Мембранный транспорт макромолекул и частиц: эндоцитоз и экзоцитоз (фагоцитоз и пиноцитоз). Пиноцитоз - это что такое? Фагоцитоз и пиноцитоз объединены в общее понятие

Это два процесса, происходящие с поглощением энергии, обеспечивают попадание в клетку еще более крупных частиц, чем проникающие через поры мембран четвертого типа.

А. Пиноцитоз. При пиноцитозе мембрана (обычно это мембрана первого типа) образует впячивания, которые в конечном итоге преобразуются в пузырьки.

Таким образом осуществляется проникновение через мембрану молекул, размер которых слишком велик для того, чтобы они могли диффундировать обычным путем, особенно белков. Благодаря пиноцитозу вещества, находившиеся вне клетки, оказываются внутри нее и наоборот.

Б. Фагоцитоз. За счет фагоцитоза, обладающего известным сходством с пиноцитозом, происходит перемещение еще более крупных частиц. Так, методом электронной микроскопии было отчетливо показано, что твердые частицы проходят через клеточные мембраны капилляров у млекопитающих, причем для этой цели, по-видимому, может использоваться вся поверхность капилляра. Ферменты и гормоны зачастую как бы выдавливаются из клеток в виде пузырьков, заключенных в липидную мембрану. Именно таким образом пять гидролитических проферментов поджелудочной железы выдавливаются все вместе в виде так называемых «зимогеновых гранул». Таково же происхождение и пузырьков, в которых АХ выделяется нервными окончаниями , а также гранул в виде которых норадреналин выделяется из мозгового вещества надпочечников .

Еще по теме Пиноцитоз и фагоцитоз:

  1. ПРИОБРЕТЕННЫЕ НАРУШЕНИЯ ФАГОЦИТОЗА И ВОЗМОЖНЫЕ ПРИЧИНЫ ИХ РАЗВИТИЯ

Пиноцитоз является клеточным процессом, посредством которого жидкости и питательные вещества попадают в клетки. Также называемый клеточным питьем, пиноцитоз - это тип , который включает внутреннее сгибание и образование связанных с ней, заполненных жидкостью везикул.

Эти везикулы переносят внеклеточную жидкость и растворенные молекулы (соли, сахара и т. д.) внутрь клетки. Пиноцитоз, иногда называемый эндоцитозом флюидной фазы, представляет собой непрерывный процесс, который происходит в большинстве и заключается в интернализации жидкости или растворенных питательных веществ.

Поскольку пиноцитоз включает удаление частей клеточной мембраны при образовании пузырьков, этот материал необходимо заменить, чтобы клетка сохранила свой размер. Мембранный материал возвращается на поверхность мембраны через экзоцитоз. Процессы эндоцитоза или экзоцитоза регулируются и сбалансированы, чтобы гарантировать сохранность размера клетки относительно постоянным.

Процесс пиноцитоз

Пиноцитоз инициируется присутствием желаемых молекул во внеклеточной жидкости вблизи поверхности клеточной мембраны. Эти молекулы могут включать белки молекулы сахара и ионы. Ниже приведено обобщенное описание последовательности событий, происходящих во время пиноцитоза.

Основные этапы пиноцитоза

Схематическая анимация пиноцитоза

  • Плазматическая мембрана складывается внутрь (инвагинация), образуя углубление или полость, которая заполняется внеклеточной жидкостью и растворенными молекулами.
  • Плазматическая мембрану складывается обратно в себя, пока концы сложенной мембраны не встретятся. Это удерживает жидкость внутри везикул. В некоторых клетках, длинные каналы и формы простираются от мембраны вглубь .
  • Слияние концов сложенной мембраны высвобождает везикулу из мембраны, позволяя им дрейфовать к центру клетки.
  • Везикула способна проходить через клетку и возвращаться обратно в мембрану путем экзоцитоза или может сливаться с лизосомой. выделяют ферменты, разрушающие открытые везикулы и высвобождающие их содержимое в цитоплазму.

Микропиноцитоз и макропиноцитоз

Поглощение воды и растворенных молекул клетками происходит двумя основным способами: микропиноцитоз и макропиноцитоз. При микропиноцитозе образуются очень маленькие пузырьки (диаметром около 0,1 микрометра), поскольку плазменная мембрана инвагинирует и образует внутренние везикулы, отходящие от нее. Кавеола - это примеры микропиноцитотических везикул, которые встречаются в клеточных мембранах большинства типов клеток организма.

При макропиноцитозе образуются более крупные везикулы, чем при микропиноцитозе. Они содержат большие объемы жидкости и растворенных питательных веществ. Везикулы имеют размер от 0,5 до 5 микрометров в диаметре. Процесс макропиноцитоза отличается от микропиноцитоза тем, что вместо инвагинации, в плазматической мембране формируются складки.

Погрешность возникает, когда переупорядочивает расположение актиновых микрофиламентов в мембране. Складки вытягивают части мембраны в виде плечевых выступов во внеклеточную жидкость. Затем они складываются на себя, захватывая части внеклеточной жидкости и образуя везикулы, называемые макропиносомами.

Макропиносомы созревают в цитоплазме, либо сливаются с лизосомами (содержимое высвобождается в цитоплазму), либо мигрируют обратно в плазматическую мембрану для рециркуляции. Макропиноцитоз распространен в белых кровяных клетках, таких как и дебритные клетки. Эти клетки иммунной системы используют этот способ как средство тестирования внеклеточной жидкости на присутствия антигенов.

Адсорбционный пиноцитоз

Адсорбционный пиноцитоз - неспецифическая форма эндоцитоза, которая также ассоциируется с ямками, покрытыми клатрином. Адсорбирующий пиноцитоз отличается от тем, что специализированные рецепторы не участвуют в процессе. Заряженные взаимодействия между молекулами и поверхностью мембраны удерживают молекулы на поверхности ямок, покрытых клатрином. Эти ямки формируются в течение минуты или около того, прежде чем будут усвоены клеткой.

4.7. Эндоцитоз (фагоцитоз и пиноцитоз)

В секреторных клетках многоклеточных организмов продукты секреции выделяются через клеточную мембрану во внеклеточное пространство. Место и условия, в которых продукты секреции осуществляют свои функции (например, просвет кишечника, синаптическая щель или сыворотка крови), определяются свойствами анатомически обособленного пространства, куда попадают эти продукты. Однако у примитивных, свободно живущих организмов, таких, как амеба, подобное неограниченное разбазаривание ресурсов во внешней среде было бы крайне неэкономичным. Клеткам многоклеточных организмов, выполняющим функции защиты и очистки, было бы также невыгодно в некоторых ситуациях (таких, как деструкция болезнетворных бактерий или чужеродных белков) распылять свое содержимое вместо того, чтобы направить его в концентрированной форме против чужеродного агента.

Фагоцитоз (рис. 88) и пиноцитоз, обозначаемые вместе термином эндоцитоз, являются процессами, при которых соответственно осуществляется транспорт твердых и жидких материалов из внеклеточного пространства внутрь клетки. Здесь захваченные частицы находятся отдельно от содержимого клетки либо в крупных вакуолях, либо в небольших пузырьках. Слияние мембран этих структурных образований с мембранами внутриклеточных органелл (таких, как лизосомы или какие-либо иные гранулы, наполненные ферментами) приводит к смешению содержимого двух взаимодействующих систем и как следствие к модификации поглощенного материала в замкнутом, отделенном от цитоплазмы пространстве.

У примитивных организмов описанные процессы имеют непосредственное отношение к их питанию, и внутриклеточные вакуоли, образованные в результате слияния эндоцитозных вакуолей и лизосом, можно рассматривать как первичным пищеварительный аппарат: низкомолекулярные продукты поступают в цитоплазму, а непереваренный материал выбрасывается из клетки.

Функция фагоцитоза, присущая полиморфноядерным лейкоцитам крови и тканей млекопитающих, направлена на изоляцию и уничтожение проникающих в организм патогенов. В складывающейся при этом ситуации клетки могут уничтожить проникшие в них бактерии по крайней мере четырьмя способами: 1) путем интенсивного окисления перекисью, которую они способны локально синтезировать; 2) с помощью основных белков, обладающих антибактериальной активностью; 3) с помощью лизосомных ферментов и, наконец, 4) с помощью лизоцима. Уничтожение захваченного клеткой микроорганизма осуществляется очень быстро, однако его переваривание протекает относительно медленно. Образующиеся в клетках бактерицидные агенты хранятся в двух различных типах гранул, развившихся из комплекса Гольджи при дифференцировке клеток в костном мозге. В процессе фагоцитоза содержимое гранул обоих типов вливается в вакуоли, в которых находятся перевариваемые частицы.

У амебы процесс выделения содержимого гранул и лизосом в фагоцитозные вакуоли протекает аналогично секреции макромолекул клетками многоклеточных организмов, с той лишь разницей, что при фагоцитозе участок клеточной мембраны, формирующий вакуоль, находится во внутриклеточном пространстве.

Поглощение веществ при пинодитозе не следует рассматривать просто как неспецифический захват внеклеточной жидкости. Процесс этот направлен на аккумуляцию клетками различных молекул из окружающей среды. Пиноцитозные вакуоли имеют небольшой размер (обычно ниже разрешающей способности светового микроскопа), но содержатся в клетке в очень большом количестве. Образуются эти вакуоли из характерных впячиваний плазматической мембраны. В местах формирования пиноцитозных пузырьков плазматическая мембрана теряет свои четкие очертания, что предполагает модификацию участка мембраны, предназначенного для впячивания.

Пиноцитоз характерен для клеток различного типа, однако наиболее полно он изучен у амебы, пиноцитозные пузырьки которой имеют сравнительно крупные размеры (рис. 89). У амебы в центре псевдоподий формируются каналы (впячивания плазматической мембраны), и от основания этих цилиндрических впячиваний мембраны отпочковываются пиноцитозные пузырьки. Процесс образования пузырьков протекает особенно быстро, если внеклеточный раствор содержит соли или белки в высоких концентрациях. Наблюдения за пиноцитозом "меченых" белков, например белков, конъюгировавших с флуоресцеином или ферритином, показали, что накопление белковых молекул в клетках протекает с высокой скоростью. Первая стадия пиноцитоза, по-видимому независимая от энергии метаболизма, представляет собой адсорбцию белков на развитой поверхности клеточной мембраны, затем следует энергозависимый процесс формирования мембранных пузырьков внутри клетки.

У млекопитающих пиноцитоз является широко распространенной формой эндоцитоза, однако наибольшее значение пиноцитоз приобретает в ретикуло-эндотелиальной системе, где происходит удаление чужеродных или денатурированных белков, а также в эндотелиальных клетках, выстилающих капилляры, где этот процесс облегчает движение крупных молекул. В лимфоцитах, а также, возможно, и в других клетках молекулы, адсорбированные на клеточной поверхности, группируются в дискретных областях мембраны, прежде чем произойдет формирование пиноцитозных пузырьков. В почках пинодитоз играет большую роль при извлечении белков из клубочкового фильтрата.

Внутри клеток пиноцитозные пузырьки объединяются с лизосомами, образуя вторичные лизосомы. Обнаружена определенная связь между пиноцитозом и формированием лизосом в клетке: добавление гетерологической сыворотки к культуре макрофагов индуцирует пиноцитоз и эффективно стимулирует образование новых лизосом.

Многие полагают, что клетка представляет собой низший уровень организации живой материи . Однако на самом деле клетка - это сложный организм, развитие которого из примитивной формы, впервые появившейся на Земле и напоминавшей нынешний вирус, заняло сотни миллиардов лет. На рисунке ниже приведена схема, отражающая относительные размеры: (1) мельчайшего из известных вирусов; (2) крупного вируса; (3) риккетсии; (4) бактерии; (5) ядросодержащей клетки. На рисунке видно, что диаметр клетки в 10 , а объем - в 10 раз больше размера мельчайшего вируса.
Особенности строения и функции клеток по сложности во много раз превышают таковые у вирусов.

Основа жизнедеятельности вируса заключена в молекуле нуклеиновой кислоты , покрытой белковой оболочкой. Нуклеиновая кислота, как и в клетках млекопитающих, представлена либо ДНК, либо РНК, которые при определенных условиях способны самокопироваться. Таким образом, вирус, как и клетки человека, воспроизводится от поколения к поколению, поддерживая свой «род».

В результате эволюции в состав организма наряду с нуклеиновыми кислотами и простыми белками вошли другие вещества, а различные отделы вируса начали выполнять специализированные функции. Вокруг вируса сформировалась мембрана, появился жидкий матрикс. Вещества, сформированные в матриксе, стали выполнять особые функции, появились ферменты, способные катализировать ряд химических реакций, которые в итоге и определяют жизнедеятельность организма.

На следующих ступенях развития, в частности на стадиях риккетсий и бактерий, появляются внутриклеточные органеллы, с помощью которых отдельные функции выполняются более эффективно, чем с помощью веществ, диффузно распределенных в матриксе.

Наконец, в ядросодержащей клетке возникают более сложные органеллы, важнейшим из которых является само ядро. Наличие ядра отличает данный тип клеток от более низких форм жизни; ядро осуществляет контроль над всеми функциями клетки и так организует процесс деления, что последующее поколение клеток оказывается почти идентичным клетке-предшественнику.

Сравнительные размеры доядерных структур с клеткой человеческого организма.

Эндоцитоз - захват веществ клеткой. Живая, растущая и делящаяся клетка должна получать питательные и другие вещества из окружающей жидкости. Большая часть веществ проникает через мембрану путем диффузии и активного транспорта. Под диффузией подразумевается простой неупорядоченный перенос молекул вещества через мембрану, которые проникают в клетку чаще через поры, а жирорастворимые вещества - непосредственно через липидный бислой.
Активный транспорт - это перенос веществ через толщу мембраны с помощью белка-переносчика. Механизмы активного транспорта крайне важны для деятельности клетки.

Частицы большого размера попадают в клетку путем процесса, называемого эндоцитозом. Главные виды эндоцитоза - пиноцитоз и фагоцитоз. Пиноцитозом называют захват и перенос в цитоплазму небольших пузырьков с внеклеточной жидкостью и микрочастицами. Фагоцитоз обеспечивает захват крупных элементов, включая бактерии, целые клетки или фрагменты поврежденных тканей.

Пиноцитоз . Пиноцитоз происходит постоянно, а в некоторых клетках - весьма активно. Так, в макрофагах этот процесс происходит настолько интенсивно, что за 1 мин около 3% общей площади мембраны преобразуется в пузырьки. Однако размеры пузырьков крайне малы - всего 100-200 нм в диаметре, поэтому их можно увидеть только при электронной микроскопии.


Пиноцитоз - единственный способ, благодаря которому большинство макромолекул могут проникать в клетку. Интенсивность пиноцитоза возрастает, когда такие молекулы соприкасаются с мембраной.

Как правило, белки присоединяются к поверхностным рецепторам мембраны , которые высокоспецифичны к абсорбируемым видам белков. Рецепторы концентрируются в основном в области мельчайших углублений на наружной поверхности мембраны, которые называют окаймленными ямками. Дно ямок со стороны цитоплазмы выстлано сетевидной конструкцией из фибриллярного белка клатрина, который, как и другие сократительные белки, содержит нити актина и миозина. Присоединение белковой молекулы к рецептору меняет форму мембраны в области ямки благодаря сократительным белкам: ее края смыкаются, мембрана все больше погружается в цитоплазму, захватывая молекулы белка вместе с небольшим количеством внеклеточной жидкости. Сразу после замыкания краев происходит отрыв пузырька от наружной мембраны клетки и формирование пиноцитозной вакуоли внутри цитоплазмы.

Пока не ясно, почему происходит деформация мембраны , необходимая для образования пузырьков. Известно, что этот процесс энергозависимый, т.е. требует макроэргического вещества АТФ, роль которого обсуждается далее. Присутствие ионов кальция во внеклеточной жидкости, по всей вероятности, также необходимо для взаимодействия с лежащими в области дна окаймленных ямок с сократительными филаментами, которые создают усилие, необходимое для отщепления пузырьков от наружной мембраны клетки.

Белки, полинуклеоти- ды, полисахариды, а также твердые частицы. Тем не менее в большин-стве клеток указанные вещества проходят в обоих направлениях через плазматические мембраны. Механизмы, с помощью которых осущест-вляются эти процессы, сильно отличаются от механизмов, опосре-дующих транспорт небольших молекул и ионов. При переносе макро-молекул или твердых частиц происходит инвагинация (впячивание или выпячивание) мембраны с последующим образованием пузырьков (ве-зикул). Например, для того чтобы секретировать инсулин, клетки, ин-дуцирующие этот гормон, упаковывают его во внутриклеточные пу-зырьки, которые сливаются с плазматической мембраной и отрывают-ся во внеклеточное пространство, высвобождая при этом инсулин. По-добный процесс называется экзоцитозом. Клетки способны также поглощать макромолекулы и частицы и в обратном направлении. Этот процесс называется эндоцитозом (внутрь клетки).Тем не менее каждый пузырек сливается только со специфически-ми мембранными структурами, что гарантирует правильный перенос макромолекул и их распределение между внеклеточным пространст-вом и внутренностью клеток. Одни секретируемые моле-кулы адсорбируются на поверхности клетки и становятся частью клеточ-ной оболочки, другие включаются в межклеточный матрикс, а третьи по-падают в интерстициальную жидкость и (или) в кровь, где они служат для других клеток в качестве питательных веществ или каких-то сигналов.Пиноцитоз подразделяется на несколько этапов:

1) адсорбция на мембране молекул вещества; 2) впячивание или вы-пячивание (инвагинация) мембраны, образование пиноцитозного пу-зырька и отрыв его от мембраны с затратой энергии АТФ; 3) миграция пузырька внутрь протопласта, органеллы или наружу; 4) растворение мембраны пузырька (при действии фермента) или просто ее разрыв.

Исходя из функционирования транспортных механизмов на мем-бранах, последние делят на четыре типа.

К первому типу относят мембраны, через которые транспорт ве-. ществ осуществляется путем простой диффузии, а скорость переноса прямо пропорциональна разности концентраций по обеим сторонам мембраны. Они препятствуют прохождению ионов и пропускают ней-тральные молекулы. Через такие мембраны быстрее всего диффунди-руют молекулы веществ с высоким коэффициентом распределения в системе масло-вода, т. е. веществ, обладающих выраженными липо- фильными свойствами.

Мембраны второго типа характеризуются наличием в них специ-фического переносчика, обеспечивающего облегченную диффузию и способствуют всасыванию ряда веществ, плохо проникающих через мембраны первого типа из-за высокой степени ионизированности или высокой гидрофильности. Транспортируемая молекула в мембране обратимо соединяется с переносчиком. Иллюстрацией может служить транспорт глюкозы в эритроциты человека. Особый интерес представляет облегченная диффузия в клетку мо-лекулы холина. Простая диффузия ионизированной гидрофильной мо-лекулы холина невозможна, однако специфический переносчик быстро доставляет его в эритроциты и другие клетки.

Мембраны третьего типа (наиболее сложные из всех) способны при необходимости переносить вещества против градиента концентрации. Эта так называемая система активного транспорта требует затраты энергии, высокочувствительна к изменениям температуры.

Примерами а) транспорт Na + и К + в клетки млекопитающих, перенос Н + и К + в клетках растений и т. д.; б) всасывание и выведение различных ионизированных и неионизированных веществ почечными канальцами и в меньшей мере через мембраны эпителия желудочно- кишечного тракта; в) захват бактериями неорганических ионов, Саха- ров и аминокислот; г) накопление ионов йода щитовидной железой;

Мембраны четвертого типа отличаются от первого типа наличием пор (каналов), диаметр которых можно оценить по размерам самых больших молекул, проникающих через них. Один из наиболее изучен-ных примеров мембран четвертого типа представлен почечным клу-бочком в капсулах Боумана. Мембраны четвертого типа встречаются в основном в капиллярах млекопитающих и в паренхиме почек.