Пенетрантность, экспрессивность, норма реакции. Пенетрантность и экспрессивность. Что такое? Каким образом пенетрантность характеризует фенотипическое проявление гена

Ожидаемый на основе этого генотипа. Если все обладатели данного генотипа проявляют ожидаемый признак, говорят о полной пенетрантности. Неполная пенетрантность проявляется в случае многих доминантных аллелей и в случае гомозиготности по рецессивным аллелям. В качестве примера неполной пенетрантности иногда приводят полидактилию . Полагают, что дополнительный палец получается вследствие действия доминантного аллеля гена, который условно обозначим Р. Нормальные пять пальцев - следствие гомозиготности по рецессивному аллелю этого гена - р. Можно ожидать, что все гетерозиготы Рр будут проявлять этот признак. Однако на практике только часть гетерозигот имеют дополнительные пальцы. Процент таких фенотипически проявленных гетерозигот меньше, чем 100%.

Пенетрантность имеет качественный характер, она рассматривает долю индивидуумов, у которых признак проявляется, вне зависимости от интенсивности его проявления. Например, один и тот же аллель, ответственный за возникновение болезни может вызывать тяжелую или легкую форму заболевания у разных индивидуумов. При расчете пенетрантности оба варианта рассматривают как проявляющие признак. В этом отличие пенетрантности от экспрессивности (expressivity) .

Существующие определения этого термина неоднозначны, и их часто путают.

В медицине пенетрантность - это доля людей с данным генотипом, имеющих хотя бы один симптом заболевания (иными словами, пенетрантность определяет вероятность заболевания, но не его тяжесть). Некоторые считают, что пенетрантность изменяется с возрастом, например при болезни Гентингтона , однако обычно различия в возрасте начала заболевания приписывают изменчивой экспрессивности . Иногда пенетрантность зависит от факторов окружающей среды, например при недостаточности Г-6-ФД .

Пенетрантность может иметь важное значение при медико-генетическом консультировании в случае аутосомно-доминантных заболеваний . Здоровый человек, у которого один из родителей страдает подобным заболеванием, с точки зрения классического наследования не может быть носителем мутантного гена. Однако если учитывать возможность неполной пенетрантности, то картина совсем иная: внешне здоровый человек может иметь непроявляющийся мутантный ген, передать его детям.

Методы генодиагностики позволяют определить, есть ли у человека мутантный ген, и отличить нормальный ген от непроявляющегося мутантного гена.

На практике определение пенетрантности часто зависит от качества методов исследования, например, с помощью МРТ можно обнаружить симптомы болезни, которые раньше не выявляли.

С точки зрения медицины ген считают проявившимся даже при бессимптомном заболевании, если выявлены функциональные отклонения от нормы. С точки зрения биологии ген считают проявившимся, если он нарушает функции организма.

Хотя обычно говорят о пенетрантности и экспрессивности аутосомно-доминантных болезней , эти же принципы применимы при хромосомных , аутосомно-рецессивных , Х-сцепленных и полигенных болезнях .

Пенетрантностью аллеля называют частоту его проявления в популяции. Экспрессивностью аллеля называют выраженность его проявления у одной особи. При полной пенетрантности аллеля признак наблюдается у всех особей популяции. При неполной пенетрантности признак наблюдается не у всех особей.

Пенетрантность в генетике- это доля лиц с данным генотипом, у которых он фенотипически проявляется. Если болезнь проявляется не у всех лиц соответствующего генотипа, говорят о неполной пенетрантности гена.

100 р бонус за первый заказ

Выберите тип работы Дипломная работа Курсовая работа Реферат Магистерская диссертация Отчёт по практике Статья Доклад Рецензия Контрольная работа Монография Решение задач Бизнес-план Ответы на вопросы Творческая работа Эссе Чертёж Сочинения Перевод Презентации Набор текста Другое Повышение уникальности текста Кандидатская диссертация Лабораторная работа Помощь on-line

Узнать цену

Термин «пенетрантность» ввел Тимофеев-Рессовский. Под этим понятием понимают способность генов проявляться в генотипе; и выражается как частное от деления количества особей с признаком к общему числу особей имеющих ген этого признака. Примерами пенетрантности являются: окраска цветка китайской примулы зависит от температуры воздуха; признаки 100% пенетрантности - группа крови, праворукость.

Экспрессивность - степень проявления признака. Оба свойства зависят от внешних условий. Примерами экспрессивности являются: ген elony («e//е» гомозигота) - черный цвет тела у дрозофилы; серая окраска тела («+//+» гомозигота); если температура меньше 20°, то темно-серая окраска («+//е» гетерозигота); если больше 20°, то серая («+//е» гетерозигота); таким образом, низкая температура говорит о преобладание рецессивных генов, а высокая температура полудоминантных генов.

Множественный аллелизм.

Если ген имеет большое количество аллелей, то эту группу называют серией аллелей. Установлена серия аллелей гена, отвечающего за окраску глаз у дрозофилы: мутация белых глаз (white - белый (I хромосома)).

Р w//w (белая) х wa// (абрикосовая)

F1 w//wa(светло-желтая - компаунд); w// (белая)

Особи - гетерозиготы по данному гену (компаунд). У компаунда не наблюдается возврата к дикому типу, они (особи) имеют промежуточное проявление признаков. Отсутствие возврата к дикому типу является диагностическим признаком аллельности данных мутаций.

wa//wa - I хромосома (абрикосовые)

+//+ - III хромосома (абрикосовые)

+//+ - I хромосома (яркие)

st//st - III хромосома (яркие)

wa и st - неаллельные признаки

И + - дикий тип

C > ch > cch > cальбинос

Дикая гималайская шиншилловая альбинос

С х са - дикая форма

У гречихи и табака есть гены, отвечающие за несовместимость рыльца и пестика:

С1 С2 С3 С4 С5…

Р С1С2 х С1С2 Р С1С2 х С1С3

самоопыление невозможно частичная стерильность

Лекция по теме "Наследование признаков при моногибридном, дигибридном и полигибридном скрещивании. Взаимодействие между генами. Пенетрантность и экспрессивность генов", для специальности Лечебное дело, ОП. 05 ГЕНЕТИКА ЧЕЛОВЕКА С ОСНОВАМИ МЕДИЦИНСКОЙ ГЕНЕТИКИ

Скачать:


Предварительный просмотр:

ЛЕКЦИЯ

ТЕМА: Наследование признаков при моногибридном, дигибридном и полигибридном скрещивании. Взаимодействие между генами. Пенетрантность и экспрессивность генов.

ПЛАН.

  1. Генотип и фенотип.
  2. Взаимодействие аллельных и неаллельных генов: полное и неполное доминирование, кодоминирование, эпистаз, комплементарность, полимерия, плейотропия.
  1. Сущность законов наследования признаков у человека.

Основные закономерности наследования признаков в поколениях были открыты чешским исследователем Г. Менделем, опубликовавшим в 1866 г.

До Г. Менделя была общепринята теория так называемой «слитной» наследственности. Ее суть состояла в том, что при оплодотворении мужское и женское «начала» перемешивались «как краски в стакане воды», давая начало новому организму.

Г. Мендель заложил фундамент представлений о дискретном характере наследственного вещества и о его распределении при образовании половых клеток у гибридов.

Он в каждом эксперименте концентрировал внимание на одном признаке, а не на растении в целом, отбирал те признаки, по которым растения четко отличались.

Прежде чем скрещивать растения между собой он убеждался, что они принадлежат чистым линиям. Для этого Г. Мендель в течение двух лет разводил различные сорта гороха, чтобы отобрать те линии, где признак всегда воспроизводился в потомстве из поколения в поколение (окраска семядолей, расположение цветков, длина растения и др.).

В первых опытах Г. Мендель принимал во внимание только одну пару признаков. Такое скрещивание носит название моногибридного.

Моногибридным называется скрещивание, при котором учитываются закономерности наследования одной пары контрастных, альтернативных признаков.

Признак - любая особенность организма, т. е. любое отдельное его качество или свойство, по которому можно различить две особи. У растений это форма венчика (например, симметричный-асимметричный) или его окраска (пурпурный-белый), скорость созревания растений (скороспелость-позднеспелость), устойчивость или восприимчивость к заболеванию и т. д

  • Первоначально признаки называли аллелями. Позже слова «аллель» и «ген» стали употреблять как синонимы. Аллельные гены (гены, определяющие один и тот же признак) расположены в одном и том же локусе гомологичных хромосом. У одного диплоидного организма может быть не больше двух аллелей одного и того же гена. Напомним, что от каждого из родителей получен один ген.

Рисунок 16 Аллельные гены.

Моногибридное скрещивание .

При скрещивании растений, имеющих желтые семена, с растениями, имеющими зеленые семена в первом поколении гибридов, были получены растения только с желтыми семенами.

В потомстве не было переходных форм.

Они же в свою очередь, будучи скрещены между собой, дали потомство, состоящее из растений, как с желтыми, так и с зелеными семенами. Отношение желтых семян к зеленым было равно 3:1.

Путем обобщения ряда опытов по различным признакам гороха были сформулированы основные законы Менделя.

  1. Закон доминирования или закон единообразия гибридов первого поколения.

При скрещивании особей, отличающихся друг от друга по одному признаку, в первом поколении гибридов получаются единообразные потомки, схожие только с одним из родителей.

Соответствующий признак другого родителя не проявляется.

Проявившийся в первом поколении гибридов признак называется доминантным, а непроявившийся - рецессивным признаком.

У человека типичным примером доминантного признака является брахидактилия (равномерное укорочение пальцев), а рецессивного - отсутствие фермента фенилаланингидроксилазы, приводящее к развитию тяжелого заболевания - фенилкетонурии.

  1. Закон расщепления во втором поколении гибридов наблюдается появление особей с доминантными и рецессивными признаками в соотношении 3:1.

Г. Мендель ввел символы: А - для доминантного и а - для рецессивного признака, подразумевая, что сами признаки определяются дискретными факторами наследственности - задатками (позже они получили название гены).

Гаметы каждого из родителей несут по одному такому гену.

В опытах с горохом - в гаметах одного из родителей находится ген, обусловливающий желтую окраску семян, а другого - зеленую окраску семян. Такие соответствующие друг другу гены называются аллельными генами.

  • Аллель (от греч. а11е1оп - другой, иной) - одна из двух и более альтернативных форм гена, имеющая определенную локализацию на хромосоме и уникальную последовательность нуклеотидов.

Принято обозначать буквенными символами:

  1. родительские организмы - Р,
  2. первое поколение гибридов - F1 и второе поколение - F2 , полученное от скрещивания особей первого поколения между собой.

Родительские растения, принадлежащие к чистым линиям, имеют либо два доминантных (АА), либо два рецессивных (аа) аллеля и образуют только один тип гамет (А или а соответственно).

Такие организмы называют гомозиготными.

Все их потомство F1 будет нести как ген доминантного, так и ген рецессивного признака, т.е. оно будет гетерозиготным.

В буквенном изображении это выглядит следующим образом:


Если рассмотреть окраску семян гороха, то родительские желтые семена будут гомозиготами, в то время как желтые семена, полученные в результате скрещивания, будут гетерозиготами, т.е. они будут обладать разными генотипами (Аа).

У человека примером моногибридного скрещивания является большинство браков между гетерозиготными носителями рецессивных патологических аллелей, отвечающих за различные формы обменных нарушений (галактоземия, фенилкетонурия и др.)

Все описанное выше относится к наследованию альтернативных проявлений одного признака.

Дигибридное скрещивание .

  1. Закон независимого наследования признаков: при ди- и полигибридных скрещиваниях гибридов каждая пара признаков наследуется независимо друг от других, расщепляясь в соотношении 3:1, и может независимо комбинироваться с другими признаками.

В одном из опытов Г. Мендель скрещивал растения с круглыми желтыми (доминантные) семенами с растениями, семена которых были зелеными и морщинистыми (рецессивные).

Гены, обусловливающие круглую форму семян и их желтую окраску (обозначим их буквами К и Ж, соответственно), доминируют над своими аллелями, определяющими морщинистую форму (к) и зеленую окраску (ж).

Соотношение четырех типов семян во втором поколении гибридов F2 было следующим: соответственно 315 круглых желтых, 108 круглых зеленых, 101 морщинистых желтых и 32 морщинистых зеленых. Этот результат хорошо совпадал с предполагаемым распределением 9:3:3:1, если основываться на гипотезе о независимой передаче признаков, поскольку отношение 3:1 хорошо соблюдается для каждого отдельно взятого признака.

Аналогичным примером скрещивания двух гетерозигот у человека может служить брак двух близоруких индивидов с нормальной пигментацией, так как у человека ген близорукости (А) доминирует над нор м альным зрением (а), а ген, определяющий нормальную пигментацию (В), доминирует над альбинизмом (в). В подобном браке оба родителя будут иметь генотип АаВв и образовывать четыре типа гамет: АВ, Ав, аВ, ав. Расщепление по фенотипу у детей будет следующим: 9 - близорукий, с нормальной пигментацией; 3 - близорукий, альбинос; 3 - нормальное зрение, нормальная пигментация; 1 - нормальное зрение, альбинос. Но если рассматривать все потомство только по одной паре признаков, то оказывается что каждый признак расщепляется в соотношении 3:1, т.е. признаки ведут себя независимо.

  1. Генотип и фенотип.

Генотипом называют совокупность генов , характеризующую данный организм.

Фенотип - совокупность признаков , проявляющихся в результате действия генов в определенных условиях среды. Этот термин может употребляться и по отношению к одному из альтернативных признаков .

  1. Взаимодействие аллельных и неаллельных генов:

полное и неполное доминирование,

кодоминирование, эпистаз,

комплементарность,

полимерия, плейотропия.

Взаимодействие аллельных генов

Такая форма взаимодействия аллельных генов, как доминантность и рецессивность представляет собой пример аллельных взаимодействий.

Однако вскоре после вторичного открытия законов Менделя были обнаружены факты, указывающие на существование других форм межгенных взаимоотношений в системе генотипа.

Так, оказалось, что доминирование одних признаков над другими представляет собой широко распространенное, но не универсальное явление.

В некоторых случаях имеет место неполное доминирование : гибрид F1 характеризуется признаком промежуточным между родительскими. Таким примером является появление цветков львиного зева розовой окраски при скрещивании цветков красного и белого цвета. В данном случае различия окраски обусловлены парой аллельных генов, в которых отсутствует доминирование.

Многие, может быть даже все, гены у разных организмов существуют более чем в двух аллельных формах, хотя один диплоидный организм не может быть носителем более двух аллелей. Это явление множественного аллелизма.

Впервые множественные аллели были открыты в локусе white у дрозофилы Т. Морганом и его сотрудниками. Особенность аллельных отношений заключается в том, что аллели можно расположить в ряд в порядке убывания степени доминирования.

Так, ген красноглазости - дикого (наиболее распространенного в природе) типа - будет доминировать над всеми остальными аллелями. Всего их около 15-ти. Каждый последующий член серии аллелей будет доминировать над всеми остальными членами, кроме предыдущего. Существование множественных аллелей само по себе указывает на относительный характер доминирования, как и на то, что оно проявляется в конкретных условиях среды.

Имеются случаи, когда отношения доминантности и рецессивности отсутствуют и оба аллеля проявляются в фенотипе. Здесь речь идет о кодоминировании .

Например, если один из родителей имеет группу крови А, а другой - В, то в крови их детей присутствуют антигены, характерные и для группы А, и для группы В. Такие гены носят название кодоминантных генов. Они представлены двумя и большим количеством аллелей.

Взаимодействие неаллельных генов: комплементарность, эпистаз и полимерия.

Примером комплементарного взаимодействия генов у человека является образование в иммунокомпетентных клетках организма специфического белка интерферона, связанного с взаимодействием двух неаллельных генов, локализованных в разных хромосомах.

Эпистаз - подавление одного гена другим, неаллельным геном.

Ген подавитель - супрессор, действует на подавляемый ген по принципу, близкому к доминантности, - рецессивности. Разница в том, что они не являются аллельными, т.е. занимают различные локусы в гомологичных и негомологичных Х-хромосомах.

Примером эпистаза у человека является так называемый «бомбейский фенотип». Известно, что наследование групп крови АВО у человека находится под контролем одного гена (I), у которого различают 3 аллеля - 1 а , I b , I o . Для реализации информации каждого аллеля необходимо присутствие доминантного аллеля Н другого генного локуса.

Если индивид является гомозиготой по Н-системе (т.е. hh), то аллель I b системы АВО не может проявить свое действие. Человек с генетической конституцией ВВ и ВО должен иметь III группу крови. Если же он одновременно является гомозиготой hh, то в реакции агглютинации у него аллель В не проявится, и человек будет распознан как имеющий первую группу крови.

Полимерия.

О полимерии говорят в случае наличия нескольких генов, одинаково влияющих на один признак.

Их действие чаще всего бывает суммирующимся

Проявление. такого действия будет зависеть от числа доминантных аллелей.

Так, при аддитивном действии фенотип будет более выражен при генотипе ААВВ, чем при АаВв. Например, пигментация кожи у человека варьирует от белой до черной. От браков между неграми и белыми рождаются дети с промежуточным цветом кожи, так называемые мулаты. В случае браков между мулатами потомки могут обладать любой окраской кожи - от черной до белой. Предполагается, что разница в пигментации кожи белых и чернокожих людей обусловлена действием трех или четырех неаллельных генов, каждый из которых в количественном отношении на окраску кожи влияет примерно одинаково.

Плейотропное действие генов- независимое или автономное действие гена в разных органах и тканях, другими словами - влияние одного гена на формирование нескольких признаков.

Первичная плейотропия обусловлена биохимическими механизмами действия мутантного белка или фермента - первичных продуктов мутантных аллелей. Для иллюстрации этого положения приведем примеры.

Мутантные аллели различных генов, контролирующих синтез коллагена и фибриллина, приводят к нарушению свойств соединительной ткани.

Поскольку соединительная ткань является основой всех органов и тканей, то понятно множественное влияние этих мутаций на клиническую картину (фенотип) при таких наследственных заболеваниях соединительной ткани, как, например, синдром Элерса-Данло и синдром Марфана, проявляющийся, в частности, характерными изменениями костной системы, пролапсом митрального клапана сердца, расширением дуги аорты, подвывихом хрусталика (вследствие слабости цинновой связки).

Другим примером является множественное поражение организма при нейрофиб-роматозе, когда результатом первичного плейотропного действия мутантного гена будет поражение нервной и костной систем, кожи и органа зрения и другие симптомы.

Еще одним примером первичного плейотропного действия гена можно считать характерные симптомы такого наследственного синдрома, как синдром Барде-Бидла, проявляющийся сочетанием ожирения, шестипалости кистей и/или стоп, недоразвитием половых органов, умственной отсталостью и характерным поражением органа зрения у больных индивидов.

Вторичная плейотропия - поражения организма может быть обусловлена осложнениями первичных патологических процессов, между которыми можно проследить взаимосвязь.

Пример, при одном из моногенных, аутосомно-рецессивно наследуемых заболеваний - муковисцидозе - наблюдается ошибка в синтезе трансмембранного белка, обеспечивающего ионный транспорт в клетках экзокринных желез .

Нарушение ионного транспорта Na и Cl ведет к формированию густой слизи в бронхах, экзокринной части поджелудочной железы и/или других экзокринных желез (половых и потовых), что влечет за собой вторичные воспалительные процессы, закупорку выводных протоков, нарушение переваривания пищи и развитие вторичных воспалительных процессов.

  1. Пенетрантность и экспрессивность генов у человека.

Пенетрантность - вероятность проявления гена у его заведомых носителей. Если фенотипическое проявление наблюдают у всех носителей, говорят о полной, 100-процентной пенетрантности. Однако при многих заболеваниях такого не происходит, а наблюдается неполная пенетрантность. В этих случаях говорят о предрасположенности (к диабету, шизофрении, сердечно-сосудистым заболеваниям и пр.); даже носитель соответствующего гена может быть здоров. Современные методы диагностики позволяют во многих случаях выявить носительство дефектных генов.

Понятие экспрессивность отражает степень выраженности признака.

Экспрессивность гена характеризует разную степень выраженности заболевания при одном и том же генотипе.Экспрессивность гена характеризует разную степень выраженности заболевания при одном и том же генотипе.

Так, например, при одном из аутосомно-доминантных синдромов - синдроме Холт-Орама (синдром «рука-сердце») - характерное поражение костной системы может варьировать от незначительно недоразвитой лучевой кости до ее отсутствия с формированием лучевой косорукости.

Примером варьирующей экспрессивности заболевания являются также различия в тяжести течения такого частого наследственного аутосомно-доминантного заболевания, как нейрофиброматоз. Очень часто даже в одной семье имеются больные с легким течением (наличием пигментных пятен, небольшого количества нейрофибром, «веснушек» в складках кожи) и тяжелым течением заболевания (с опухолями ЦНС, озлокачествлением нейрофибром и другими грозными симптомами).

Практическое занятие

Решение задач, моделирующих моногибридное, дигибридное, полигибридное скрещивание


Фенотипическое проявление информации, заключенной в генотипе, характеризуется показателями пенетрантности и экспрессивности. Пенетрантностъ отражает частоту фенотипического проявления имеющейся в генотипе информации. Она соответствует проценту особей, у которых доминантный аллель гена проявился в признак, по отношению ко всем носителям этого аллеля. Неполная пенетрантность доминантного аллеля гена может быть обусловлена системой генотипа, в которой функционирует данный аллель и которая является своеобразной средой для него. Взаимодействие неаллельных генов в процессе формирования признака может привести при определенном сочетании их аллелей к непроявлению доминантного аллеля одного из них.

В рассмотренных выше примерах (см. разд. 3.6.5.2) наличие в генотипе одного из генов в рецессивном гомозиготном состоянии не давало возможности проявиться доминантному аллелю другого гена (альбинизм, бомбейский феномен). Известны также случаи, когда фенотипическому проявлению определенного аллеля препятствуют факторы окружающей организм среды. Например, у китайской примулы развитие или отсутствие красной окраски цветков зависит от температуры и влажности воздуха: при t = 5-20°С - красные цветы, при t = 30-35°С и повышенной влажности - белые. У кроликов гималайской окраски темная пигментация шерсти, развивающаяся в обычных условиях лишь на отдельных участках тела, при выращивании их при пониженной температуре может быть получена на всем теле.

Экспрессивность также является показателем, характеризующим фенотипическое проявление наследственной информации. Она характеризует степень выраженности признака и, с одной стороны, зависит от дозы соответствующего аллеля гена при моногенном наследовании или от суммарной дозы доминантных аллелей генов при полигенном наследовании, а с другой - от факторов среды. Примером служит интенсивность красной окраски цветков ночной красавицы, убывающая в ряду генотипов АА, Аа, аа, или интенсивность пигментации кожи у человека, увеличивающаяся при возрастании числа доминантных аллелей в системе полигенов от 0 до 8 (см. рис. 3.80). Влияние средовых факторов на экспрессивность признака демонстрируется усилением степени пигментации кожи у человека при ультрафиолетовом облучении, когда появляется загар, или увеличением густоты шерсти у некоторых животных в зависимости от изменения температурного режима в разные сезоны года.

Антимутационные механизмы

В результате генных мутаций изменяется смысл биологической информации. Последствия этого могут быть двоякого рода. В условиях обитания, изменяющихся незначительно, новая информация обычно снижает выживаемость. При резкой смене условий существования, при освоении новой экологической ниши наличие разнообразной информации полезно. В связи с этим интенсивность мутационного процесса в природных условиях поддерживается на уровне, не вызывающем катастрофического снижения жизнеспособности вида. Важная роль в ограничении неблагоприятных последствий мутаций принадлежит антимутационным механизмам, возникшим в эволюции.

Некоторые из этих механизмов рассмотрены выше. Речь идет об особенностях функционирования ДНК-полимеразы, отбирающей требуемые нуклеотиды в процессе репликации ДНК, а также осуществляющей самокоррекцию при образовании новой цепи ДНК наряду с редактирующей эндонуклеазой. Подробно разобраны различные механизмы репарации структуры ДНК, роль вырожденности генетического кода (см. разд. 3.4.3.2). Решением этой задачи служит триплетность биологического кода, которая допускает минимальное число замен внутри триплета, ведущих к искажению информации. Так, 64% замен третьего нуклеотида в триплетах не дает изменения их смыслового значения. Правда, замены второго нуклеотида в 100% приводят к искажению смысла триплета.

Фактором защиты против неблагоприятных последствий генных мутаций служит парность хромосом в диплоидном кариотипе соматических клеток эукариот. Парность аллелей генов препятствует фенотипическому проявлению мутаций, если они имеют рецессивный характер.

Определенный вклад в снижение вредных последствий генных мутаций вносит явление экстракопирования генов, кодирующих жизненно важные макромолекулы. Оно заключается в наличии в генотипе нескольких десятков, а иногда и сотен идентичных копий таких генов. Примером могут служить гены рРНК, тРНК, гистоновых белков, без которых жизнедеятельность любой клетки невозможна. При наличии экстракопий мутационное изменение в одном или даже нескольких одинаковых генах не ведет к катастрофическим для клетки последствиям. Копий, остающихся неизменными, вполне достаточно, чтобы обеспечить нормальное функционирование.

Существенное значение имеет также функциональная неравнозначность замен аминокислот в полипептиде. Если новая и сменяемая аминокислоты сходны по физико-химическим свойствам, изменения третичной структуры и биологических свойств белка незначительны. Так, мутантные гемоглобины HbS и НЬС человека отличаются от нормального гемоглобина НЬА заменой в 6-м положении р-цепи глутаминовой кислоты соответственно на валин или лизин. Первая замена резко изменяет свойства гемоглобина и приводит к развитию тяжелого заболевания - серповидно-клеточной анемии. При второй замене свойства гемоглобина изменяются в гораздо меньшей степени. Причиной этих различий является то, что глутаминовая кислота и лизин проявляют сходные гидрофильные свойства, тогда как валин - это гидрофобная аминокислота.