое носит название периферического зрения. Поэтому всякий раз, когда необходимо получить точное и ясное изображение предметов внешнего мира, глаз устанавливается в таком положении, чтобы лучи света от этих предметов соединились бы в желтом пятне. Центральное зрение обеспечивает возможность рассматривать тонкие детали предметов, периферическое же - возможность ориентироваться в пространстве.

У различных людей, как известно, имеется различная острота зрения, что зависит как от свойств элементов желтого пятна, так и от ряда других причин. Остротой зрения называют способность глаза различать две точки при минимальном расстоянии между ними (или «минимальном угле» зрения). Для исследования остроты зрения служат специальные таблицы. Для того чтобы выяснить состояние периферического зрения, необходимого для ориентировки в пространстве, исследуется на специальном аппарате (периметре) поле зрения, то есть все то пространство, которое видно неподвижно стоящему глазу.

Орган зрения человека способен воспринимать также цвет предметов (о нарушениях цветоощущения см. ), различные яркости света (свето-ощущение), сливать изображения, получаемые па сетчатых оболочках обоих глаз, в одно изображение (см. [[Бинокулярное зрение]] ); наконец, будучи подвижным, глаз может охватывать значительные пространства (поле взора). Среди прочих органов чувств орган зрения, несомненно, является главнейшим органом познания внешнего мира; вооружая нас точными знаниями об окружающей природе, зрение увеличивает нашу власть над ней.

Центральное или форменное зрение осуществляется наиболее высокодифференцированной областью сетчатки — центральной ямкой желтого пятна, где сосредоточены только колбочки. Центральное зрение измеряется остротой зрения. Исследование остроты зрения очень важно для суждения о состоянии зрительного аппарата человека, о динамике патологического процесса.

Под остротой зрения понимается способность глаза различать раздельно две точки в пространстве, находящиеся на определенном расстоянии от глаза.

При исследовании остроты зрения определяется минимальный угол, под которым могут быть раздельно восприняты два световых раздражения сетчатой оболочки глаза. На основании многочисленных исследований и измерений установлено, что нормальный глаз человека может раздельно воспринять два раздражения под углом зрения в одну минуту.

Эта величина угла зрения принята за интернациональную единицу остроты зрения. Такому углу на сетчатке соответствует линейная величина в 0,004 мм, приблизительно равная поперечнику одной колбочки в центральной ямке желтого пятна. Для раздельного восприятия двух точек глазом, оптически правильно устроенным, необходимо чтобы на сетчатке между изображениями этих точек существовал промежуток не менее чем в одну колбочку, которая не раздражается совсем и находится в покое. Если же изображения точек упадут на смежные колбочки, то эти изображения сольются и раздельного восприятия не получится.

Острота зрения одного глаза, могущего воспринимать раздельно точки, дающие на сетчатке изображения под углом в одну минуту, считается нормальной остротой зрения, равной единице (1,0). Есть люди, у которых острота зрения выше этой величины и равна 1,5-2,0 единицам и больше.

При остроте зрения выше единицы минимальный угол зрения меньше одной минуты. Самая высокая острота зрения обеспечивается центральной ямкой сетчатки. Уже на расстоянии от нее на 10 градусов острота зрения в 5 раз меньше.

Для исследования остроты зрения предложены различные таблицы с расположенными на них буквами или знаками различной величины. Впервые специальные таблицы предложил в 1862 году Снеллен. На принципе Снеллена строились все последующие таблицы. В настоящее время для определения остроты зрения пользуются таблицами Сивцева и Головина.

Таблицы состоят из 12 рядов букв. Каждая из букв в целом видна с определенного расстояния под углом в 50, а каждый штрих буквы под углом зрения в 10. Первый ряд таблицы виден при нормальной остроте зрения равной 1,0 с расстояния 50 м, буквы десятого ряда с расстояния 5 м.

Исследование остроты зрения проводится с расстояния 5 м и для каждого глаза отдельно. Справа в таблице стоит цифра, указывающая остроту зрения при проверке с расстояния 5 м, а слева цифра, указывающая расстояние, с которого этот ряд должен видеть исследуемый при нормальной остроте зрения.

Острота зрения может быть вычислена по формуле Снеллена:

где V (Visus) — острота зрения, d — расстояние, с которого видит больной, D — расстояние, с которого должен видеть глаз с нормальной остротой зрения знаки данного ряда на таблице.

Если исследуемый читает буквы 10 ряда с расстояния 5 м, то Visus = 5/5 = 1,0. Если же он читает только первую строчку таблицы, то Visus = 5/50 = 0,1 и т.д. Если острота зрения ниже 0,1, т.е. больной не видит первую строчку таблицы, то можно больного подводить к таблице пока он не увидит первую строчку и затем остроту зрения определить с помощью формулы Снеллена.

На практике пользуются показам раздвинутых пальцев врача, учитывая что толщина пальца приблизительно равна ширине штриха первого ряда таблицы, т.е. не больного подводят к таблице, а врач подходит к больному, показывая раздвинутые пальцы или оптотипы Поляка. И также, как в первом случае, остроту зрения рассчитывают по формуле. Если больной считает пальцы с расстояния 1 м, то его острота зрения равна 1:50 = 0,02, если с расстояния двух метров, то 2:50 = 0,04 и т.д. Если больной считает пальцы на расстоянии меньше 50 см, то острота зрения равна счету пальцев на расстоянии 40, 30, 20, 10 см, счету пальцев у лица. Если отсутствует даже такое минимальное форменное зрение, а сохраняется способность отличать свет от тьмы, зрение обозначается как бесконечно малое зрение — светоощущение 1/бесконечность.

При светоощущении с правильной проекцией света Visus = 1/бесконечность proectia lucis certa. Если глаз исследуемого неправильно определяет проекцию света хотя бы с одной стороны, то острота зрения расценивается как светоощущение с неправильной светопроекцией и обозначается Visus = 1/бесконечность рг. 1. incerta. При отсутствии даже светоощущения, зрение равно нулю и обозначается так: Visus = 0.

Правильность проекции света определяется при помощи источника света и зеркала офтальмоскопа. Больной садится, как при исследовании глаза методом проходящего света, и в глаз, который проверяют, направляется с разных сторон пучок света, который отражается от зеркала офтальмоскопа. Если функции сетчатки и зрительного нерва сохранились на всем протяжении, то больной говорит точно, с какой стороны на глаз направлен свет (сверху, снизу, справа, слева).

Определение наличия светоощущения и состояния проекции света очень важно для решения вопроса о целесообразности некоторых видов оперативного лечения. Если, например, при помутнении роговицы и хрусталика зрение равно правильному светоощущению, это указывает, что сохранены функции зрительного аппарата и можно рассчитывать на успех операции.

Зрение, равное нулю, свидетельствует об абсолютной слепоте. Более точно состояние сетчатки и зрительного нерва можно определить с помощью электрофизиологических методов исследования.

Для определения остроты зрения у детей служат детские таблицы, принцип построения которых такой же, как и для взрослых. Показ картинок или знаков начинают с верхних строчек. При проверки остроты зрения детям школьного возраста, также как и взрослым, буквы в таблице Сивцева и Головина показывают, начиная с самых нижних строк.

При оценке остроты зрения у детей надо помнить о возрастной динамике центрального зрения. В 3 года острота зрения равна 0,6-0,9, к 5 годам — у большинства 0,8-1,0.

На первой неделе жизни о наличии зрения у ребенка можно судить по зрачковой реакции на свет. Надо знать, что зрачок у новорожденных узкий и вяло реагирует на свет, поэтому проверять его реакцию надо путем сильного засвета глаза и лучше в затемненной комнате. На 2-й 3-й неделе — по кратковременной фиксации взглядом источника света или яркого предмета. В возрасте 4-5 недель движения глаз становятся координированными и развивается устойчивая центральная фиксация взора. Если зрение хорошее, то ребенок в этом возрасте способен долго удерживать взгляд на источнике света или ярких предметах. Кроме того, в этом возрасте появляется рефлекс смыкания век в ответ на быстрое приближение к его лицу какого-либо предмета. Количественно определить остроту зрения и в более позднем возрасте почти невозможно.

В первые годы жизни об остроте зрения судят по тому, с какого расстояния он узнает окружающих людей, игрушки. В возрасте 3, а у умственно хорошо развитых детей и 2 лет, часто можно определить остроту зрения по детским таблицам. Таблицы чрезвычайно разнообразны по своему содержанию.

В России довольно широкое распространение получили таблицы П.Г. Алейниковой, Е.М. Орловой с картинками и таблицы с оптотипами кольцами Ландольта и Пфлюгера. При исследовании зрения у детей от врача требуется большое терпение, повторное или многократное исследование.

Цветоощущение, методы исследования и диагностика его расстройств

Человеческий глаз различает не только форму, но и цвет предмета. Цветоощущение, также как и острота зрения, является функцией колбочкового аппарата сетчатки и связанных с ним нервных центров. Человеческий глаз воспринимает цвета с длиной волны от 380 до 800 нм.

Богатство цветов сводится к 7 цветам спектра, на которые разлагается, как показал еще Ньютон, солнечный свет, пропущенный через призму. Лучи длиной более 800 нм являются инфракрасными и не входят в состав видимого человеком спектра. Лучи менее 380 нм являются ультрафиолетовыми и не вызывают у человека оптического эффекта.

Все цвета разделяются на ахроматические (белые, черные и всевозможные серые) и хроматические (все цвета спектра, кроме белого, черного и серого). Человеческий глаз может различать до 300 оттенков ахроматического цвета и десятками тысяч хроматических цветов в различных сочетаниях. Хроматические цвета отличаются друг от друга по трем основным признакам: по цветовому тону, яркости (светлоте) и насыщенности.

Цветовой тон — качество цвета, которое мы обозначаем словами красный, желтый, зеленый и т.д., и характеризуется он длиной волны. Ахроматические цвета цветового тона не имеют.

Яркость или светлота цвета — это близость его к белому цвету. Чем ближе цвет к белому, тем он светлее.

Насыщенность — это густота тона, процентное соотношение основного тона и примесей к нему. Чем больше в цвете основного тона, тем он насыщенней.

Цветовые ощущения вызываются не только монохроматическим лучом с определенной длиной волны, но и совокупностью лучей с различной длиной волн, подчиненной законам оптического смещения цветов. Каждому основному цвету соответствует дополнительный, от смешения с которым получается белый цвет.

Пары дополнительных цветов находятся в диаметрально противоположных точках спектра: красный и зеленый, оранжевый и голубой, синий и желтый. Смешение цветов в спектре, расположенных близко друг от друга, дает ощущение нового хроматического цвета. Например, от смешения красного с желтым получается оранжевый, синего с зеленым — голубой. Все разнообразие ощущения цветов может быть получено путем смешения только трех основных цветов: красного, зеленого и синего. Т.к. существует три основных цвета, то в сетчатке глаза должны существовать специальные элементы для восприятия этих цветов.

Трехкомпонентную теорию цветоощущения предложил в 1757 году М.В. Ломоносов и в 1807 году английский ученый Томас Юнг. Они высказали предположение, что в сетчатке имеются троякого рода элементы, каждый из которых специфичен только для одного цвета и не воспринимает другого. Но в жизни оказывается, что потеря одного цвета связана с изменением всего цветного миросозерцания.

Если нет ощущения красного цвета, то и зеленый и фиолетовый цвета становятся несколько измененными. Через 50 лет Гельмгольц, выступивший со своей теорией трехкомпонентности, указал, что каждый из элементов, будучи специфичен для одного основного цвета, раздражается и другими цветами, но в меньшей степени. Например, красный цвет раздражает сильнее всего красные элементы, но в небольшой степени зеленые и фиолетовые. Зеленые лучи — сильно зеленые, слабо — красные и фиолетовые. Фиолетовый цвет действует очень сильно на элементы фиолетовые, слабее — на зеленые и красные. Если все три рода элементов раздражены в строго определенных отношениях, то получается ощущение белого цвета, а отсутствие возбуждения дает ощущение черного цвета.

Возбуждение только двух или всех трех элементов двумя или тремя раздражителями в различных степенях и соотношениях ведет к ощущению всей гаммы имеющихся в природе цветов. Люди с одинаковым развитием всех трех элементов имеют, согласно этой теории, нормальное цветоощущение и называются нормальными трихроматами. Если элементы не одинаково развиты, то наблюдается нарушение восприятия цветов.

Расстройство цветового зрения бывает врожденным и приобретенным, полным или неполным. Врожденная цветовая слепота встречается чаще у мужчин (8%) и значительно реже — у женщин (0,5%).

Полное выпадение функции одного из компонентов называется дихромазией. Дихроматы могут быть протанопами, при выпадении красного компонента, дейтеранопами — зеленого, тританопами — фиолетового. Врожденная слепота на красный и зеленый цвета встречается часто, а на фиолетовый — редко. Протанопией страдал знаменитый физик Дальтон, который в 1798 году впервые точно описал цветослепоту на красный цвет.

У некоторых лиц наблюдается ослабление цветовой чувствительности к одному из цветов. Это цветоаномалы. Ослабление восприятия красного цвета называется протаномалией, зеленого — дейтераномалией и фиолетового — тританомалией.

По степени выраженности цветоаномалии различают аномалии типа А, В, С. К цветоаномалиям А относятся более далекие от нормы формы, к С — более тяготеющие к норме. Промежуточное положение занимают цветоаномалы В.

Крайне редко встречается ахромазия — полная цветовая слепота. Никакие цветовые тона в этих случаях не различают, все воспринимается в сером цвете, как на черно-белой фотографии. При ахромазии обычно бывают и другие изменения глаз: светобоязнь, нистагм, центральное зрение не бывает выше 0,1 из-за аплазии центральной ямки, никтолапия (улучшение зрения при пониженном освещении).

Полная цветовая слепота большей частью проявляется как семейное страдание с рецессивным типом наследования (цветовая астенопия). Цветовую астенопию у отдельных людей следует рассматривать как явление физиологическое, свидетельствующее о недостаточной устойчивости хроматического зрения.

На характер цветового зрения оказывают влияние слуховые, обонятельные, вкусовые и многие другие раздражения. Под влиянием этих непрямых раздражителей цветовое восприятие может в одних случаях угнетаться, в других — усиливаться. Для диагностики расстройств цветового зрения у нас в стране пользуются специальными полихроматическими таблицами профессора Е.Б. Рабкина .

Таблицы построены на принципе уравнивания яркости и насыщенности. Кружочки основного и дополнительного цветов имеют одинаковую яркость и насыщенность и расположены так, что некоторые из них образуются на фоне остальных цифру или фигуру. В таблицах есть также скрытые цифры или фигуры, распознаваемые цветослепыми.

Исследование проводится при хорошем дневном или люминесцентном освещении таблиц, т.к. иначе изменяются цветовые оттенки. Исследуемый помещается спиной к окну, на расстоянии 0,5-1 м от таблицы. Время экспозиции каждой таблицы 5-10 с. Показания испытуемого записывают и по полученным данным устанавливают степень аномалии или цветослепоты. Исследуется раздельно каждый глаз, т.к. очень редко возможна односторонняя дихромазия. В детской практике ребенку младшего возраста предлагают кисточкой или указкой провести по цифре или фигуре, которую он различает. Кроме таблиц, для диагностики расстройств и более точного определения качества цветового зрения пользуются специальными спектральными аппаратами — аномалоскопами. Исследование цветоощущения имеет большое практическое значение.

Существует ряд профессий, для которых нормальное цветоощущение является необходимым. Это транспортная служба, изобразительное искусство, химическая, текстильная, полиграфическая промышленности. Цветоразличительная функция имеет большое значение в различных областях медицины: для врачей инфекционистов, дерматологов, офтальмологов, стоматологов; в познании окружающего мира и т.д.

Возможны приобретенные нарушения цветового зрения, которые по сравнению с врожденными более разнообразны и не укладываются в какие-либо схемы. Раньше и чаще нарушается красно-зеленое восприятие и позже — желто-синее. Иногда наоборот. Приобретенным нарушениям цветоощущения сопутствуют и другие нарушения: снижение остроты зрения, поля зрения, появление скотом и т.д. Приобретенная цветовая слепота может быть при патологических изменениях в области желтого пятна, папилломакулярном пучке, при поражении более высоких отделов зрительных путей и т.д. Приобретенные расстройства весьма изменчивы в динамике. Для диагностики приобретенных расстройств цветового зрения Е.Б. Рабкин предложил специальные таблицы.

Центральным зрением следует считатьцентральный участок видимого пространства. Эта функция отражает способность глаза к восприятию мелких предметов или их деталей. Это зрение является наиболее высоким и характеризуется понятием «острота зрения».

Зрительные функции человека представляют собой восприятие светочувствительными клетками сетчатки глаза внешнего мира посредством улавливания отраженного или излучаемого объектами света в диапазоне волн от 380 до 760 нанометров (нм).

Как же осуществляется акт зрения?

Лучи света проходят через роговую оболочку, влагу передней камеры, хрусталик, стекловидное тело и достигают сетчатки. Роговая оболочка и хрусталик не просто пропускают свет, но и преломляют его лучи, действуя как биологические линзы. Это позволяет собирать лучи в сходящийся пучок и направлять на сетчатую оболочку так, что на ней получается действительное, но инвертированное (перевернутое) изображение предметов.

Центральное зрение обеспечивает максимальную остроту зрения и цветоразличительную чувствительность.

Это объясняется изменением плотности расположения нейроэлементов и особенностью передачи импульса. Импульс от каждой колбочки центральной ямки проходит по отдельным нервным волокнам через все отделы зрительного пути, что обеспечивает четкое восприятие каждой точки предмета.

Поэтому при рассматривании какого-либо предмета глаза человека рефлекторно устанавливаются таким образом, что изображение этого предмета (или его часть) проецируется на фовеа , которая диаметром всего 0,3 мм и содержит исключительно колбочки. Концентрация колбочек в этой зоне достигает 140,000, а на удалении всего в 2-3 мм уже 4,000-5,000, поэтому по мере удаления от центра острота зрения резко снижается

Острота зрения

Центральное зрение измеряется остротой зрения. Исследование остроты зрения очень важно для суждения о состоянии зрительного аппарата человека, о динамике патологического процесса.

Под остротой зрения (Visus или Vis) понимается способность глаза различать раздельно две точки в пространстве, находящиеся на определенном расстоянии от глаза, которая зависит от состояния оптической системы и световоспринимающего аппарата глаза.

Острота зрения это величина обратная предельному (минимальному) углу разрешения (выраженному в минутах), под которым два объекта видны раздельно.

Условно принято считать, что глаз с нормальной остротой зрения способен увидеть раздельно две далёкие точки, если угловое расстояние между ними равно одной угловой минуте (1/60 градуса). При расстоянии 5 метров это соответствует 1,45 миллиметра.

Угол зрения – угол, образованный крайними точками рассматриваемого объекта и узловой точкой глаза.

Узловая точка - точкая оптической системы, через которую лучи проходят не преломляясь (находятся у заднего полюса хрусталика). Глаз только в том случае видит раздельно две точки, если их изображение на сетчатки не меньше дуги в 1’, т. е. угол зрения должен быть не меньше одной минуты.

Эта величина угла зрения принята за интернациональную единицу остроты зрения. Такому углу на сетчатке соответствует линейная величина в 0,004 мм, приблизительно равная поперечнику одной колбочки в центральной ямке желтого пятна.

Для раздельного восприятия двух точек глазом, оптически правильно устроенным, необходимо чтобы на сетчатке между изображениями этих точек существовал промежуток не менее чем в одну колбочку, которая не раздражается совсем и находится в покое. Если же изображения точек упадут на смежные колбочки, то эти изображения сольются и раздельного восприятия не получится.

Острота зрения одного глаза, могущего воспринимать раздельно точки, дающие на сетчатке изображения под углом в одну минуту, считается нормальной остротой зрения, равной единице (1,0). Есть люди, у которых острота зрения выше этой величины и равна 1,5-2,0 единицам и больше.

При остроте зрения выше единицы минимальный угол зрения меньше одной минуты. Самая высокая острота зрения обеспечивается центральной ямкой сетчатки. Уже на расстоянии от нее на 10 градусов острота зрения в 5 раз меньше.

Рекорд:

В октябре 1972 года Университет Штутгарта (Западная Германия) сообщил об уникальном случае остроты зрения , а именно о рекорде . Одна из студенток Вероника Сейдер (1951 года рождения) продемонстрировала остроту зрения в 20 раз превышающую среднее зрение человека. Она смогла узнать человека (идентифицировать по лицу) с расстояния больше 1 600 метров.

Классификация

Острота зрения лежит в основе форменного зрения и обеспечивает обнаружение предмета, различение его деталей и, в конечном счете, его опознание.

Различают три меры остроты зрения:

  1. Наименьшее видимое (minimum visibile) - это величина черного предмета, который начинает различаться на равномерно белом фоне и наоборот.
  2. Наименьшее разделяемое (minimum separabile) - расстояние на которое должны быть удалены два предмета, чтобы глаз воспринял их как раздельные.
  3. Наименьшее узнаваемое (minimum cognoscibile)

Методы исследования центрального зрения:

  • Использование специальных таблиц Головина-Сивцева – оптотипов – содержат 12 рядов специально подобранных знаков (цифр, букв, незамкнутых колец, картинок) разной величины. Все оптотипы можно условно разделить на две группы - определяющие minimum separabile (Кольца Ландольта и тест Е) и определяющие minimum cognoscibile.

    Все применяемые таблицы сконструированы по принципу Снеллена , предложенного им в 1862 году - "оптотипы должны чертиться с тем рассчетом, чтобы каждый знак, безразлично будет ли это цифра, буква или какие-нибудь значки для неграмотных, имел детали различимые под углом зрения в 1", а весь знак был бы различим под углом зрения в 5" ".

    Таблица рассчитана на исследование остроты зрения с расстояния 5 м. Если острота зрения иная, то определяют в каком ряду таблицы обследуемый различает знаки.

    При этом остроту зрения вычисляют по формуле Снеллена : Visus = d / D, где d – расстояние, с которого производится исследование, D – расстояние, с которого нормальный глаз различает знаки этого ряда (проставлено в каждом ряду слева от оптотипов).

    Например, обследуемый с расстояния 5 м читает первый ряд, нормальный глаз различает знаки этого ряда с 50 м, значит Visus = 5/50 = 0,1. В построении таблицы использована десятичная система: при прочтении каждой последующей строчки острота зрения увеличивается на 0,1 (кроме последних двух строчек). Если острота зрения обследуемого меньше 0,1, то определяют расстояние, с которого он разливает оптотипы первого ряда, а затем рассчитывают остроту зрения по формуле Снеллена. Если острота зрения обследуемого ниже 0,005, то для ее характеристики указывают, с какого расстояния он считаем пальцы. Например, Visus = счет пальцев на 10 см. Когда же зрение так мало, что глаз не различает предметов, а воспринимает только свет, остроту зрения считают равной светоощущению: Visus = 1/¥ с правильной (proectia lucis certa) или с неправильной (proectia lucis incerta) светопроекцией. Светопроекцию определяют путем направления в глаз с разных сторон луча света от офтальмоскопа. При отсутствии светоощущения острота зрения равна нулю (Visus = 0) и глаз считается слепым.

  • Объективный способ определения остроты зрения, основанный на оптокинетическом нистагме – с помощью специальных аппаратов обследуемому демонстрируют движущиеся объекты в виде полос или шахматной доски. Наименьшая величина объекта, вызвавшая непроизвольный нистагм и соответствует остроте зрения исследуемого глаза.

У грудных детей остроту зрения определяют ориентировочно путем определения фиксации глазом ребенка крупных и ярких предметов или используют объективные методы. Для определения остроты зрения у детей служат детские таблицы, принцип построения которых такой же, как и для взрослых. Показ картинок или знаков начинают с верхних строчек. При проверки остроты зрения детям школьного возраста, также как и взрослым, буквы в таблице Сивцева и Головина показывают, начиная с самых нижних строк.

При оценке остроты зрения у детей надо помнить о возрастной динамике центрального зрения. В 3 года острота зрения равна 0,6-0,9, к 5 годам - у большинства 0,8-1,0. В России довольно широкое распространение получили таблицы П.Г. Алейниковой, Е.М. Орловой с картинками и таблицы с оптотипами кольцами Ландольта и Пфлюгера. При исследовании зрения у детей от врача требуется большое терпение, повторное или многократное исследование.

Приспособления для исследования остроты зрения:

  • Печатные таблицы
  • Проекторы знаков
  • Транспарантные аппараты
  • Таблицы одиночных оптотипов
  • Мониторы

Зрение - самый мощный источник информации о внешнем мире. 85-90% информации поступает в мозг через зрительный анализатор, и частичное или глубокое нарушение его функций вызывает ряд от­клонений в физическом и психическом развитии ребенка.

Зрительный анализатор обеспечивает выполнение сложнейших зрительных функций. Принято различать пять основных зрительных функций: 1) центральное зрение; 2) периферическое зрение; 3) бино­кулярное зрение; 4) светоощущение; 5) цветоощущение.

Как отмечают В.И. Белецкая, А.Н. Гнеушева (1982), Г.Г. Де-мирчоглян (1996) и др., центральное зрение требует яркого света и предназначено для восприятия цветов и объектов малых размеров. Особенностью центрального зрения является восприятие формы предметов. Поэтому эта функция иначе называется форменным зре­нием. Состояние центрального зрения определяется остротой зрения. В медицинской терминологии острота зрения обозначается Visus. Еди­ница измерения оптической среды глаза - диоптрия (D). Острота зрения правого глаза - Vis OD, левого - Vis OS. Зрение, при мотором глаз различает две точки под углом зрения в одну минуту, принято считать нормальным, равным единице (1,0). Форменное зрение раз­вивается постепенно: оно обнаруживается на 2-3-м месяце жизни ребенка; перемещение взора за движущимся предметом формируется в возрасте 3-5 месяцев; на 4-6-м месяце ребенок узнает ухаживаю­щих за ним родственников; после 6 месяцев ребенок различает иг­рушки - Vis 0,02-0,04, от года до двух лет Vis 0,3-0,6. Узнавание формы предмета у ребенка появляется раньше (в 5 месяцев), чем узнавание цвета.

Бинокулярное зрение - способность пространственного восприя­тия объема и рельефа предметов, видение двумя глазами. Его разви­тие начинается на 3-4-м месяце жизни ребенка, а формирование заканчивается к 7-13 годам. Совершенствуется оно в процессе накоп­ления жизненного опыта. Нормальное бинокулярное восприятие воз­можно при взаимодействии зрительно-нервного и мышечного аппа­ратов глаза. У слабовидящих детей бинокулярное восприятие чаще всего нарушено. Одним из признаков нарушения бинокулярного зре­ния является косоглазие - отклонение одного глаза от правильного симметричного положения, что осложняет осуществление зрительно-пространственного синтеза, вызывает замедленность темпов выполне­ния движений, нарушение координации и т.д. Нарушение бинокуляр­ного зрения приводит к неустойчивости фиксации взора. Дети часто бывают не в состоянии воспринимать предметы и действия во взаи­мосвязи, испытывая сложности в слежении за движущимися предме­тами (мячом, воланом и др.), определении степени их удаленности. В связи с этим таким детям надо давать больше времени для рассмат­ривания предметов и динамического восприятия, а также словесного описания тех предметов и действий, которые учащимся предстоит наблюдать самостоятельно. Важным средством развития бинокуляр­ного зрения являются различные виды бытового труда и игровой деятельности: игра в мяч, кегли и др., моделирование и конструиро­вание из бумаги (оригами), картона, занятия с мозаикой, плетение и т.п. Развитие зрительно-пространственного синтеза способствует улуч­шению ориентировки в пространстве во время игровой деятельности, занятий физкультурой и спортом.

Периферическое зрение действует в сумерках, оно предназначено для восприятия окружающего фона и крупных объектов, служит для ориентировки в пространстве. Этот вид зрения обладает высокой чувствительностью к движущимся предметам. Состояние перифери­ческого зрения характеризуется полем зрения. Поле зрения - это пространство, которое воспринимается одним глазом при его непод­вижном положении. Изменение поля зрения (скотома) может быть ранним признаком некоторых глазных заболеваний и поражения го­ловного мозга. Различаются они по месту их расположения. Сравни­тельно небольшое сужение границ поля зрения обычно детьми не замечается. При более выраженных изменениях границ поля зрения дети испытывают трудности во время ориентации и зрительно-про­странственного анализа. Наличие в поле зрения скотом ведет к воз­никновению темных пятен, теней, кругов и других видов нарушений поля зрения, осложняя восприятие предметов, действий, окружаю­щей действительности.

У слабовидящих детей отмечаются различные состояния полей зрения, обусловленные характером и степенью зрительной патологии. Дети с сужением поля зрения до 10° уже могут быть признаны инвалидами по зрению и направляются для обучения в школы III-IV вида. Учителю физкультуры важно иметь сведения о состоянии как центрального, так и периферического зрения у каждого ученика. На уроках физкультуры, ЛФК, ритмики, в процессе пространственной ориентировки используется периферическое зрение, а при чтении, рассмотрении рисунков, наглядных пособий на уроках химии, биоло­гии и др. - центральное. Эти сведения следует учитывать в процессе пространственной ориентировки, в передвижениях, в играх, при вы­полнении метания в цель. ТА Зельдович (1964), В.В. Васильева (1966) и др. отмечают, что в условиях специального обучения, под воздей­ствием подвижных и спортивных игр у занимающихся улучшается поле обзора, пространственное зрение, улучшается зрительный и ося­зательный контроль выполнения движений.

Благодаря цветовому зрению человек способен воспринимать и различать все многообразие цветов в окружающем мире. Появление реакции на различение цвета у маленьких детей происходит в опре­деленном порядке. Быстрее всего ребенок начинает узнавать красный, желтый, зеленый цвета, а позднее - фиолетовый и синий. Глаз чело­века способен различать разнообразные цвета и оттенки при смеши­вании трех основных цветов спектра: красного, зеленого и синего (или фиолетового).

Выпадение или нарушение одного из компонентов называется дихромазией. Впервые это явление описал английский ученый-химик Дальтон, который сам страдал этим расстройством. Поэтому наруше­ния цветового зрения в некоторых случаях называют дальтонизмом. При нарушении восприимчивости красного цвета красные и оранже­вые оттенки детям кажутся темно-серыми или даже черными. Жел­тый и красный сигнал светофора для них - один цвет.

Тона цветного спектра отличаются друг от друга по трем призна­кам: цветовому тону, яркости (светлоте) и насыщенности. Развитие контрастности в обучении детей с нарушениями зрения имеет важное значение. Усиление яркости, насыщенности и контрастности обеспе­чит более четкое восприятие изображаемых предметов и явлений.

У слабовидящих детей расстройства цветоразличения зависят от клинических форм слабовидения, их происхождения, локализации и течения. У незрячих вместо зрения управление движениями рук осуществляется мышечным чувством. В.П. Ермаков, Г.А. Якунин (2000), ссылаясь на работы В.М. Бехтерева, Е.С. Либман (1974) и др., отмечают как у нормальновидящих, так и у незрячих, слабовидящих наличие кожно-оптической чувствительности («кожного зрения») - способности кожных покровов реагировать на световое и цветовое воздействие. Различение цветовых оттенков, по мнению авторов, про­исходит благодаря разным качествам цветоощущения. Цветовые тона делятся на: 1) «гладкие» и «скользкие» - голубой и желтый цвета;

2) «притягивающие», или «вязкие», - красный, зеленый, синий;

3) «шероховатые», или «тормозящие» движения рук, - оранжевый и фиолетовый. Самым «гладким» воспринимается белый цвет, а «тор­мозящим» - черный.

Учителям необходимо иметь сведения о цветоразличительных возможностях учащихся. Это важно при демонстрации и использова­нии цветного спортивного инвентаря (мячи, обручи, скакалки, лыжи и пр.), наглядных пособий, рассматривании репродукций и т.д. При изготовлении наглядных пособий для детей с нарушением зрения используются преимущественно красный, желтый, оранжевый и зеле­ный цвета.

Светоощущение - способность сетчатки воспринимать свет и различать его яркость. Различают световую и темновую адаптацию. Нормально видящие глаза обладают способностью приспосабливать­ся к разным условиям освещения.

Световая адаптация - приспособление органа зрения к высоко­му уровню освещения. Световая чувствительность появляется у ре­бенка сразу же после рождения. Дети, у которых нарушена световая адаптация, в сумерках видят лучше, чем на свету. У некоторых детей с нарушением зрения отмечается светобоязнь. В этом случае дети пользуются темными очками. Такому ребенку следует предложить место для занятий физкультурой в теневой части зала, спортивной площадки или стать спиной к солнцу (источнику света).

Расстройство темновой адаптации приводит к потере ориента­ции в условиях пониженного освещения. Освещенность спортивного зала (помещения) в школах III-IV вида должна быть намного выше (не менее 600 люкс), чем для учащихся с нормальным зрением.