Нитросоединения: строение, номенклатура, основные методы синтеза, физические и химические свойства. Хлорнитроароматические соединения и их токсическое действие. Органическая химия Синтез нитросоединений можно осуществить с использованием реакции

Нитросоединения

Нитросоединения - органические соединения, содержащие одну или несколько нитрогрупп -NO2. Под нитросоединениями обычно подразумевают C-нитросоединения, в которых нитрогруппа связана с атомом углерода (нитроалканы, нитроалкены, нитро арены). O-нитросоединения и N-нитросоединения выделяют в отдельные классы - нитроэфиры (органические нитраты) и нитрамины.

В зависимости от радикала R, различают алифатические (предельные и непредельные), ациклические, ароматические и гетероциклические нитросоединения. По характеру углеродного атома, с которым связана нитрогруппа, нитросоединения подразделяются на первичные, вторичные и третичные.

Нитросоединения изомерны эфирам азотистой кислоты HNO2 (R-ONO)

При наличии α-атомов водорода (в случае первичных и вторичных алифатических нитросоединений) возможна таутомерия между нитросоединениями и нитроновыми кислотами (аци-формами нитросоединений):

Из галогенпроизводных:

Нитрование

Нитрование - реакция введения нитрогруппы -NO2 в молекулы органических соединений.

Реакция нитрование может протекать по электрофильному, нуклеофильному или радикальному механизму, при этом активной частицей в данных реакциях являются соответственно катион нитрония NO2+, нитрит-ион NO2- или радикал NO2 . Процесс заключается в замещении атома водорода у атомов C, N, O или присоединении нитрогруппы по кратной связи.

Электрофильное нитрование[править | править исходный текст]

При электрофильном нитровании основным нитрующим агентом является азотная кислота. Безводная азотная кислота подвергается автопротолизу по реакции:

Вода сдвигает равновесие влево, поэтому в 93-95 % азотной кислоте катион нитрония уже не обнаруживается. В связи с этим азотная кислота используется в смеси со связывающей воду концентрированной серной кислотой илиолеумом: в 10%-ном растворе азотной кислоты в безводной серной кислоте равновесие практически полностью сдвинуто вправо.

Кроме смеси серной и азотной кислот используются различные комбинации оксидов азота и органических нитратов с кислотами Льюиса (AlCl3, ZnCl2, BF3). Сильными нитрующими свойствами обладает смесь азотной кислоты с уксусным ангидридом, в которой образуется смесь ацетилнитрата и оксида азота(V), а также смесь азотной кислоты с оксидом серы(VI) или оксидом азота(V).

Процесс проводят либо при непосредственном взаимодействии нитрующей смеси с чистым веществом, либо в растворе последнего в полярном растворителе (нитрометан, сульфолан, уксусная кислота). Полярный растворитель кроме того, что растворяет реагирующие вещества, сольватирует ион + и способствует его диссоциации.

В лабораторных условиях чаще всего используются нитраты и соли нитрония, нитрующая активность которых возрастает в следующем ряду:

Механизм нитрования бензола:

Кроме замещения атома водорода нитрогруппой применяется также заместительное нитрование, когда нитрогруппа вводится вместо сульфо-, диазо- и других групп.

Нитрование алкенов при действии апротонных нитрующих агентов идёт по нескольким направлениям, которое зависит от условий реакции и строения исходных реагентов. В частности, могут протекать реакции отщепления протона и присоединения функциональных групп молекул растворителя и противоионов:

Нитрование аминов приводит к N-нитроаминам. Этот процесс является обратимым:

Нитрование аминов проводят концентрированной азотной кислотой, а также её смесями с серной кислотой, уксусной кислотой или уксусным ангидридом. Выход продукта увеличивается при переходе от сильноосновных аминов к слабоосновным. Нитрование третичных аминов идёт с разрывом связи C-N (реакция нитролиза); эта реакция используется для получения взрывчатых веществ - гексогена и октогена - из уротропина.

Заместительное нитрование ацетамидов, сульфамидов, уретанов, имидов и их солей протекает по схеме

Реакцию ведут в апротонных растворителях с использованием апротонных нитрующих агентов.

Спирты нитруются любыми нитрующими агентами; реакция является обратимой:

Нуклеофильное нитрование[править | править исходный текст]

Эта реакция используется для синтеза алкилнитритов. Нитрующими агентами в этом типе реакций являются соли нитриты щелочных металлов в апротонных диполярных растворителях (иногда - в присутствии краун-эфиров). Субстратами являются алкилхлориды и алкилиодиды, α-галогенкарбоновые кислоты и их соли, алкилсульфаты. Побочными продуктами реакции являются органические нитриты.

Радикальное нитрование[править | править исходный текст]

Радикальное нитрование применяется для получения нитроалканов и нитроалкенов. Нитрующими агентами являются азотная кислота или оксиды азота:

Параллельно протекает реакция окисления алканов ввиду взаимодействия радикала NO2 с алкильным радикалом по атому не азота, а кислорода. Реакционноспособность алканов возрастает при переходе от первичных к третичным. Реакцию проводят как в жидкой фазе (азотной кислотой при нормальном давлении или оксидами азота, при 2-4,5 МПа и 150-220°C), так и в газовой (пары азотной кислоты, 0,7-1,0 МПа, 400-500°C)

Нитрование алкенов по радикальному механизму проводят 70-80%-ной азотной кислотой, иногда - разбавленной азотной кислотой в присутствии оксидов азота. Циклоалкены, диалкил- и диарилацетилены нитруют оксидом N2O4, при этом образуются цис- и транс-нитросоединения, побочные продукты образуются ввиду окисления и деструкции исходных субстратов.

Анион-радикальный механизм нитрования наблюдается при взаимодействии тетранитрометана солей моно-нитросоединений.

Реакция Коновалова(для алифатических углеводородов)

Реакция Коновалова - нитрование алифатических, алициклических и жирноароматических соединений разбавленной НNО3 при повышенном или нормальном давлении (свободнорадикальный механизм). Реакция с алканамивпервые осуществлена М. И. Коноваловым в 1888 году (по другим данным, в 1899 году) с 10-25%-ной кислотой в запаянных ампулах при температуре 140-150°C.

Обычно образуется смесь первичных, вторичных и третичных нитросоединений. Жирноароматические соединения легко нитруются в α-положение боковой цепи. Побочными реакциями являются образование нитратов, нитритов, нитрозо- и полинитросоединений.

В промышленности реакцию проводят в паровой фазе. Этот процесс разработан Х. Гессом (1930). Пары алкана и азотной кислоты на 0,2-2 секунды нагревают до 420-480°C, затем следует быстрое охлаждение. Метан даёт нитрометан, а его гомологи претерпевают также разрыв связей C--C, так что получается смесь нитроалканов. Её разделяют перегонкой.

Активный радикал в этой реакции - O2NO·, продукт термического расщепления азотной кислоты. Механизм реакции дан ниже.

2HNO3 -t°→ O2NO· + ·NO2 + H2O

R-H + ·ONO2 → R· + HONO2

R· + ·NO2 → R-NO2

Нитрование ароматических углеводородов.

Химические свойства[править | править исходный текст]

По химическому поведению нитросоединения обнаруживают определенное сходство с азотной кислотой. Это сходство проявляется при окислительно-восстановительных реакциях.

Восстановление нитросоединений (Реакция Зинина):

Реакции конденсации

Таутомерия нитросоединений.

Таутомери́я (от греч. ταύτίς - тот же самый и μέρος - мера) - явление обратимой изомерии, при которой два или более изомера легко переходят друг в друга. При этом устанавливается таутомерное равновесие, и вещество одновременно содержитмолекулы всех изомеров (таутомеров) в определённом соотношении.

Чаще всего при таутомеризации происходит перемещение атомовводорода от одного атома в молекуле к другому и обратно в одном и том же соединении. Классическим примером является ацетоуксусный эфир, представлющий собой равновесную смесь этилового эфира ацетоуксусной (I) и оксикротоновой кислот (II).

Таутомерия сильно проявляется для целого круга веществ, производных циановодорода. Так уже сама синильная кислота существует в двух таутомерных формах:

При комнатной температуре равновесие превращения циановодорода в изоциановодород смещено влево. Показано, что менее стабильный изоциановодород более токсичен.

Таутомерные формы фосфористой кислоты

Аналогичное превращение известно для циановой кислоты, которая известна в трёх изомерных формах, однако таутомерное равновесие связывает только две из них: циановую и изоциановуюкислоты:

Для обеих таутомерных форм известны сложные эфиры, то есть продукты замещения в циановой кислоте водорода на углеводородные радикалы. В отличие от указанных таутомеров третий изомер - гремучая (фульминовая) кислотане способна к самопроизвольному превращению в другие формы.

С явлением таутомерии связаны многие химико-технологические процессы, особенно в области синтезалекарственных веществ и красителей (производство витамина С - аскорбиновой кислоты в др.). Очень важна роль таутомерии в процессах, протекающих в живых организмах.

Амид-иминольную таутомерию лактамов называют лактам-лактимной таутомерией. Она играет большую роль в химии гетероциклических соединений. Равновесие в большинстве случаев смещено в сторону лактамной формы.

Особенно велик перечень органических загрязняющих веществ. Их разнообразие и большая численность делают практически невозможным контроль за содержанием каждого из них. Поэтому выделяют приоритетные загрязнители (около 180 соединений, объединенные в 13 групп): ароматические углеводороды, полиядерные ароматические углеводороды (ПАУ), пестициды (4 группы), летучие и малолетучие хлорорганические соединения, хлорфенолы, хлоранилины и хлорнитроароматические соединения, полихлорированные и полибромированные бифенилы, металлорганические соединения и другие. Источниками этих веществ являются атмосферные осадки, поверхностные стоки и производственные и коммунально-бытовые СВ.


Похожая информация.


Электронное строение нитрогруппы характеризуется наличие семи полярной (полуполярной) связи:

Нитросоединения жирного ряда – жидкости, не растворимые в воде, хорошо растворимы в спирте и эфире. Ароматические нитросоединения – жидкости или твердые вещества со специфическим запахом. Очень важным свойством нитросоединений – при восстановлении переходить в первичные амины.

С 6 Н 5 - NO 2 + 6 [H] С 6 Н 5 – NH 2 + 2 Н 2 О

Все нитросоединения ядовиты. Многие ароматические нитросоединения обладают взрывчатыми свойствами.

Химические свойства . Химическое поведение нитросоединений определяется наличием в молекуле нитрогруппы и ее особенно­стями, а также строением углеводородного радикала и их взаимным влиянием.


1. Восстановление нитросоединений . При восстановлении нитросоединений образуются первичные амины. Особенно большое промышленное значение имеет восстановление ароматических нит­росоединений:

В зависимости от условий восстановления (в кислой, щелочной или нейтральной средах) и характера восстановителя в ходе реакции образуются различные промежуточные продукты, многие из которых нашли широкое применение в технике.

2. Действие щелочей на нитросоединения . При введении в молекулу углеводорода нитрогруппа вследствие ее электроноакцепторных свойств резко повышает подвижность атомов водорода в α-положении. Первичные и вторичные нитросоединения приобретают способность растворяться в щелочах с образованием солей. При действии на соль кислоты образуется нитросоединение в ацинитро-форме:


которая затем переходит в нитро-форму:

Взаимное превращение двух форм нитросоединений является типичным примером динамической изомерии (таутомерии).

3. Реакции бензольного ядра ароматических нитросоединений , Нитрогруппа ориентирует вхождение второго заместителя при электрофильном замещении предпочтительно в ж-положение, при нуклеофильном - в о- и n-положения. Примером производных нитросоединений ароматических углеводородов является 2, 4, 6-тринитрофенол (пикриновая кислота):

Пикриновая кислота и ее соли применяются в качестве взрывчатых веществ и в аналитической химии.


Применение . Нитропарафины применяются в промышленности в качестве растворителей, добавок к дизельным топливам, снижающих температуру их воспламенения, при производстве взрывчатых веществ, пластмасс, в реактивной технике; в качестве полупродуктов в синтезе аминов, альдегидов и кетонов, жирных кислот. Ароматические нитросоединения широко применяются для получения красителей, пластмасс, душистых и взрывчатых веществ.

Отдельные представители.

Нитрометан С Н 3 -NO 2 . Жидкость, t кип -101,2 °С. Применяется в качестве растворителя, как ракетное топливо. Хлори­рованием нитрометана получают трихлорнитрометан (хлорпикрин) CCl 3 NO 2 , который применяется для борьбы с грызунами в хле­бохранилищах и складах, а также в разнообразных синтезах.

Нитроэтан СН 3 СН 2 -NO 2 . Жидкость, t кип = 113 °С *Кип=ПЗ°С. Приме­няется для получения гидроксиламина:

Нитроциклогексан C 6 СH 2 NО 2 . Жидкость, t кип =205 °С. Получают нитрованием циклогексана. Применяется в качестве полупродукта в синтезе капролактама.

Нитробензол C 6 H 6 NО 2 . Жидкость желтоватого цвета, с запахом горького миндаля, t кип = 211 °С. Плохо растворим в воде и хорошо растворим во многих органических растворителях. Исходный продукт в производстве анилина, широко применяется в анилино-красочной, парфюмерной, фармацевтической промышленностях.


Тринитротолуол ( тол, тротил)

Твердое вещество, t пл = 80°С. Широко применяется в качестве взрывчатого вещества.

Нитрогруппа имеет строение, промежуточное между двумя предельными резонансными структурами:

Группа планарна; атомы N и О имеют, sр 2 -гибридизацию, связи N-О равноценные и практически полуторные; длины связей, напр. для CH 3 NO 2 , 0,122 нм (N-О), 0,147 нм (С-N), угол ONO 127°. Система С-NO 2 плоская с низким барьером вращения вокруг связи С-N.

Н итросоединения, имеющие хотя бы один а-Н-атом, могут существовать в двух таутомерных формах с общим мезомерным анионом . О-форма наз. аци-нитросоединением или нитроновой к-той:



Известны разл. производные нитроновых к-т: соли ф-лы RR"C=N(O)O - M + (соли нитросоединений), эфиры (нитроновые эфиры) и т.д. Эфиры нитроновых к-т существуют в виде иис- и транс-изомеров. Существуют циклич. эфиры, напр. N-оксиды изоксазолинов.

Назв. нитросоединений производят прибавлением префикса "нитро" к назв. соединения-основы, по необходимости добавляя цифровой указатель, напр. 2-нитропропан. Назв. солей нитросоединений производят из назв. либо С-формы, либо аци-формы, или нитроновой к-ты.

Физические свойства. Простейшие нитроалканы-бесцв. жидкости . Физ. св-ва нек-рых алифатических нитросоединений приведены в таблице. Ароматические нитросоединения-бесцв. или светло-желтые высококипящие жидкости или низкоплавкие твердые в-ва, обладающие характерным запахом, плохо раств. в воде , как правило, перегоняются с паром .

ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ АЛИФАТИЧЕСКИХ НИТРОСОЕДИНЕНИЙ



* При 25°С. ** При 24°С. *** При 14°С.

В ИК спектрах нитросоединений присутствуют две характеристич. полосы, соответствующие антисимметричным и симметричным валентным колебаниям связи N-О: для первичных нитросоединений соотв. 1560-1548 и 1388-1376 см -1 , для вторичных 1553-1547 и 1364-1356 см -1 , для третичных 1544-1534 и 1354-1344см -1 ; для нитроолефинов RCH=CHNO 2 1529-1511 и 1351-1337 см -1 ; для динитроалканов RCH(NO 2) 2 1585-1575 и 1400-1300 см -1 ; для тринитроалканов RC(NO 2) 3 1610-1590 и 1305-1295 см -1 ; для ароматических нитросоединений 1550-1520 и 1350-1330 см -1 (электроноакцепторные заместители сдвигают высокочастотную полосу в область 1570 -1540, а электронодонорные - в область 1510-1490 см -1); для солей нитросоединений 1610-1440 и 1285-1135 см -1 ; нитроновые эфиры имеют интенсивную полосу при 1630-1570 см, связь С-N-слабую полосу при 1100-800 см -1 .

В УФ спектрах алифатических нитросоединений l макс 200-210 нм (интенсивная полоса) и 270-280 нм (слабая полоса); для солей и эфиров нитроновых к-т соотв. 220-230 и 310-320 нм; для гем-динитросоед. 320-380 нм; для ароматических нитросоединений 250-300 нм (интенсивность полосы резко снижается при нарушении копланарности).

В спектре ПМР хим. сдвиги a-Н-атома в зависимости от строения 4-6 м.д. В спектре ЯМР 14 N и 15 N хим. сдвиг 5 от - 50 до + 20 м.д.

В масс-спектрах алифатических нитросоединений (за исключением CH 3 NO 2) пик мол. иона отсутствует или очень невелик; осн. процесс фрагментации - отщепление NO 2 или двух атомов кислорода с образованием фрагмента, эквивалентного нитрилу . Для ароматических нитросоединений характерно присутствие пика мол. иона ; осн. пик в спектре соответствует иону , получаемому при отщеплении NO 2 .

Химические свойства. Нитрогруппа - одна из наиб. сильных электроноакцепторных групп и способна эффективно делокализовать отрицат. заряд. В ароматич. соед. в результате индукционного и особенно мезомерного эффектов она влияет на распределение электронной плотности : ядро приобретает частичный положит. заряд, к-рый локализован гл. обр. в орто- и пара-положениях; константы Гаммета для группы NO 2 s м 0,71, s n 0,778, s + n 0,740, s - n 1,25. Т. обр., введение группы NO 2 резко увеличивает реакц. способность орг. соед. по отношению к нуклеоф. реагентам и затрудняет р-ции с электроф. реагентами . Это определяет широкое применение нитросоединений в орг. синтезе: группу NO 2 вводят в нужное положение молекулы орг. соед., осуществляют разл. р-ции, связанные, как правило, с изменением углеродного скелета, и затем трансформируют в др. ф-цию или удаляют. В ароматич. ряду часто используют и более короткую схему: нитрование-трансформация группы NO 2 .

Мн. превращения алифатических нитросоединений проходят с предварит. изомеризацией в нитроновые к-ты или образованием соответствующего аниона . В р-рах равновесие обычно практически полностью сдвинуто в сторону С-формы; при 20 °С доля аци-формы для нитрометана 1 10 -7 , для нитропропана 3 . 10 -3 . Нитроновые к-ты в своб. виде, как правило, неустойчивы; их получают осторожным подкислением солей нитросоединений. В отличие от нитросоединений они проводят ток в р-рах и дают красное окрашивание с FeCl 3 . Аци-нитросоединения-более сильные СН-кислоты (рК а ~ 3-5), чем соответствующие нитросоединения (рК а ~ 8-10); кислотность нитросоединений повышается с введением электроноакцепторных заместителей в a-положение к группе NO 2 .

Образование нитроновых к-т в ряду ароматических нитросоединений связано с изомеризацией бензольного кольца в хиноидную форму; напр., нитробензол образует с конц. H 2 SO 4 окрашенный солеобразный продукт ф-лы I, о-нитротолуол проявляет фотохромизм в результате внутримол. переноса протона с образованием ярко-синего О-производного:



При действии оснований на первичные и вторичные нитросоединения образуются соли нитросоединений; амбидентные анионы солей в р-циях с электрофилами способны давать как О-, так и С-производ-ные. Так, при алкилировании солей нитросоединений алкилгалогенидами, триалкилхлорсиланами или R 3 O + BF - 4 образуются продукты О-алкилирования. Последние м.б. получены также при действии диазометана либо N,О-бис-(триметилсилил)аце-тамида на нитроалканы с рК а < 3 или нитроновые к-ты, напр.:



Ациклич. алкиловые эфиры нитроновых к-т термически нестабильны и распадаются по внутримол. механизму:

; эту

р-цию можно использовать для получения карбонильных соединений . Более стабильны силиловые эфиры. Об образовании продуктов С-алкилирования см. ниже.

Для нитросоединений характерны р-ции с разрывом связи С-N, по связям N=O, O=N О, C=N -> О и р-ции с сохранением группы NO 2 .

Р-ц и и с р а з р ы в о м с в я з и С-N. Первичные и вторичные нитросоединения при нагр. с минер. к-тами в присут. спиртового или водного р-ра щелочи образуют карбонильные соед. (см. Нефа реакция). Р-ция проходит через промежут. образование нитроновых к-т:



В качестве исходных соед. можно использовать силиловые нитроновые эфиры. Действие сильных к-т на алифатические нитросоединения может приводить к гидроксамовым к-там, напр.:



Метод используют в пром-сти для синтеза СН 3 СООН и гидроксиламина из нитроэтана . Ароматические нитросоединения инертны к действию сильных к-т.

При действии восстановителей (напр., TiCl 3 -H 2 O, VCl 2 -Н 2 О-ДМФА) на нитросоединения или окислителей (KMnO 4 -MgSO 4 , O 3) на соли нитросоединений образуются кетоны и альдегиды .

Алифатические нитросоединения, содержащие подвижный атом Н в b-положении к группе NO 2 , при действии оснований легко элиминируют ее в виде HNO 2 с образованием олефинов . Аналогично протекает термич. разложение нитроалканов при т-рах выше 450°. Вицинальные динитросоед. при обработке амальгамой Са в гексамстаноле отщепляют обе группы NO 2 , Ag-соли непредельных нитросоединений при потере групп NO 2 способны димеризоваться:



Нуклеоф. замещение группы NO 2 не характерно для нитроалканов, однако при действии тиолат-ионов на третичные нитроалканы в апротонных р-рителях группа NO 2 замещается на атом водорода . Р-ция протекает по анион-радикальному механизму. В алифатич. и гетероциклич. соед. группа NO 2 при кратной связи относительно легко замещается на нуклеофил, напр.:


В ароматич. соед. нуклеоф. замещение группы NO 2 зависит от ее положения по отношению к др. заместителям: группа NO 2 , находящаяся в мета-положении по отношению к электроноакцепторным заместителям и в орто- и пара-положениях к электронодонорным, обладает низкой реакц. способностью; реакц. способность группы NO 2 , находящейся в орто- и пара-положениях к электроноакцепторным заместителям, заметно увеличивается. В нек-рых случаях заместитель вступает в орто-положение к уходящей группе NO 2 (напр., при нагр. ароматических нитросоединений со спиртовым р-ром KCN, р-ция Рихтера):



Р-ц и и п о с в я з и N = O. Одна из важнейших р-ций-вос-становление, приводящее в общем случае к набору продуктов:



Азокси-(II), азо-(III) и гидразосоед. (IV) образуются в щелочной среде в результате конденсации промежуточно возникающих нитрозосоед. с аминами и гидроксиламинами . Проведение процесса в кислой среде исключает образование этих в-в. Нитрозосоед. восстанавливаются быстрее, чем соответствующие нитросоединения, и выделить их из реакц. смеси, как правило, не удается. Алифатические нитросоединения восстанавливаются в азокси- или азосоединения при действии алкоголятов Na, ароматические-при действии NaBH 4 , обработка последних LiAlH 4 приводит к азосоединениям . Электрохим. восстановление ароматических нитросоединений при определенных условиях позволяет получить любое из представленных производных (за исключением нитрозосоед.); этим же методом удобно получать гидроксиламины из мононитроалканов и амидоксимы из солей гем-динитроалканов:

Известно много методов восстановления нитросоединений до аминов . Широко используют железные опилки , Sn и Zn в присут. к-т; при каталитич. гидрировании в качестве катализаторов используют Ni-Ренея, Pd/C или Pd/PbCO 3 и др. Алифатические нитросоединения легко восстанавливаются до аминов LiAlH 4 и NaBH 4 в присут. Pd, амальгамами Na и Аl, при нагр. с гидразином над Pd/C; для ароматических нитросоединений иногда применяют ТlСl 3 , СrСl 2 и SnCl 2 , ароматич. поли-нитросоединения избирательно восстанавливаются до нитраминов гидросульфидом Na в СН 3 ОН. Существуют способы избират. восстановления группы NO 2 в полифункциональных нитросоединениях без затрагивания др. ф-ций.

При действии Р(III) на ароматические нитросоединения происходит последоват. дезоксигенирование группы NO 2 с образованием высокореакционноспособных нитренов. Р-цию используют для синтеза конденсир. гетероциклов, напр.:

В этих же условиях силиловые эфиры нитроновых к-т трансформируются в силильные производные оксимов . Обработка первичных нитроалканов РСl 3 в пиридине или NaBH 2 S приводит к нитрилам . Ароматические нитросоединения, содержащие в орто-положении заместитель с двойной связью или циклопропильный заместитель, в кислой среде перегруппировываются в о-нитрозокетоны, напр.:



Н итросоединения и нитроновые эфиры реагируют с избытком реактива Гриньяра, давая производные гидроксиламина :

Р-ции по связям O = N О и C = N О. Нитросоединения вступают в р-ции 1,3-диполярного циклоприсоединения , напр.:



Наиб. легко эта р-ция протекает между нитроновыми эфира-ми и олефинами или ацетиленами . В продуктах циклоприсоединения (моно- и бициклич. диалкоксиаминах) под действием нуклеоф. и электроф. реагентов связи N - О легко расщепляются, что приводит к разл. алифатич. и гетеро-циклич. соед.:



В препаративных целях в р-ции используют стабильные силиловые нитроновые эфиры.

Р-ц и и с с о х р а н е н и е м г р у п п ы NO 2 . Алифатические нитросоединения, содержащие a-Н-атом, легко алкилируются и ацилируются с образованием, как правило, О-производных. Однако взаи-мод. дилитиевых солей первичных нитросоединений с алкилгалогенидами, ангидридами или галогенангидридами карбоновых к-т приводит к продуктам С-алкилирования или С-ацилирования, напр.:

Известны примеры внутримол. С-алкилирования, напр.:

Первичные и вторичные нитросоединения реагируют с алифатич. аминами и СН 2 О с образованием р-аминопроизводных (р-ция Манниха); в р-ции можно использовать предварительно полученные метилольные производные нитросоединений или аминосоед.:



Активирующее влияние группы NO 2 на нуклеоф. замещение (особенно по орто-положению) широко используют в орг. синтезе и пром-сти. Р-ция протекает по схеме присоединение-отщепление с промежут. образованием s-комплек-са (комплекс Майзенхаймера). По этой схеме атомы галогенов легко замещаются на нуклеофилы:



Известны примеры замещения по анион-радикальному механизму с захватом электрона ароматич. соединением и выбросом галогенид-иона или др. групп, напр. алкокси, амино , сульфатной, NO - 2 . В последнем случае р-ция проходит тем легче, чем больше отклонение группы NO 2 от копланарности, напр.: в 2,3-динитротолуоле замещается в осн. группа NO 2 в положении 2. Атом Н в ароматических нитросоединениях также способен к нуклеоф. замещению-нитробензол при нагр. с NaOH образует o-нитрофенол.

Нитрогруппа облегчает перегруппировки ароматич. соед. по механизму внутримол. нуклеоф. замещения или через стадию образования карбанионов (см. Смайлса перегруп-пировка).

Введение второй группы NO 2 ускоряет нуклеоф. замещение. Н итросоединения в присут. оснований присоединяются к альдегидам и кетонам , давая нитроспирты (см. Анри реакции), первичные и вторичные нитросоединения-к соед., содержащим активир. двойную связь (р-ция Михаэля), напр.:


Первичные нитросоединения могут вступать в р-цию Михаэля со второй молекулой непредельного соед.; эту р-цию с послед. транс формацией группы NO 2 используют для синтеза поли-функцион. алифатич. соединений. Комбинация р-ций Анри и Михаэля приводит к 1,3-динитросоединениям, напр.:

К неактивир. двойной связи присоединяются лишь Hg-производные гем-ди- или тринитросоединений, а также IC(NO 2) 3 и C(NO 2) 4 , при этом образуются продукты С- или О-алкилирования; последние могут вступать в р-цию цикло-присоединения со второй молекулой олефина :



Легко вступают в р-ции присоединения нитроолефины: с водой в слабокислой или слабощелочной среде с послед. ретрореакцией Анри они образуют карбонильные соед. и нитроалканы; с нитросоединениями, содержащими a-Н-атом,-поли-нитросоединения; присоединяют и др. СН-кислоты, такие, как ацетилацетон , эфиры ацетоуксусной и малоновой к-т, реактивы Гриньяра, а также нуклеофилы типа OR - , NR - 2 и др., напр.:



Нитроолефины могут выступать в роли диенофилов или диполярофилов в р-циях диенового синтеза и циклоприсое-динения, а 1,4-динитродиены-в роли диеновых компонентов, напр.:



Получение. В пром-сти низшие нитроалканы получают жидкофазным (р-ция Коновалова) или парофазным (метод Хэсса) нитрованием смеси этана , пропана и бутана , выделяемых из природного газа или полученных переработкой нефти (см. Нитрование). Таким методом получают и высшие нитросоединения, напр. нитроциклогексан - полупродукт в произ-ве капролактама .

В лаборатории для получения нитроалканов применяют нитрование азотной к-той соед. с активир. метиленовой группой; удобный метод синтеза первичных нитроалканов -нитрование 1,3-индандиона с послед. щелочным гидролизом a-нитрокетона:



Алифатические нитросоединения получают также взаимод. AgNO 2 с алкилгалогенидами или NaNO 2 с эфирами a-галогенкарбо-новых к-т (см. Мейера реакция). Алифатические нитросоединения образуются при окислении аминов и оксимов ; окисление оксимов -способ получения гем-ди- и гем-тринитросоединений, напр.:

Лекция №40

НИТРОСОЕДИНЕНИЯ

Нитросоединения- производные углеводородов в которых один или несколько атомов водорода замещены нитрогруппой – NO 2 .

Нитроалканы - производные алканов, в которых один или несколько атомов водорода замещены нитрогруппой.

Общая формула мононитроалканов C n H 2n+1 NO 2 .

При образовании названий нитроалканов выбирается самая длинная углеводородная цепь, нумерация которой начинается с конца, к которому ближе расположена нитрогруппа. Последняя указывается с помощью приставки “нитро”. Например:

Методы синтеза

1. Нитрование алканов

Из метана получают нитрометан, при нитровании гомологов метана образуется смесь нитроалканов:

2. Алкилирование нитритов

R-Br + AgNO 2 ® R-NO 2 + AgBr

R-Br + NaNO 2 ® R-NO 2 + NaBr

Поскольку нитрит-анионы имеют амбидентный характер, для получения высокого выхода нитроалкана используют апротонные неполярные растворители и умеренные температуры.

Физические свойства и строение

Нитроалканы являются бесцветными или желтоватыми жидкостями или кристаллическими веществами со слабым запахом.

Для мононитроалканов характерны большие дипольные моменты. Причиной значительной полярности нитроалканов кроется в электронном строении нитрогруппы, содержащей семиполярную связь

Выравнивание связей N-O подтверждается рентгеноструктурным анализом: связь N-O в нитрогруппе короче связи N-O в гидроксиламине, но длинее связи в нитрозогруппе –N=O.

Высокая электроотрицательность атомов N и О, кратность связи N=O и ее семиполярный характер обусловливают значительные электроноакцепторные свойства нитрогруппы (-I и –М-эффекты).

Для нитроалканов характерно слабое поглощение в УФ-области 270-280 нм. Это связано с электронными переходами типа n ® p* неподеленной электронной пары атома кислорода на НСМО.

В ИК-спектрах наблюдаются максимумы поглощения связанные с симметричными и антисимметричными колебаниями связей N=O в областях 1370 см -1 и 1550 см -1 .

Химические свойства нитроалканов

Кислотность и таутомерные превращения нитроалканов

Первичные и вторичные нитроалканы являются СН- кислотами.


Кислотность обусловлена стабилизацией образующегося карбаниона за счет электроноакцепторных свойств нитрогруппы.

Кислотность мононитроалканов в водных растворах сравнима с кислотностью фенолов. Если у одного атома углерода находится две или три нитрогруппы, кислотность резко возрастает.

Анион нитроалакана является амбидентным подобно енолят-аниону. Например, при его протонировании может образовываться, кроме нитроалкана, другая таутомерная форма.

Таутомерную форму нитроалкана называю ациформой или нитроновой кислотой, которая в чистом виде не получена. Нитроновая кислота является ОН- кислотой средней силы (рКа=3,2).

Таким образом, нитросоединения следует рассматривать как таутомеры, реагирующие в нитро- и аци-формах.

В обычных условиях концентрация аци-формы ничтожна (10- 5 -10 -7 %). Равновесие смещается в правую сторону в щелочной среде вследствие образования солей.

Кристаллические соли щелочных и щелочно-земельных металлов устойчивы и хорошо растворимы в воде. Их иногда называют солями нитроновой кислоты. При подкислении растворов сначала образуется сама нитроновая кислота (ациформа), которая затем изомеризуется в нитроалкан.

Нитросоединения относятся к псевдокислотам, для которых характерно, что сами они нейтральны, не обладают электропроводностью, но тем не менее образуют нейтральные соли щелочных и щелочно-земельных металлов.

“Нейтрализация” нитросоединений основаниями происходит медленно, а истинных кислот - мгновенно.

Из других реакций нитроалканов отметим следующие.

Гидролиз в кислой среде с разрывом связей C-N.

Эта реакция используется в технике для синтеза гидроксиламина и его сульфата.

Замещение Н-атомов при a- С на галогены, остатки азотистой кислоты, альдегидов, кетонов и т.д.


Реакция с HNO 2 является качественной на нитроалканы. Третичные нитроалканы не реагируют, вторичные R 2 CH-NO 2 образуют нитрозонитроалканы


Первичные образуют с HNO 2 нитрооксимы (нитроловые кислоты)

Эти бесцветные соединения образуют со щелочами соли нитроловых кислот кроваво-красного цвета.

Ароматические нитросоединения

1. Методы получения

    1. Нитрование аренов

Это основной метод получения нитроаренов; подробно рассмотрен при изучении электрофильного ароматического замещения (см. лек.№18).

    1. Окисление ариламинов

Метод заключается в окислении первичных ароматических аминов пероксисоединениями. Наиболее эффективным реагентом для окисления является трифторпероксиуксусная кислота в хлористом метилене. Трифторпероксиуксусную кислоту получают непосредственно в реакционной смеси при взаимодействии ангидрида трифторуксусной кислоты и 90%-ной перекиси водорода. Этот метод имеет значение для синтеза нитросоединений, содержащих в орто - и пара -положениях к нитрогруппе другие электроноакцепторные группировки, например:



2. Физические свойства и строение

Нитроарены – желтые вещества со своеобразным запахом. Нитробензол - жидкость с запахом горького миндаля. Ди- и полинитроарены – кристаллические вещества.

Нитрогруппа является сильным электроноакцептором, поэтому нитроарены имеют большие дипольные моменты, направленные в сторону нитрогруппы.

Молекулы полинитроаренов являются сильными электроноакцепторами. Например, сродство к электрону 1,3-динитробензола составляет 1,35 эВ, а 1,3,5-тринитробензола – 1,75 эВ.

3. Химические свойства

Восстановление нитрогруппы

Продуктом исчерпывающего восстановления нитрогруппы в нитроаренах являются аминогруппа. В настоящее время для восстановления нитроаренов в ариламины в промышленных условиях применяется каталитическое гидрирование. В качестве катализатора используют медь на силикагеле в качестве носителя. Выход анилина над этим катализатором составляет 98 %.

В лабораторных условиях для восстановления нитрогруппы используют металлы в кислой или щелочной среде. Восстановление происходит в несколько стадий, последовательность которых в кислой и щелочной среде сильно различается.

При восстановление в кислой среде процесс протекает ступенчато и включает следующие стадии.


В кислой среде каждый из промежуточных продуктов быстро восстанавливается до конечного продукта анилина и их не удается выделить в индивидуальном виде. В качестве восстановителей применяют железо, олово или цинк и соляную кислоту. Эффективным восстановителем нитрогруппы является хлорид олова (II) в соляной кислоте. Конечным продуктом восстановления в кислой среде является амин, например:

C 6 H 5 NO 2 + 3Zn + 7HCl ® C 6 H 5 NH 2 HCl + 3ZnCl 2 + 2H 2 O

В нейтральном растворе, например, при восстановлении нитроаренов цинком в водном растворе хлорида аммония, процесс восстановления замедляется и останавливается на стадии образования арилгидроксиламина.

При восстановлении в щелочной среде в избытке восстановителя конечным продуктом восстановления нитроарена является гидразоарен (диарилгидразин)

Процесс может быть представлен в виде следующей последовательности превращений.



азоксиарен

азоарен г

гидразоарен

В щелочной среде процессы восстановления нитрозоарена и гидроксиламина замедляются настолько, что основным становится процесс их конденсации с образованием азоксиарена. Эта реакция по существу подобна присоединению азотистых оснований к карбонильной группе альдегидов и кетонов.


Азоксибензол при действии цинка в спиртовом растворе щелочи восстанавливается сначала до азобензола, а при действии избытка цинка далее до гидразобензола.

Сам азоксибензол может быть получен восстановлением нитробензола метилатом натрия в метиловом спирте.

В качестве восстановителей нитроаренов используют также сульфиды щелочных металлов и аммония.

4ArNO 2 + 6Na 2 S + 7H 2 O ® 4ArNH 2 + 3Na 2 S 2 O 3 + 6NaOH

Как следует из стехиометрического уравнения, в процессе восстановления сульфидом возрастает щелочность среды, что приводит к образованию азокси- и азосоединений в качестве побочных продуктов. Для того чтобы избежать этого в качестве восстановителей следует использовать гидросульфиды и полисульфиды, так как в этом случае щелочь не образуется.

ArNO 2 + Na 2 S 2 + H 2 O ® ArNH 2 + Na 2 S 2 O 3

Скорость процесса восстановления нитрогруппы сульфидами сильно зависит от электронных эффектов заместителей в ароматическом кольце. Так, м-динитробензол восстанавливается дисульфидом натрия в 1000 раз быстрее м-нитроанилина. Это используется для парциального восстановления нитрогрупп в полинитросоединениях.

Продукты неполного восстановления нитрогруппы

Нитрозоарены

Нитрозоарены легко восстанавливаются, поэтому их трудно получить восстановлением нитроаренов. Лучший метод получения нитрозоаренов состоит в окислении арилгидразинов.


Возможно непосредственное введение нитрозогруппы в ароматическое кольцо действием азотистой кислоты на фенолы и третичные ариламины (см. лек.№29 и 42)

В кристаллическом состоянии ароматические нитрозосоединения существуют в виде бесцветных димеров. В жидком и газообразном состоянии существует равновесие между димером и мономером. Мономеры окрашены в зеленый цвет.


Нитрозосоединения, подобно карбонильным, соединениям вступают в реакции с нуклеофилами. Например, при конденсации с арилгидроксиламинами образуются азоксисоединения (см. выше), а с ариламинами – азосоединения.

Арилгидроксиламины

Кроме описанного выше метода получения восстановлением нитроаренов в нейтральной среде арилгидроксиламины синтезируют путем нуклеофильного замещения в активированных аренах.

Как промежуточные продукты восстановления нитроаренов арилгидроксиламины могут быть окислены в нитрозосоединения (см. выше) и восстановлены в амины путем каталитического гидирирования или действием металла в кислой среде.

ArNHOH + Zn + 3HCl ® ArNH 2 . HCl + ZnCl 2 + H 2 O

В кислой среде арилгидроксиламины перегруппировываются аминофенолы, что используется для получения последних, например:

Азоксиарены

Кроме описанных выше методов – конденсации нитрозосоединений с арилгидроксиламинами и восстановления нитроаренов метилатом натрия, азоксиарены могут быть получены окислением азоаренов пероксисоединениями.

В щелочной среде азоксиарены восстанавливаются до азо- и далее гидразоаренов (см. выше).

Азоарены

Образуются при восстановлении нитроаренов, арилгидразинов и азокси- аренов в щелочной среде, например:

Несимметричные азосоединения получают конденсацией нитрозосоединений с аминами (см. выше). Важный метод синтеза азосоединений – реакция азосочетания будет подробно рассмотрен далее (см. лек.№43)

Азоарены существуют в виде цис - и транс - изомеров. При облучении более стабильный транс -изомер превращается в цис -изомер. Обратное превращение происходит при нагревании.


Азосоединения окрашены, многие из них используются в качестве красителей.

Гидразоарены

Это конечные продукты восстановления нитроаренов в щелочной среде. Гидразоарены – бесцветные кристаллические вещества, на воздухе окисляются в окрашенные азосоединения. В препаративных целях окисление проводят действием бромной воды

Ar-NHN-HAr + Br 2 + 2NaOH ® Ar-N=N-Ar + 2NaBr + 2H 2 O

При восстановлении в жестких условиях гидразоарены дают ариламины.

Важным свойством гидразосоединений является перегруппировка в 4,4 / -диаминобифенилы. Это превращение получило название бензидиновой перегруппировки. В настоящее время этим термином объединяют целую группу родственных перегруппировок, приводящих к образованию смеси орто - и пара -изомерных производных диаминобифенила.

При перегруппировке самого гидразобензола получается смесь диаминов, содержащая 70 % бензидина и 30 % 2,4 / -диаминобифенила.


Если пара -положение в одном из бензольных ядер гидразобензола занято каким-нибудь заместителем, продуктом перегруппировки оказывается производное дифениламина (так называемая семидиновая перегруппировка).

При изучении механизма бензидиновой и родственных перегруппировок было установлено, что они протекают внутримолекулярно. Если два различных гидразобензола подвергнуть совместной перегруппировке, то продукты перекрестной перегруппировки отсутствуют. Для перегруппировки самого гидразобензола было обнаружено, что скорость реакции пропорциональна концентрации гидразобензола и квадрату концентрации протона. Это означает, что перегруппировке подвергается дипротонированная форма гидразобензола. Было также показано, что монопротонированная форма гидразобензола превращается нацело в бензидин только при повторной обработке кислотой. Эти данные согласуются со следующим механизмом бензидиновой перегруппировки.


Предполагается, что переходное состояние образуется из такой конформации гидразобензола, в которой сильно сближены между собой два соответствующих атома углерода обоих бензольных колец. Образование новой углерод-углеродной связи и разрыв старой связи двух атомов азота происходит строго синхронно. Согласно современной терминологии бензидиновая перегруппировка относится к числу - сигматропных перегруппировок.

Известны также N- и О-нитро-соединения (см. и Нитраты органические).

Нитрогруппа имеет строение, промежуточное между двумя предельными резонансными структурами:

ФИЗИЧЕСКИЕ СВОЙСТВА НЕКОТОРЫХ АЛИФАТИЧЕСКИХ НИТРОСОЕДИНЕНИЙ


* При 25°С. ** При 24°С. *** При 14°С.

В ИК спектрах нитросоединений присутствуют две характеристич. полосы, соответствующие антисимметричным и симметричным валентным колебаниям связи N-О: для первичных нитросоединений соотв. 1560-1548 и 1388-1376 см -1 , для вторичных 1553-1547 и 1364-1356 см -1 , для третичных 1544-1534 и 1354-1344см -1 ; для нитроолефинов RCH=CHNO 2 1529-1511 и 1351-1337 см -1 ; для динитроалканов RCH(NO 2) 2 1585-1575 и 1400-1300 см -1 ; для тринитроалканов RC(NO 2) 3 1610-1590 и 1305-1295 см -1 ; для ароматических Н. 1550-1520 и 1350-1330 см -1 (электроноакцепторные заместители сдвигают высокочастотную полосу в область 1570 -1540, а электронодонорные - в область 1510-1490 см -1); для Н. 1610-1440 и 1285-1135 см -1 ; нитроновые эфиры имеют интенсивную полосу при 1630-1570 см, связь С-N-слабую полосу при 1100-800 см -1 .

В УФ спектрах алифатических нитросоединений l макс 200-210 нм (интенсивная полоса) и 270-280 нм (слабая полоса); для и эфиров нитроновых кислот соотв. 220-230 и 310-320 нм; для гем-динитросоед. 320-380 нм; для ароматических Н. 250-300 нм (интенсивность полосы резко снижается при нарушении копланарности).

В спектре ПМР хим. сдвиги a-Н-атома в зависимости от строения 4-6 м.д. В спектре ЯМР 14 N и 15 N хим. сдвиг 5 от - 50 до + 20 м.д.

В масс-спектрах алифатических нитросоединений (за исключением CH 3 NO 2) пик мол. отсутствует или очень невелик; осн. процесс фрагментации - отщепление NO 2 или двух с образованием фрагмента, эквивалентного . Для ароматических нитросоединений характерно присутствие пика мол. ; осн. пик в спектре соответствует , получаемому при отщеплении NO 2 .

Химические свойства. Нитрогруппа - одна из наиб. сильных электроноакцепторных групп и способна эффективно делокализовать отрицат. заряд. В ароматич. соед. в результате индукционного и особенно она влияет на распределение : ядро приобретает частичный положит. заряд, который локализован главным образом в орто- и пара-положениях; константы Гаммета для группы NO 2 s м 0,71, s n 0,778, s + n 0,740, s - n 1,25. Т. обр., введение группы NO 2 резко увеличивает реакц. способность орг. соед. по отношению к нуклеоф. реагентам и затрудняет реакции с электроф. реагентами. Это определяет широкое применение нитросоединений в орг. синтезе: группу NO 2 вводят в нужное положение орг. соед., осуществляют разл. реакции, связанные, как правило, с изменением углеродного скелета, и затем трансформируют в др. ф-цию или удаляют. В ароматич. ряду часто используют и более короткую схему: нитрование-трансформация группы NO 2 .

Мн. превращения алифатических нитросоединений проходят с предварит. в нитроновые кислоты или образованием соответствующего . В растворах равновесие обычно практически полностью сдвинуто в сторону С-формы; при 20 °С доля аци-формы для 1 10 -7 , для нитропропана 3 . 10 -3 . Нитроновые кислоты в своб. виде, как правило, неустойчивы; их получают осторожным подкислением Н. В отличие от Н. они проводят ток в растворах и дают красное окрашивание с FeCl 3 . Аци-Н.-более сильные СН-кислоты (рК а ~ 3-5), чем соответствующие нитросоединения (рК а ~ 8-10); кислотность нитросоединений повышается с введением электроноакцепторных заместителей в a-положение к группе NO 2 .

Образование нитроновых кислот в ряду ароматических Н. связано с бензольного кольца в хиноидную форму; например, образует с конц. H 2 SO 4 окрашенный солеобразный продукт ф-лы I, о-нитротолуол проявляет в результате внутримол. переноса с образованием ярко-синего О-производного:


При действии оснований на первичные и вторичные Н. образуются нитросоединений; амбидентные в реакциях с электрофилами способны давать как О-, так и С-производные. Так, при алкилировании Н. алкилгалогенидами, триалкилхлорсиланами или R 3 O + BF - 4 образуются продукты О-алкилирования. Последние м.б. получены также при действии диазометана либо N,О-бис-(триметилсилил)аце-тамида на нитроалканы с рК а


Ациклич. алкиловые эфиры нитроновых кислот термически нестабильны и распадаются по внутримол. механизму:

р-цию можно использовать для получения . Более стабильны силиловые эфиры. Об образовании продуктов С-алкилирования см. ниже.

Для нитросоединений характерны реакции с разрывом связи С-N, по связям N=O, O=N О, C=N -> О и реакции с сохранением группы NO 2 .

Р-ц и и с р а з р ы в о м с в я з и С-N. Первичные и вторичные Н. при нагр. с минер. кислотами в присутствии спиртового или водного раствора образуют карбонильные соед. (см. Нефа реакция). Р-ция проходит через промежут. образование нитроновых кислот:


В качестве исходных соед. можно использовать силиловые нитроновые эфиры. Действие сильных кислот на алифатические нитросоединения может приводить к гидроксамовым кислотам, например:


Метод используют в промышленности для синтеза СН 3 СООН и из нитроэтана. Ароматические нитросоединения инертны к действию сильных кислот.

Алифатические нитросоединения, содержащие подвижный Н в b-положении к группе NO 2 , при действии оснований легко элиминируют ее в виде HNO 2 с образованием . Аналогично протекает термич. разложение нитроалканов при температурах выше 450°. Вицинальные динитросоед. при обработке Са в гексамстаноле отщепляют обе группы NO 2 , Ag-соли непредельных нитросоединений при потере групп NO 2 способны димеризоваться:


Нуклеоф. замещение группы NO 2 не характерно для нитроалканов, однако при действии тиолат-ионов на третичные нитроалканы в апротонных растворителях группа NO 2 замещается на . Р-ция протекает по анион-радикальному механизму. В алифатич. и гетероциклич. соед. группа NO 2 при относительно легко замещается на нуклеофил, например:


В ароматич. соед. нуклеоф. замещение группы NO 2 зависит от ее положения по отношению к др. заместителям: группа NO 2 , находящаяся в мета-положении по отношению к электроноакцепторным заместителям и в орто- и пара-положениях к электронодонорным, обладает низкой реакц. способностью; реакц. способность группы NO 2 , находящейся в орто- и пара-положениях к электроноакцепторным заместителям, заметно увеличивается. В некоторых случаях заместитель вступает в орто-положение к уходящей группе NO 2 (напр., при нагр. ароматических Н. со спиртовым раствором KCN, реакция Рихтера):


Р-ц и и п о с в я з и N = O. Одна из важнейших реакций-вос-становление, приводящее в общем случае к набору продуктов:


Азокси-(II), азо-(III) и гидразосоед. (IV) образуются в щелочной среде в результате промежуточно возникающих нитрозосоед. с и . Проведение процесса в кислой среде исключает образование этих веществ. Нитрозосоед. восстанавливаются быстрее, чем соответствующие нитросоединения, и выделить их из реакц. смеси, как правило, не удается. Алифатические Н. восстанавливаются в азокси- или при действии Na, ароматические - при действии NaBH 4 , обработка последних LiAlH 4 приводит к . Электрохим. ароматических Н. при определенных условиях позволяет получить любое из представленных производных (за исключением нитрозосоед.); этим же методом удобно получать из мононитроалканов и амидоксимы из гем-динитроалканов:

Р-ции по связям O = N О и C = N О. Нитросоединения вступают в реакции 1,3-диполярного , например:


Наиб. легко эта реакция протекает между нитроновыми эфира-ми и или . В продуктах (моно- и бициклич. диалкоксиаминах) под действием нуклеоф. и электроф. реагентов связи N - О легко расщепляются, что приводит к разл. алифатич. и гетеро-циклич. соед.:


В препаративных целях в реакции используют стабильные силиловые нитроновые эфиры.

Р-ц и и с с о х р а н е н и е м г р у п п ы NO 2 . Алифатические Н., содержащие a-Н-атом, легко алкилируются и ацилируются с образованием, как правило, О-производных. Однако взаи-мод. дилитиевых первичных Н. с алкилгалогенидами, ангидридами или галогенангидридами карбоновых кислот приводит к продуктам С-алкилирования или С-ацилирования, например:

Известны примеры внутримол. С-алкилирования, например:

Первичные и вторичные нитросоединения реагируют с алифатич. и СН 2 О с образованием р-аминопроизводных (р-ция Манниха); в реакции можно использовать предварительно полученные метилольные производные нитросоединений или аминосоед.:



Легко вступают в реакции присоединения нитроолефины: с в слабокислой или слабощелочной среде с послед. ретрореакцией Анри они образуют карбонильные соед. и нитроалканы; с нитросоединениями, содержащими a-Н-атом,-поли-нитросоединений; присоединяют и др. СН-кислоты, такие, как , и малоновой кислот, реактивы Гриньяра, а также нуклеофилы типа OR - , NR - 2 и др., например:


Нитроолефины могут выступать в роли диенофилов или диполярофилов в реакциях и циклоприсое-динения, а 1,4-динитродиены-в роли диеновых компонентов, например:


Получение. В промышленности низшие нитроалканы получают жидкофазным (р-ция Коновалова) или парофазным (метод Хэсса) смеси , и , выделяемых из природного или полученных переработкой (см. Нитрование). Таким методом получают и высшие Н., например нитроциклогексан - полупродукт в произ-ве капролактама.

В лаборатории для получения нитроалканов применяют азотной кислотой соед. с активир. метиленовой группой; удобный метод синтеза первичных нитроалканов -нитрование 1,3-индандиона с послед. щелочным a-нитрокетона:


Алифатические нитросоединения получают также взаимод. AgNO 2 с алкилгалогенидами или NaNO 2 с эфирами a-галогенкарбо-новых кислот (см. Мейера реакция). Алифатические Н. образуются при и ; -способ получения гем-ди- и гем-тринитросоединений, например:


Нитроалканы м.б. получены нагреванием ацилнитратов до 200 °С.

Мн. методы синтеза нитросоединений базируются на олефинов , HNO 3 , нитрония, NO 2 Cl, орг. нитратами и т.п. Как правило, при этом получают смесь виц-динитросоединений, нитронитратов, нитронитритов, непредельных нитросоединений, а также продуктов сопряженного присоединения группы NO 2 и растворителя или продуктов их , например: