Необратимые и обратимые процессы

Обратимый и необратимый процесс - это явления, действия, происходящие в той или иной сфере, которые с давних пор изучаются многими специалистами и учеными, а в некоторых теориях даже являются основополагающими.

Термин «рынок природы»

Основной составляющей различных самостоятельно организованных систем выступает необратимость, которая проявляется в самостоятельном развитии систем и их конкретной направленности. Данные действия подразделяются на обратимые и В случае если процесс происходит вследствие хода ступени с первой на следующую, то такое действие называется необратимым. Образцом такого действия выступает самоорганизация - действие развития мира, основанное на принципах «рынка природы».

Участником данного рынка выступает совокупная природа, которая выдумывает новейшие способы действий, способы организации, подобающие равенству систем. Одним из главных свойств рынка можно считать способность сформировать такой круг обратной связи, который определит тяготение к равноправию рынка. С экономической точки зрения понятие рынок - это весьма частичный факт «рынка природы», являющийся, соответственно, естественным средством сравнения разных форм организации общества.

Рынку свойственны разные динамические действия, возникающие в самостоятельно образованных системах. Его можно считать изобретением человечества.

Классификация динамичных действий

Динамичные действия разделяются на 2 вида: эволюционные и волнообразные. К первому относятся действия, которые нельзя повторить, ко второму, соответственно, повторяющиеся действия. Многие фундаментальные науки, в том числе химия и физика, обратимые и необратимые процессы ставят во главу угла.

Эволюционными или необратимыми действиями выступают те существенные изменения, которые даже при отсутствии различных воздействий протекают в последовательном направлении. Например, постоянная тенденция увеличения населения, роста общего объема производства и т. д.

Некоторые динамические, а также термодинамически обратимые и необратимые процессы, действия применяются отнюдь не в сопоставлении со знаменитыми идеографическими и номографическими точками зрения, как может показаться.

Вся структуризация их находится в плоскостях общей теории и не имеет абсолютно ничего общего с идеографией. В идеографической точке зрения отсутствует возможность установления каких-либо закономерностей. Соответственно, в эволюционном действии такая возможность присутствует. Данное действие неповторяемо только тогда, когда оно имеет определенную направленность, не имеет возможности владеть двумя и более звеньями, находящимися в одном и том же состоянии или находящимися на одном и том же уровне.

Однако это не значит, что невозможно найти формулу, проявляющую последовательность хода от одной части к следующей. Так, знаменитая формулировка развертывающегося строя 1, 2, 4, 8, ..., 2n. Но это не означает, что факт этот сам по себе нельзя повторить в указанном месте и времени, и он не повторится, с номографической точки зрения, в другое время и в другом месте, когда наблюдаются обратимые и необратимые процессы. Энтропия как физическое действие в тепловом процессе - яркий тому пример.

Волнообразные процессы

Волнообразные (обратимые, повторимые) действия — это те действия изменений, которые в настоящий отрезок времени обладают конкретным направлением и ежемоментно изменяют его. При обратимости действие, находясь в данное мгновение в одном состоянии и спустя время изменяя его, со временем может вновь вернуться в исходное состояние. К примеру, движения перемены рыночных цен, количества безработных, процентов на капитал и прочие. Конечно, указанные экономические элементы жизни могут меняться в различных направлениях. Рассматривая данные перемены как сплошные, движение данных колебаний можно представить в варианте извилистой линии, направленность которой в разные моменты будет разной. На данной кривой с легкостью можно увидеть, что, отходя от точки, находящейся на одной высоте, через некоторый промежуток времени можно миновать точку, находящуюся на таком же уровне. Однако это будет не та же, а другая точка, стоящая на такой же высоте, что и изначальная. Она, несомненно, будет соответствовать совершенно иному мгновению и иной структуре общих экономических условий в спросе, предложении, производстве, распределении и пр. Чтобы вторая точка вполне совпала с первой, нужно, чтобы все действия колебаний экономической действительности являлись обратимыми, чтобы отсутствовала возможность двигаться вперед или назад, чтобы к ним была неприменима категория времени. Конечно, бесспорно, что таковой совершенной обратимости в экономическом бытие нет, в нем есть всего лишь единичные заведомо необратимые действия.

Все действия взаимосвязаны между собой, поэтому необходимо брать каждый ход по связи с прочими, в том числе необратимыми, так как в каждое мгновение в той или иной связи, несомненно, будет свежая система условий. Необходимо принять, что все движения экономического существования необратимы. В этом случае также необходимо было бы признать, что необратимы и все действия колебаний природы. Следовательно, вышеуказанные замечания позволяют отвергнуть мысль об абсолютной обратимости. На перечисленных же критериях основываются необратимые и обратимые химические процессы, а также действия, происходящие в физике.

Нельзя утверждать, что в действительности те и иные действия протекают независимо и раздельно. Можно признать только их различие по принципам и подчеркнуть разграничение в построении академического исследования. Для того чтобы выделить эту мысль, целесообразно говорить не о безусловно, а о сравнительно обратимых действиях в экономическом существовании. Можно сделать вывод, что в относительном смысле следует рассуждать об обратимых действиях перемен компонентов экономического бытия.

Мысли обратимых и необратимых действий, равно как и мысли динамики и статики, принадлежат естествоведению в узком значении слова. Обратимые и необратимые процессы в физике, примеры которых достаточно многообразны, имеют в этой науке существенное значение. То же касается и химии.

Связь с экономическими компонентами

Обратимый и необратимый процесс связан с экономикой. Существуют мнения о правильности переноса этих идей к экономическим. А есть мнения, что переносятся лишь термины и понятия.

Перенесение мыслей из одной науки в другую правомерно, если оно научно плодотворно, следовательно, иной выход для решения данной задачи отсутствует. Факты такого перенесения имеют место. Особенно много случаев перенесения идей из сферы общественного существования и социологии в сферу природных наук. Так, некоторые идеи и термины - сила, закон, ценность, принцип экономии - были научно плодотворны. Поэтому нельзя возражать против их правомерности. Во время Милля в экономике шли на заимствование идей динамики и статики, только возникает вопрос: «Отчего невозможно было бы увеличить круг употребления мыслей обратимых и необратимых действий?»

Приобретение определений из иных наук практически постоянно сопровождается их углублением или уточнением, а также кардинальным изменением. В этом случае передвинуты определения и точки зрения, увеличивая их, но при этом не лишая общего смысла.

Согласно вышеизложенному, невозможно говорить о полностью обратимых действиях в природе и в экономическом существовании. Здесь идет речь лишь о сравнительно обратимых действиях. Обратимый ход в чистом облике, в условном смысле, практически дан только в большем или в меньшем уровне приближения. С идеей, на которую опираются обратимые и необратимые процессы, циклы, соединено представление о вероятности или неосуществимости возобновления бывшего состояния элементов и тел или их системы. Вся разница в обоих случаях сводится к следующему. Обратимые и необратимые процессы в химии и физике имеют деяние со средством одного и того же субъекта в предметном смысле, в экономике этого нет. Когда утверждают, что качание маятника является действием обратимым, то в таком случае речь идет об одном и том же в предметном значении маятнике, однако это и не совсем правильно. Такого равенства нет в экономике.

Тезис «обратимый и необратимый процесс» в экономике необходимо рассматривать как единичный случай общего понятия.

Склонности

Когда мы рассматриваем экономическую действительность рыночного капиталистического общества и ее компоненты, у нас возникает закономерный вопрос: к каким из указанных действий изменений какие ее компоненты склонны? Практически все экономические элементы, взятые как отдельно, так и целиком, подвержены количественным и качественным переменам. Но в то время как для одних элементов, например для организации хозяйства, техники производства, потребностей и др., качественные изменения будут иметь столь же большое значение, как и количественные, для других элементов, таких как цена, учетный процент, рента и т. д., основное значение будут иметь количественные изменения. Значение качественных изменений здесь выступает преимущественно лишь тогда, когда меняется сама природа этих элементов, например, когда цена из вольной становится установленной или из рыночной — монопольной.

Выясняя впоследствии взаимоотношение экономических компонентов, их совокупности и обратимые и необратимые процессы, круговой процесс, цикл, необходимо иметь в виду следующее. Взятая целиком экономическая действительность представляет собой как бы целый поток многообразных и непрерывных количественных и качественных перемен.

Процессы в народном хозяйстве

В целостном представлении ход экономического становления видится необратимым исходя из того, что в нем присутствуют какие-либо компоненты, описывающие кривую необратимого течения изменения, по этой причине разрешено аргументировать, что ход развития народного хозяйства, протекающий во времени, не бывает намного более одного раза на одной и той же ступени.

В целом действие народного хозяйства представляется необратимым действием хода с одной ступени на другую. И потому дилемма перемен народного хозяйства — это прежде всего дилемма стадий его развития. Итак, движение развития народного хозяйства считается необратимым, отсюда следует, что без перерыва и без возврата изменяются совместные народнохозяйственные условия для хода перемен и всякого единичного компонента народного хозяйства. В абсолютном смысле ни один народно-хозяйственный элемент, анализируемый по связи со всем комплексом хозяйственных критериев, не может раскрывать обратимого хода.

Без труда можно увидеть и осознать, что простые действия конфигураций экономической сферы существенно отличаются, и что целесообразно разбить элементы хотя бы на несколько групп. Рассматриваемые аналитически в отдельности, элементы не могут быть определены к числу способных только к необратимым изменениям. Значительная совокупность экономических составляющих, прежде всего ценностных, к примеру заработная плата, товарные цены, и натуральных, таких как количество банкротств, процент безработных, обнаруживают обратимые действия конфигураций.

Разграничение процессов

Обратимые и необратимые процессы, примеры которых легко найти в экономике, неоднозначны. Конфигурации таких элементов, как размеры производства, количество населения, уровень потребностей, техники, размера товарооборота, резервы капиталов и т. д., состоят из нескольких компонентов, имеют сложное строение. Один компонент — это их общий рост, другой — темп роста. Рассматривая имеющийся фактический материал, по сути дела, можно отметить, что наклонность совместного увеличения и становления их предполагает собой необратимое движение, которое может прекратиться только под влиянием форс-мажора. С другой стороны, темп этого роста представляет собой зигзаг и наглядно является обратимым действием.

Отличие природных перемен самостоятельных составляющих хозяйственной жизни очевидно и бесспорно, и в то же время только при учете можно осознать вид динамики финансовой жизни. Присутствие составляющих, которые подвержены необратимым тенденциям, объясняет причины неповторимости народнохозяйственного движения и дает ленту непрерывного развития. Также установление элементов и их компонентов, подверженных обратимым волнообразным изменениям, дает шанс понять качания, которым подвержено общенародное хозяйство в целом и действия его развития. В конкретном виде народно-хозяйственное действие развития, естественно, едино. Однако отказ от разграничения элементарных действий классификации и изменения компонентов в связи с их связью к этим действиям означал бы, соответственно, и отказ от научного исследования определенной действительности. Указанное подтверждает термодинамически обратимые и необратимые процессы, случающиеся в природе.

Специфика развития систем

Значимой чертой развития произвольной системы считается необратимость, проявляющаяся в определенной направленности ее перемен. Эти изменения подразумевают учет обстоятельства времени в соответственной теории. Формулы могут применяться для отображения действий, случающихся как в настоящий момент времени, так и в будущий, и в прошлый.

Д. С. Милль сформулировал представление о статике и динамике действий в явном виде. Оно базировалось и указывало на обратимые и необратимые процессы, круговой процесс. Неповторимость или необратимость означает только нереальность конфигурации направленности действий в конкретный отрезок времени, что типично для обратимых действий.

Затруднительность определенной экономической действительности принуждает упрощать ее, отрываться от большинства ее связей и особенностей. С данной точки зрения, каждая экономическая концепция предоставляет только условно верное отражение соответствующей части экономической действительности.

В качестве базы анализа экономического развития обязана быть взята именно целая система формирования финансовой деятельности сообщества. Но интегративная общая теория может быть выстроена только на основе проведения исследования развития раздельных конкретных исторических видов организации экономической деятельности.

Равновесие систем

Обратимый и необратимый процесс с экономической точки зрения рассматривали многое ученые. развил идею, что равновесие на рынке сводится к взаимному приспособлению персональных планов и исполняется по типу, какой бы следом за естественными науками стали нарекать «отрицательной обратной связью».

Дефиниция применима к сложным экономическим действиям, какие Н. Кондратьев именует обратимыми. Колыхания в экономике, включающие периодические изменения, это стоимости, проценты, заработная плата, на протяжении многих лет носят повторяющийся характер. Колебания подразделяются на длинные, средние и краткосрочные.

Принцип отрицательной обратной связи показывает только, как поддерживается неожиданно появляющийся режим в системе, но не позволяет обнаружить конструкцию происхождения установленного порядка, а также перехода от одной ступени развития к другой. Для этих целей необходимо устремиться к принципу В нем передовые изменения, образующиеся в системе, усиливаются и накапливаются. Неважно какая теория подвержена неожиданным уклонам от баланса, но, если она находится в изменчивом состоянии, из-за взаимодействия с окружающей средой эти покачивания обостряются и в итоге приводят к разгону минувшего распорядка и устройства. С другой стороны, в итоге взаимодействия компоненты старой системы приходят к слаженному поведению, благодаря чему в системе появляются совместные действия и формируются новый порядок и свежее соотношение.

Возникновение совокупных действий, как и образование и прогресс новых структур, связано с фактами случайности, каковые последовательно приводят к зыбкости системы.

Рынок — это открытая система, в которой происходит беспрерывное взаимодействие между покупателями и потребителями, продавцами и производителями. На рынке царит как случайный, так и спонтанный порядок. Так, при закупке и реализации продуктов всякий индивид непринужденно руководствуется сперва полезностью и необходимостью, а не их стоимостью. В действиях рыночных отношений две стороны приходят к общему выходу, а это впоследствии приводит к появлению неожиданного порядка, проявляющегося в балансе между спросом и предложением.

Заключительный аккорд

Итак, все движения самостоятельной организации имеют определенную направленность, что фактически является их важной чертой, в том числе и рынок в экономическом смысле. Первым изучал данные вопросы Д., который дал определение обратимых и необратимых действий в экономике. Целесообразно продолжать изучать эти действия, в том числе обратимые и необратимые процессы в природе. В химии и физике это направление, как уже упоминалось, считается фундаментальным, определяя, например, такие действия, как тепловые процессы. Обратимы, необратимы ли действия и процессы, происходящие в той или иной сфере жизни, считается немаловажным фактором, который необходимо знать.

Который может проходить как в прямом, так и в обратном направлении, проходя через одинаковые промежуточные состояния, причем система возвращается в исходное состояние без затрат энергии, и в окружающей среде не остается макроскопических изменений. Количественным критерием обратимости/необратимости процесса служит возникновение энтропии - эта величина равна нулю при отсутствии необратимых процессов в термодинамической системе и положительна при их наличии .

Обратимый процесс можно в любой момент заставить протекать в обратном направлении, изменив какую-либо независимую переменную на бесконечно малую величину.

Обратимые процессы имеют максимальный КПД. Бо́льший КПД от системы получить невозможно. Это придает обратимым процессам теоретическую важность. На практике обратимый процесс реализовать невозможно. Он протекает бесконечно медленно, и можно только приблизиться к нему.

В термодинамике примером тепловой машины, работающей только по обратимым процессам, является машина Карно , состоящая из двух адиабат и двух изотерм. В адиабатических процессах никакого обмена энергией с окружающей средой не происходит. В изотермических процессах теплообмен между окружающей средой (нагревателем, при расширении, и холодильником, при сжатии) и рабочим телом проходит между телами, имеющими одну и ту же температуру. Это важный момент, так как если теплообмен происходит между телами с разной температурой, он является необратимым (второе начало термодинамики).

Следует отметить, что термодинамическая обратимость процесса отличается от химической обратимости . Химическая обратимость характеризует направление процесса, а термодинамическая - способ его проведения.

Понятия равновесного состояния и обратимого процесса играют большую роль в термодинамике. Все количественные выводы термодинамики применимы только к равновесным состояниям и обратимым процессам. В состоянии химического равновесия скорость прямой реакции равна скорости обратной реакции!

Между тем опыт показывает, что существуют определенные ограничения, связанные с направлением протекания процессов в природе. Так, энергия путем теплообмена самопроизвольно переходит от горячего тела к более холодному, а обратный процесс сам по себе не происходит, т.е. он необратим.

Терминологические замечания

Понятийный аппарат, используемый в том или ином руководстве по классической термодинамике , существенным образом зависит от системы построения/изложения данной дисциплины, используемой или подразумеваемой автором конкретного пособия. Последователи Р. Клаузиуса строят/излагают термодинамику как теорию обратимых процессов , последователи К. Каратеодори - как теорию квазистатических процессов , а последователи Дж. У. Гиббса - как теорию равновесных состояний и процессов . Ясно, что, несмотря на применение различных описательных дефиниций идеальных термодинамических процессов - обратимых, квазистатических и равновесных, - которыми оперируют упомянутые выше термодинамические аксиоматики , в любой из них все построения классической термодинамики имеют своим итогом один и тот же математический аппарат. Де-факто это означает, что за пределами чисто теоретических рассуждений, то есть в прикладной термодинамике, термины «обратимый процесс», «равновесный процесс» и «квазистатический процесс» рассматривают как синонимы : всякий равновесный (квазистатический процесс) процесс является обратимым, и наоборот, любой обратимый процесс является равновесным (квазистатическим) .

Примеры

Выпечка пирога - необратимый процесс. Гидролиз солей - обратимый процесс.

См. также

Примечания

Литература

  • Tisza Laszlo . Generalized Thermodynamics . - Cambridge (Massachusetts) - London (England): The M.I.T. Press, 1966. - xi + 384 p.
  • Каратеодори К. Об основах термодинамики (рус.) // Развитие современной физики: Сборник статей под ред. Б. Г. Кузнецова . - 1964. - С. 188-222 .
  • Карно С. , Клаузиус, Р. , Томсон У. (лорд Кельвин) и др. Второе начало термодинамики / Под ред.

Подобно тому, как в первом начале термодинамики вводится функция состояния – внутренняя энергия, во втором начале – функция состояния, получившая название энтропия (S) (от греческого entropia – поворот, превращение). Рассмотрение изменения этой функции привело к разделению всех процессов на две группы: обратимые и необратимые (самопроизвольные) процессы.

Процесс называется обратимым , если его можно провести сначала в прямом, а затем в обратном направлении и так, что ни в системе, ни в окружающей среде не останется никаких изменений. Полностью обратимый процесс – абстракция , но многие процессы можно вести в таких условиях, чтобы их отклонение от обратимости было весьма мало. Для этого необходи мо, чтобы в каждой своей бесконечно малой стадии состояние системы, в которой этот процесс происходит, отвечало бы состоянию равновесия.

Состояние равновесия – особое состояние термодинамической системы, в которое она переходит в результате обратимого или необратимого процессов и может оставаться в нем бесконечно долго. Реальные процессы могут приближаться к обратимым, но для этого они должны совершаться медленно.

Процесс называется необратимым (естественным, спонтанным, самопроизвольным) , если он сопровождается рассеянием энергии, т. е. равномерным распределением между всеми телами системы в результате процесса теплопередачи.

В качестве примеров необратимых процессов могут быть названы следующие:

    замерзание переохлажденной жидкости;

    расширение газа в вакуумированное пространство;

    диффузия в газовой фазе или в жидкости.

Систему, в которой произошел необратимый процесс, можно возвратить в исходное состояние, но для этого над системой нужно совершить работу.

К необратимым процессам относится большинство реальных процессов, так как они всегда сопровождаются работой против сил трения, в результате чего происходят бесполезные энергозатраты, сопровождающиеся рассеянием энергии.

Для иллюстрации понятий рассмотрим идеальный газ, находящийся в цилиндре под поршнем. Пусть начальное давление газа Р 1 при его объеме V 1 (рис. 4.1).

Давление газа уравновешено насыпанным на поршень песком. Совокупность равновесных состояний описывается уравнениемpV = const и графически изображается плавной кривой (1).

Если с поршня снять некоторое количество песка, то давление газа над поршнем резко снизится (от А до В) лишь после чего произойдет увеличение объема газа до равновесной величины (от В до С). Характер этого процесса – ломанная линия 2. Эта линия характеризует зависимость P=f (V) при необратимом процессе.

Рис. 4.1. Зависимость давления газа от его объема при обратимом (1) и необратимом процессах (2, 3).

Из рисунка видно, что при обратимом расширении газа совершаемая им работа (площадь под плавной кривой 1) больше, чем при любом необратимом его расширении.

Таким образом, любой термодинамический процесс характеризуется максимально возможной величиной работы, если он совершается в обратимом режиме. К аналогичному выводу можно прийти, если рассмотреть процесс сжатия газа. Только следует иметь ввиду, что в этом случае величина работы – отрицательная величина (рис. 4.1, ломаная 3).

Обратимым термодинамическим процессом называется процесс, допускающий возможность возвращения системы в первоначальное состояние без того, чтобы в окружающей среде остались какие-либо изменения. Обратимым может быть лишь равновесный процесс, так как при равновесном процессе система проходит непрерывную последовательность состояний, бесконечно мало отличающихся друг от друга. Эту последовательность состояний можно пройти (бесконечно

медленно) как в прямом, так и в обратном направлениях, причем возникающие в окружающих телах на любом промежуточном этапе процесса изменения будут отличаться для прямого и обратного процессов лишь знаком. В этих условиях при возвращении системы в исходное состояние все произошедшие в окружающей среде изменения окажутся скомпенсированными.

Примером обратимого механического процесса может служить свободное падение тела без трения (в пустоте). Если такое тело испытывает упругий удар о горизонтальную плоскость, то оно возвратится в исходную точку траектории, причем форма тела и плоскости после удара восстановятся - каких-либо изменений в окружающих телах не произойдет.

Следует отметить, что всякий чисто механический процесс, в котором отсутствует трение, является принципиально обратимым. Запишем первое начало для процесса, переводящего тело из состояния 1 в состояние 2:

Изменяя внешние воздействия, можно тело вернуть из состояния 2 в первоначальное состояние 1. Тогда

В разобранном примере объект наблюдения, претерпев ряд изменений, возвращается в первоначальное состояние. Такого рода процессы называются циклическими или круговыми. Внутренняя энергия есть функция состояния тела поэтому, складывая (64.1) и (64.2), получим:

Пусть переход является равновесным, протекающим при бесконечно малой разности между температурой исследуемой системы и температурами источников теплоты и бесконечно малом различии внутреннего и внешнего давлений. Тогда изменением внешних воздействий (изменением знака малых разностей указанных величин) можно систему вернуть из состояния 2 в начальное состояние равновесно через те же промежуточные состояния, которые имели место в первой стадии процесса (рис. 7.3). В этом случае, очевидно, и согласно Изменение состояний внешних тел связано с совершением над ними (или ими) работы и передачей теплоты, и так как сумма этих эффектов в рассматриваемом случае равна нулю, то указанные тела после ряда изменений возвращаются в первоначальное состояние.

Как известно из опытов, процесс теплопередачи, вызываемый конечной разностью температур и происходящий в сторону убыли температуры, необратим, хотя тела, участвующие в таком процессе, могут претерпевать квазиравновесные изменения. Стало быть, нельзя утверждать, что всякое равновесное изменение тела обратимо.

Поясним это на следующем примере. Пусть имеются два тела с конечной разностью температур (рис. 7.4). Если эти тела соединить плохим проводником тепла А, то их изменения вследствие замедленной теплопередачи будут квазиравновесными. Если после выравнивания температур убрать теплопровод, то тело можно равновесно вернуть в первоначальное состояние через тепловой контакт с термостатом температуры (рис. 7.4). Такая же операция может быть проделана с телом II при использовании другого термостата. В данном примере оба тела возвращаются в первоначальное состояние равновесно, но в целом процесс этот оказывается необратимым из-за того, что в конечном итоге термостат, имеющий температуру отдает некоторое количество теплоты, такое же количество теплоты получит термостат Таким образом, после возвращения тел и II квазиравновесно через тождественные сбстояния в начальные состояния в окружающих телах (термостатах) останутся определенные изменения.

Вернемся к рассмотрению прямых и обратных изменений тела, характеризуемых уравнением (64.3). Пусть прямой процесс 1-2 неравновесен вследствие конечной разности сил внутренних и внешних. Тогда согласно изложенному в § 63 при использовании одних и тех же внешних тел нельзя провести процесс в обратном направлении так, чтобы работы прямого и обратного переходов системы компенсировали бы друг друга: Таким образом, всякий неравновесный процесс необратим: тело, испытывающее неравновесные изменения, можно внешним воздействием вернуть в первоначальное состояние, но при этом в окружающих телах останутся определенные изменения

Ярким примером необратимого процесса является расширение газа в пустоту (в вакуум). При таком расширении газ не совершает работу (внешние тела отсутствуют). Этот пример показывает, что всякий необратимый процесс в одном направлении протекает самопроизвольно, но для возвращения газа в первоначальное состояние (для обращения процесса) следует затратить определенную работу (работу сжатия газа), что будет связано с определенными изменениями в окружающих телах. Физическую природу необратимости легче всего пояснить на примере взаимной диффузии двух газов. В

цилиндре с перегородкой, по одну сторону которой находится гелий (малые молекулы), по другую - аргон (большие молекулы), уберем перегородку и проследим (хотя бы мысленно) за необратимым процессом взаимной диффузии газов. Молекулы гелия, сталкиваясь с большими частицами аргона, постепенно будут проникать в объем, занятый аргоном, молекулы же аргона проникнут в объем, где был чистый гелий. Каждый раз, когда происходит столкновение двух разных молекул, они строго по законам механики разлетаются в определенных направлениях, при этом акты взаимодействия молекул обратимы. В результате же множества столкновений частиц возникают необратимые изменения в системе. Если мы могли бы заснять на кинопленку все акты столкновений, то, запустив фильм в обратном направлении, мы ничего парадоксального не увидели бы в картине столкновения любой пары молекул. В конечном же результате обратимое протекание всех столкновений приведет к самопроизвольному разделению компонент газовой смеси, что в природе не наблюдается. В разобранном примере в начале опыта в системе был известный порядок - два различных газа находились в разных частях объема цилиндра. В хаосе молекулярных столкновений первоначальный порядок нарушился. Переход от более упорядоченных состояний к менее упорядоченным - вот в чем физическая сущность необратимости. Необратимость есть результат проявления статистических закономерностей, свойственных системам с большим числом частиц.

Все возможные процессы делятся на обратимые и необратимые. Соответственно второе начало термодинамики формулируется для обратимых и необратимых процессов. Исторически второе начало термодинамики было сформулировано на основе анализа циклических процессов, хотя в настоящее время в теоретических курсах пользуются и другим, чисто аналитическим методом выведения этого закона. Мы будем пользоваться методом ихлов как более наглядным и легче воспринимаемым на первой стадии ознакомления с термодинамикой. Предварительно же нам придется более подробно остановиться на некоторых особенностях циклов.

Основы термодинамики

Обратимые и необратимые тепловые процессы.

Термодинамический процесс называется обратимым, если он может происходить как в прямом, так и в обратном направлении, причем если такой процесс происходит сначала в прямом, а затем в обратном направлении и система возвращается в исходное состояние, то в окружающей среде и в этой системе не происходит никаких изменений.

Всякий процесс, не удовлетворяющий этим условиям, является необратимым.

Любой равновесный процесс является обратимым. Обратимость равновесного процесса, происходящего в системе, следует из того, что ее любое промежуточное состояние есть состояние термодинамического равновесия; независимо от того идет ли процесс в прямом или в обратном направлении. Реальные процессы сопровождаются рассеянием энергии (из-за трения, теплопроводности и т.д.), которая нами не рассматривается. Обратимые процессы – это идеализация реальных процессов. Их рассмотрение важно по 2-м причинам: 1) многие процессы в природе и технике практически обратимы; 2) обратимые процессы являются наиболее экономичными; имеют максимальный термический коэффициент полезного действия, что позволяет указать пути повышения КПД реальных тепловых двигателей.

Работа газа при изменении его объема.

Работа совершается только тогда, когда изменяется объем.

Найдем в общем виде внешнюю работу, совершаемую газом при изменении его объема. Рассмотрим, например, газ, находящийся под поршнем в цилиндрическом сосуде. Если газ, расширяясь, передвигает поршень на бесконечно малое расстояние dl, то производит над ним работу

A=Fdl=pSdl=pdV, гдеS-площадь поршня,Sdl=dV-изменение объема системы. Таким образом,A=pdV.(1)

Полную работу А, совершаемую газом при изменении его объема от V1 доV2, найдем интегрированием формулы (1):A=pdV(отV1 доV2).(2)

Результат интегрирования определяется характером зависимости между давлением и объемом газа. Найденное для работы выражение (2) справедливо при любых изменениях объема твердых, жидких и газообразных тел.

П

Полная работа газа будет равна площади фигуры, ограниченной осью абсцисс, кривой и значениями V1,V2.

роизведенную при том или ином процессе работу можно изобразить графически с помощью кривой в координатахp,V.

Графически можно изображать только равновесные процессы – процессы, состоящие из последовательности равновесных состояний. Они протекают так, что изменение термодинамических параметров за конечный промежуток времени бесконечно мало. Все реальные процессы неравновесны (они протекают с конечной скоростью), но в ряде случаев их неравновесностью можно пренебречь (чем медленнее процесс протекает, тем он ближе к равновесному).

Первое начало термодинамики.

Существует 2 способа обмена энергией между телами:

    передача энергии через перенос тепла (посредством теплопередачи);

    через совершение работы.

Таким образом, можно говорить о 2-х формах передачи энергии от одних тел к другим: работе и теплоте. Энергия механического движения может превращаться в энергию теплового движения, и наоборот. При этих превращениях соблюдается закон сохранения и превращения энергии; применительно к термодинамическим процессам этим законом и является первое начало термодинамики:

∆U=Q-A или Q=∆U+A.(1)

Т.е, теплота, сообщаемая системе, расходуется на изменение ее внутренней энергии и на совершение ею работы против внешних сил. Это выражение в дифференциальной форме будет иметь вид Q=dU+A(2) , гдеdU- бесконечно малое изменение внутренней энергии системы,A- элементарная работа,Q– бесконечно малое количество теплоты.

Из формулы (1) следует, что в СИ количество теплоты выражается в тех же единицах, что работа и энергия, т.е. в джоулях(Дж).

Если система периодически возвращается в первоначальное состояние, то изменение ее внутренней энергии ∆U=0. Тогда, согласно 1-му началу термодинамики,A=Q,

Т.е вечный двигатель первого рода – периодически действующий двигатель, который совершал бы большую работу, чем сообщенная ему извне энергия, - невозможен (одна из формулировок 1-го начала термодинамики).

Применение 1-го начала термодинамики к изопроцессам и к адиабатическому процессу.

Среди равновесных процессов, происходящих с термодинамическими системами, выделяются изопроцессы, при которых один из основных параметров состояния сохраняется постоянным.

Изохорный процесс (V = const )

При таком процессе газ не совершает работы над внешними телами, т.е A=pdV=0.

Тогда, из 1-го начала термодинамики следует, что вся теплота, переданная телу, идет на увеличение его внутренней энергии: Q=dU. Зная, чтоdU m =C v dT.

Тогда для произвольной массы газа получим Q=dU=m\M*C v dT.

Изобарный процесс (p = const ).

При этом процессе работа газа при увеличении объема от V1 доV2 равнаA=pdV(отV1 доV2)=p(V2-V1) и определяется площадью фигуры, ограниченной осью абсцисс, кривойp=f(V) и значениямиV1,V2. Если вспомнить ур-е Менделеева-Клапейрона для выбранных нами 2-х состояний, то

pV 1 =m\M*RT 1 , pV 2 =m\M*RT 2 , откуда V 1 - V 2 = m\M*R\p(T 2 - T 1). Тогда выражение для работы изобарного расширения примет видA=m\M*R(T 2 -T 1)(1.1).

При изобарном процессе при сообщении газу массой mколичества теплоты

Q=m\M*C p dTего внутренняя энергия возрастает на величинуdU=m\M*C v dT. При этом газ совершает работу, определяемую выражением(1.1).

Изотермический процесс (T = const ).

Этот процесс описывается законом Бойля-Мариотта: pV=const.

Найдем работу изотермического расширения газа: A=pdV(отV1 доV2)=m/M*RTln(V2/V1)=m/M*RTln(p1/p2).

Т.к при Т=constвнутренняя энергия идеального газа не изменяется:dU=m/M*C v dT=0, то из 1-го начала термодинамики (Q=dU+A) следует, что для изотермического процессаQ=A, т.е все количество теплоты, сообщаемое газу, расходуется на совершение им работы против внешних сил:Q=A=m/M*RTln(p1/p2)=m/M*RTln(V2

Следовательно, чтобы при расширении газа температура не понижалась, к газу в течение изотермического процесса необходимо подводить количество теплоты, эквивалентное внешней работе расширения.

Адиабатический процесс.

АП - это процесс, при котором отсутствует теплообмен (Q=0) между системой и окружающей средой. К адиабатическим можно отнести все быстропротекающие процессы. Из 1-го начала термодинамики (Q=dU+A) для адиабатического процесса следует, чтоA= -dU, т.е внешняя работа совершается за счет изменения внутренней энергии системы. Т.о,pdV= -m/M*C v dT(1).

Продифференцировав ур-е состояния для идеального газа,pV=m/M*RT, получим

PdV + Vdp=m/M*RdT.(2)

Исключим из ур-я (1) и (2) температуру T: (pdV+Vdp)/(pdV)= -R/C v = -(C p -C v)/C v .

Разделив переменные и учитывая, что C p /C v =, найдемdp/p= -dV/V.

Интегрируя это ур-е в пределах от p1 доp2 и соответственно отV1 доV2, а затем, потенцируя, придем к выражениюp2/p1=(V1/V2)  , илиp1(V1)  =p2(V2)  .Так как состояния 1 и 2 выбраны произвольно, то можно записать

pV  =const(ур-е адиабатического процесса или ур-е Пуассона).Здесь- показатель адиабаты (или коэффициент Пуассона),=(i+2)/i.

Вычислим работу, совершаемую газом в адиабатическом процессе: A= -m/M*C v dT.

Если газ адиабатически расширяется от объема V1 доV2, то его температура уменьшается отT1 доT2 и работа расширения идеального газа

A= - m/M*C v dT=m/M* C v (T1-T2).

Изохорный, изобарный, изотермический и адиабатический процессы имеют одну особенность – они происходят при постоянной теплоемкости.

Эквиваленты теплоты и работы .

Обмен энергией между термодинамической системой и внешними телами может осуществляться 2мя качественно различными способами: путем совершения работы и путем теплообмена. В отсутствии внешних полей работа совершается при изменении объема или формы системы. Работа A", совершаемая внешнми телами над системой численно равна и противоположна по знаку работе, совершаемой самой системой.

Энтропия.

Помимо внутренней энергии, которая является только функциональной составляющей термодинамической системы, в термодинамике используется еще ряд других функций, описывающих состояние термодинамической системы. Особое место среди них занимает энтропия. Пусть Q - теплота, полученная термодинамической системой в изотермическом процессе, а T - температура, при которой произошла эта передача теплоты. Величина Q/ T называется приведенной теплотой. Приведенное количество теплоты, сообщаемое термодинамической системе на бесконечно малом участке процесса будет равно dQ / T. В термодинамике доказывается, что в любом обратимом процессе сумма приведенных количеств теплоты, передаваемая системе на бесконечно малых участках процесса равна нулю. Математически это означает, что dQ/T - есть полный дифференциал некоторой функции, которая определяется только состоянием системы и не зависит от того, каким путем перешла система в такое состояние. Функция, полученный дифференциал которой равен dS= dQ/ T - называется энтропией. Энтропия определяется только состоянием термодинамической системы и не зависит от способа перехода системы в это состояние. S - энтропия. Для обратимых процессов delta S = 0. Для необратимых delta S > 0 - неравенство Клаудио. Неравенство Клаудио справедливо только для замкнутой системы. Только в замкнутой системе процессы идут так, что энтропия возрастает. Если система незамкнута и может обмениваться теплотой с окружающей средой, ее энтропия может вести себя любым образом; dQ = T dS ; При равновестном переходе системы из одного состояния в другое dQ = dU + dA ; delta S = (интеграл 1 - 2) dQ / T = (интеграл) (dU + dA) / T. Физический смысл имеет не сама энтропия, а разность энтропий при переходе системы из одного состояния в другое.

Связь энтропии с вероятностью состояния системы .

Более глубокий смысл энтропии скрывается в статической физике. Энтропия связывается с термодинамической вероятностью состояния системы. Термодинамическая вероятность состояния системы - это число способов, которыми может быть реализовано данное состояние макроскопической системы. Иными словами W - это число микросостояний, которые реализовывают данные макросостояния.

Больцман методами статистической физики показал, что энтропия S системы и термодинамическая вероятность связаны соотношением: S= k ln (W) ; где k - постоянная Больцмана. Термодинамическая вероятность W не имеет с математической вероятностью ничего общего. Из этого соотношения видно, что энтропия может рассматриваться как мера вероятности состояния термодинамической системы, энтропия является мерой неупорядоченной системы. Чем больше число микросостояний, реализующих данное макросостояние, тем больше ее энтропия.

Второй закон термодинамики .

Количество теплоты, полученное от нагревателя, не может быть целиком преобразовано в механическую работу циклически действующей тепловой машиной. Это и есть 2ой закон: в циклически действующей тепловой машине невозможен процесс, единственным результатом которого было бы преобразование в механическую работу всего количества теплоты, полученного от источника энергии - нагревателя. (by Кельвин Copyright 1851). Второй закон связан с необратимостью процессов в природе. Возможна другая формулировка: невозможен процесс, единственным результатом которого была бы передача энергии путем теплообмена от холодного тела к горячему. Второй закон имеет вероятный характер. В отличие от закона сохранения энергии, второй закон применим лишь к системам, состоящим из очень большого числа частиц. Для таких систем необратимость процессов объясняется тем, что обратный переход должен был бы привести систему в состояние ничтожно малой вероятностью, практически не отличимой от невозможности.

Самопроизвольные процессы в изолированной системе всегда проходят в направлении перехода от маловероятного состояния в более вероятное.

Цикл Карно .

Для создания тепловой машины недостаточно просто иметь нагретое тело (нагреватель), требуется еще 2-е тело – холодильник. Т.о, рабочее тело передает теплоту от нагревателя к холодильнику и попутно совершает полезную работу.

Вкачестве рабочего тела Сади Карно выбрал идеальный газ. Он рассмотрел следующий процесс:

Кривые 1-2, 3-4 – изотермы, кривые 2-3,4-1 – адиабаты.

На участке 1-2 газ получает теплотуQ1 от нагревателя и, расширяясь, совершает работу (т.е расходует полученноеQ1 на совершение работы).Q1=∆U+A1, ∆U=0, т.к. T=const. Q1=A1.

На участке 2-3: газ совершает работу А2, которая равна убыли внутренней энергии; температура понижается. А2= - ∆U2 (температура понижается от Т1 до Т2).

На участке 3-4 :Vуменьшается, Т2=const. Внешние силы совершают работу по сжатию газаA3:Q2= -A3,Q2=A′. От системы отводится количество теплотыQ2: |Q2|=A3.

На участке 4-1 :Vуменьшается,Tувеличивается.A’4=∆U,Q=∆U+A, 0= ∆U4 +A4 =∆U4-A’4,A’4=∆U(внешние силы совершили работу, которая пошла на увеличение внутренней энергии.

Для изотерм A=A1+A3=Q4-|Q2|.

Площадь под изотермой 3-4 меньше, чем под изотермой 1-2 |A’3|<|A1|,Q1>Q2газ получает от нагревателя больше теплоты, чем отдает холодильнику.

За полный цикл: ∆U=0, А=А1 – А’3 - ∆U2(=A2) +A’4, ∆U2=3/2*m/M*R(T2-T1).

A=Q1-|Q2| - 3/2*m/M*R(T2-T1) + (-3/2*m/M*R(T1-T2))=Q1-|Q2|.

Коэффициентом полезного действия тепловой машины называется отношение полезной работы, совершаемой за цикл, к количеству теплоты, полученной системой. Выражается в процентах. =(Q1-|Q2|)/Q1 * 100% (1), или =A/Q1 *100% (2). Эти формулы можно использовать для любой тепловой машины.

Теорема Карно: Q1/T1=|Q2|/T2 (для машины Карно).=(T1-T2)/T1 *100%.

КПД, определяемый формулами (1) и (2) – наибольший возможный. В реальных тепловых машинах КПД меньше.

2.5. Фазовые равновесия и фазовые превращения.

Фаза - это равновесное состояние вещества, отличающееся по своим физическим свойствам от других состояний того же вещества.

Переход вещества из одной фазы в другую называется фазовым переходом . При таких переходах меняются механические, тепловые, электрические и магнитные свойства вещества.

Тройная точка .

Кривые плавления и парообразования в пересекаются в точке A. Эту точку называют тройной точкой, т.к. если при давлении p тр. и температуре Tтр некоторые количества вещества в твердом, жидком и газообразном состояниях находятся в контакте, то без подведения или отвода тепла количество вещества, находящегося в каждом из 3х состояний, не изменяется

Из диаграммы состояний видно, что переход вещества при нагревании из твердого состояния в газообразное может совершиться, минуя жидкое состояние. Переход кристалл-жидкость-газ при нормальном атмосферном давлении происходит лишь у тех веществ, у которых давление в тройной точке ниже этого давления. Те же вещества, которых давление в тройной точке превышает атмосферное, в результате нагревания при атмосферном давлении не плавятся, а переходят в газообразное состояние.

Поскольку тройной точке соответствует вполне определенная температура, она может служить опорной точкой термодинамической шкалы.

Реальные газы .

При движении молекулы вдали от стенок сосуда, в котором заключен газ, на нее действуют силы притяжения соседних молекул, но равнодействующая всех этих сил в среднем равна нулю, т.к. молекулу со всех сторон окружает в среднем одинаковое число соседей. При приближении некоторой молекулы к стенке сосуда все остальные молекулы газа оказываются по одну сторону от нее и равнодействующая всех сил притяжения оказывается направленной от стенки сосуда внутрь газа. Это приводит к тому, что уменьшается импульс, передаваемый молекулой стенке сосуда. В результате давление газа на стенки сосуда уменьшается по сравнению с тем, каким оно было бы в отсутствие сил притяжения между молекулами: p = p идеального + delta p. Вместо уравнения идеального газа получаем p + delta p = nkT ; delta p = a/V(ст.2);

Где a - постоянная, зависящая от вида газа. Для одного моля газа получаем p+a/V(ст.2) = R T / V ; Поправка: при любых давлениях, объем газа не может стать равным нулю.

Уравнение Ван-дер-Ваальса :

(p + a / V (ст.2)) (V - b) = RT, где b - так называемый "запрещенный объем"

Критическая температура .

Было установлено, что из газообразного состояния в жидкое можно перевести любое вещество. Однако каждое вещество может испытать такое превращение лишь при температурах ниже определенной, так называемой критической температуры Tк. При температуре выше критической вещество не превращается в жидкость или твердое тело ни при каких давлениях. При критической температуре средняя кинетическая энергия теплового движения молекул вещества примерно равна модулю потенциальной энергии их связи в жидкости или твердом теле. Т. к. силы притяжения, действующие между молекулами разных веществ, различны, неодинакова и потенциальная энергия их связи, отсюда различными оказываются критические температуры для различных веществ.

Диаграмма состояний вещества .

Чем выше температура жидкости, тем больше плотность и давление ее пара. Геометрическим местом точек, отмечающих на диаграмме p, T равновесные состояния между жидким и газообразным состояниями вещества, является кривая AK (рисунок - график, правая часть параболы - CB выходит не из нуля, а чуть выше и правее; из точки A этой кривой, чуть дальше, выходит еще более широкая часть параболы - AK; все пространство делится на 3 части таким образом - твердое тело, жидкость и газ; оси - T и p).

Процесс испарения твердых тел называется сублимацией.