Почему для осуществления термоядерной реакции. Ядерные и термоядерные реакции

Происхождение термина

Для того, чтобы произошла ядерная реакция, исходные атомные ядра должны преодолеть так называемый "кулоновский барьер" - силу электростатического отталкивания между ними. Для этого они должны иметь большую кинетическую энергию . Согласно кинетической теории , кинетическую энергию движущихся микрочастиц вещества (атомов, молекул или ионов) можно представить в виде температуры, а следовательно, нагревая вещество можно достичь ядерной реакции. Именно эту взаимосвязь нагревания вещества и ядерной реакции и отражает термин термоядерная реакция.

Кулоновский барьер

Атомные ядра имеют положительный электрический заряд . На больших расстояниях их заряды могут быть экранированы электронами. Однако для того, чтобы произошло слияние ядер, они должны сблизиться на расстояние, на котором действует сильное взаимодействие . Это расстояние - порядка размера самих ядер и во много раз меньше размера атома . На таких расстояниях электронные оболочки атомов (даже если бы они сохранились) уже не могут экранировать заряды ядер, поэтому они испытывают сильное электростатическое отталкивание. Сила этого отталкивания, в соответствии с законом Кулона , обратно пропорциональна квадрату расстояния между зарядами. На расстояниях порядка размера ядер величина сильного взаимодействия, которое стремится их связать, начинает быстро возрастать и становится больше величины кулоновского отталкивания.

Таким образом, чтобы вступить в реакцию, ядра должны преодолеть потенциальный барьер . Например, для реакции дейтерий -тритий величина этого барьера составляет примерно 0,1 МэВ . Для сравнения, энергия ионизации водорода - 13 эВ. Поэтому вещество, участвующее в термоядерной реакции, будет представлять собой практически полностью ионизированную плазму .

Температура, эквивалентная 0,1 МэВ, приблизительно равна 10 9 , однако есть два эффекта, которые снижают температуру, необходимую для термоядерной реакции:

  • Во-первых, температура характеризует лишь среднюю кинетическую энергию, есть частицы как с меньшей энергией, так и с большей. На самом деле в термоядерной реакции участвует небольшое количество ядер, имеющих энергию намного больше средней (т. н. «хвост максвелловского распределения »).
  • Во-вторых, благодаря квантовым эффектам, ядра не обязательно должны иметь энергию, превышающую кулоновский барьер. Если их энергия немного меньше барьера, они могут с большой вероятностью туннелировать сквозь него.

Мюонный катализ

Термоядерная реакция может быть существенно облегчена при введении в реакционную плазму отрицательно заряженных мюонов .

Мюоны µ − вступая в взаимодействие с термоядерным топливом образуют мезомолекулы, в которых расстояние между ядрами атомов топлива несколько меньше, что облегчает их сближение и, кроме того, повышает вероятность туннелирования ядер через кулоновский барьер.

Число реакций синтеза X c , инициируемое одним мюоном, ограничено величиной коэффициента прилипания мюона. Экспериментально удалось получить значения X c ~100, т. е. один мюон способен высвободить энергию ~ 100 × Х МэВ, где Х - энергетически выход катализируемой реакции.

Пока величина освобождаемой энергии меньше, чем энергетические затраты на производство самого мюона (5-10 ГэВ). Таким образом, мюонный катализ пока энергетически невыгодный процесс. Коммерчески выгодное производство энергии с использованием мюонного катализа возможно при X c ~ 10 4 .

Термоядерные реакции

(1) D + T 4 He (3.5 MeV) + n (14.1 MeV)
(2) D + D T (1.01 MeV) + p (3.02 MeV) (50 %)
(3) 3 He (0.82 MeV) + n (2.45 MeV) (50 %)
(4) D + 3 He 4 He (3.6 MeV) + p (14.7 MeV)
(5) T + T 4 He + 2 n + 11.3 MeV
(6) 3 He + 3 He 4 He + 2 p
(7) 3 He + T 4 He + p + n + 12.1 MeV (51 %)
(8) 4 He (4.8 MeV) + D (9.5 MeV) (43 %)
(9) 4 He (0.5 MeV) + n (1.9 MeV) + p (11.9 MeV) (6 %)
(10) D + 6 Li 2 4 He + 22.4 MeV -
(11) p + 6 Li 4 He (1.7 MeV) + 3 He (2.3 MeV)-
(12) 3 He + 6 Li 2 4 He + p + 16.9 MeV
(13) p + 11 B 3 4 He + 8.7 MeV

Применение

Применение термоядерной реакции как практически неисчерпаемого источника энергии связано в первую очередь с перспективой освоения технологии управляемого термоядерного синтеза (УТС) . В настоящее время научная и технологическая база не позволяет использовать УТС в промышленных масштабах.

Вместе с тем, неуправляемая термоядерная реакция нашла своё применение в военном деле. Впервые термоядерное взрывное устройство было испытано в ноябре 1952 года в США, а уже в августе 1953 года в Советском Союзе испытали термоядерное взрывное устройство в виде авиабомбы. Мощность термоядерного взрывного устройства (в отличие от атомного) ограничена лишь количеством используемого для его создания материала, что позволяет создавать взрывные устройства практически любой мощности.

См. также

Примечания


Wikimedia Foundation . 2010 .

Общеизвестно, что при делении тяжелых ядер атомов во время ядерных реакций выделяется большое количество энергии. Однако удалось установить, что при слиянии легких ядер выделяется еще большее количество энергии. Такие реакции назвали термоядерными.

Природа термоядерных реакций

Термоядерные реакции – это реакции слияния легких ядер, протекающие при высоких температурах с выделением большого количества энергии. Синтез гелия из водорода протекает при t = 108 ˚C. При синтезе одного грамма гелия выделяется 4,2*1011 Дж. Эта энергия эквивалентна энергии, выделяющейся при полном делении 4 граммов урана или при сжигании 10 тонн дизтоплива. Термоядерные реакции можно встретить в звездах, где температура и давление вещества создают пригодные условия для осуществления слияний.

В термоядерной реакции синтеза гелия участвуют изотопы водорода: тритий и дейтерий:

(1^2)H+(1^3)H→(2^4)He+(0^1)n

При слиянии дейтерия и трития в ядро гелия выделяется нейтрон и энергия E = 17,6 МэВ.

Условия протекания термоядерных реакций

Для протекания термоядерных реакций нужны определенные условия. Требуется сблизить ядра указанных изотопов. Ядра атомов имеют положительный заряд, и, следовательно, при их сближении действуют кулоновские силы , расталкивающие эти заряды.

Соответственно, для слияния ядер необходимо преодолеть отталкивающие силы. Это возможно лишь в случае, если сами ядра обладают очень большой энергией, в первую очередь, кинетической энергией движения , то есть тогда, когда их скорость достаточно велика.

Ядра изотопов могут обладать такой скоростью только при очень высокой температуре. Необходимо придать частицам скорость достаточную, чтобы они могли приблизиться друг к другу на расстояние ≈ 10^-14 м. На таком расстоянии уже начинают действовать ядерные силы притяжения .

Подобной температуры можно добиться лишь при взрыве атомной бомбы. То есть, чтобы произвести термоядерную реакцию, надо произвести сначала ядерную реакцию, и тогда температуры будет достаточно для сближения ядер изотопов водорода и осуществления термоядерной реакции. Такой процесс был реализован в водородной бомбе – самой мощной из изобретенных человеком.

Управляемые термоядерные реакции

Однако на сегодняшний день неуправляемая термоядерная реакция – это уже не актуально. Необходимо освоить управляемую термоядерную реакцию, дабы преобразовывать получаемую энергию в электрическую. Но есть проблема. При достижении температуры, достаточной для осуществления реакции слияния легких ядер, вещество уже перестает быть не только твердым, жидким или газообразным, оно становится плазмой .

То есть, любой реактор моментально испарится при таких температурах. Здесь требуется совершенно иной подход. На сегодняшний день удается удерживать плазму на ограниченной территории с помощью сверхмощных электрических магнитов . Но полноценно использовать получаемую в результате термоядерной реакции энергию пока не удается.

Термоядерные реакции
Thermonuclear reactions

Термоядерные реакции − реакции слияния (синтеза) лёгких ядер, протекающие при высоких температурах. Эти реакции обычно идут с выделением энергии, поскольку в образовавшемся в результате слияния более тяжёлом ядре нуклоны связаны сильнее, т.е. имеют, в среднем, бoльшую энергию связи, чем в исходных сливающихся ядрах. Избыточная суммарная энергия связи нуклонов при этом освобождается в виде кинетической энергии продуктов реакции. Название “термоядерные реакции” отражает тот факт, что эти реакции идут при высоких температурах (> 10 7 –10 8 К), поскольку для слияния лёгкие ядра должны сблизиться до расстояний, равных радиусу действия ядерных сил притяжения, т.е. до расстояний ≈10 -13 см. А вне зоны действия этих сил положительно заряженные ядра испытывают кулоновское отталкивание. Преодолеть это отталкивание могут лишь ядра, летящие навстречу друг другу с большими скоростями, т.е. входящие в состав сильно нагретых сред, либо специально ускоренные.
Ниже приведены несколько основных реакций слияния ядер и указаны для них значения энерговыделения Q. d означает дейтрон − ядро 2 Н, t означает тритон − ядро 3 Н.

d + d → 3 He + n + 4.0 МэВ,
d + d → t + p + 3.25 МэВ,
t + d → 4 He + n + 17.6 МэВ,
3 He + d → 4 He + p + 18.3 МэВ.

Реакция слияния ядер начинается тогда, когда сталкивающиеся ядра находятся в области их взаимного ядерного притяжения. Чтобы так сблизиться, сталкивающиеся ядра должны преодолеть их взаимное дальнодействующее электростатическое отталкивание, т.е. кулоновский барьер. Скорость реакции слияния крайне мала при энергиях ниже нескольких кэВ, но она быстро растет с ростом кинетичской энергии ядер, вступающих в реакцию. Соответствующие эффективные сечения реакций в зависимости от энергии дейтрона приведены на рис. 1.

Рис. 1. Зависимость эффективных сечений реакции слияния
от энергии дейтрона.

Самоподдерживающиеся термоядерные реакции являются эффективным источником ядерной энергии. Однако осуществить их на Земле сложно, так как для этого нужно удерживать высокие концентрации ядер при огромных температурах. Необходимые условия для протекания самоподдерживающихся термоядерных реакций имеются в звёздах, где они являются главным источником энергии. Так внутри Солнца, где находятся ядра водорода при плотности ≈100 г/см 3 и температуре 10 7 К, идёт цепочка термоядерных реакций превращения четырёх протонов (ядер водорода) в ядро гелия-4 (4 Не). При каждом таком превращении выделяется энергия 26.7 МэВ. Эта цепочка реакций (называемая протон-протонной) начинается с реакции (1) и приведена на рисунке.

Протон-протонная цепочка.

На Земле самоподдерживающиеся термоядерные реакции с выделением огромной энергии осуществлялись в течение очень короткого времени (10 -7 –10 -6 сек) при взрывах водородных бомб. Одной из основных термоядерных реакций, обеспечивающих энерговыделение при таких взрывах, является реакция слияния двух тяжёлых изотопов водорода (дейтерия и трития) в ядро гелия с испусканием нейтрона.

Протекающая при очень высокой температуре (выше 108 К). При этом образуется большое количество энергии в виде нейтронов с высоким энергетическим показателем и фотонов - частиц света.

А следовательно, и большие энергии ядер, которые сталкиваются, необходимы для преодоления электростатического барьера. Этот барьер обусловлен взаимным отталкиванием ядер (как одноименно заряженных частиц). Иначе они не смогли бы сблизиться на расстояние, достаточное для действия ядерных сил (а это примерно 10-12 см).

Термоядерная реакция представляет собой процесс образования ядер, которые сильно связаны между собой, из более рыхлых. Почти все подобные реакции относятся к реакциям слияния (синтеза) более легких ядер в тяжелые.

Необходимая для преодоления взаимного отталкивания, должна увеличиваться по мере увеличения заряда ядра. Поэтому легче всего проходит синтез легких ядер, обладающих малым электрическим зарядом.

В природе термоядерная реакция может протекать лишь в недрах звезд. Для ее осуществления в земных условиях необходимо разогреть вещество одним из возможных способов:

  • ядерным взрывом;
  • бомбардировкой интенсивным пучком частиц;
  • мощным импульсом лазерного излучения или газовым разрядом.

Термоядерная реакция, которая идет в недрах звезд, играет архиважную роль в эволюции Вселенной. Во-первых, из водорода в звездах образуются ядра будущих химических элементов, а во-вторых, это энергетический источник звезд.

Термоядерные реакции на Солнце

На Солнце в качестве основного источника энергии выступают реакции протон-протонного цикла, когда из четырех протонов рождается одно ядро гелия. Энергия, которая выделяется в процессе синтеза, уносится образующими ядрами, нейтронами, нейтрино и квантами электромагнитного излучения. Изучая идущий от Солнца поток нейтрино, ученые могуть установить, природу и интеснивность ядерных реакций, которые происходят в его центре.

Средняя интенсивность энерговыделения Солнца по земным меркам ничтожна - всего 2 эрг/с*г (на 1 грамм солнечной массы). Эта величина гораздо меньше, чем скорость электровыделения в живом организме в процессе стандартного обмена веществ. И только благодаря огромной массе Солнца (2*1033 г) общий объем излучаемой им мощности составляет такую гигантскую величину, как 4*1028 Вт.

Благодаря огромным размерам и массе Солнца и остальных звезд, проблема удержания и термоизоляции плазмы решается в них идеально: реакции протекают в горячем ядре, а теплоотдача происходит с более холодной поверхности. Только поэтому звезды могут настолько эффективно производить энергию в столь медленных процессах, как протон-протонных цикл. В земных условиях такие реакции практически неосуществимы.

Термоядерная энергетика - основа будущего

На нашей планете есть смысл применять и использовать только наиболее эффективные из термоядерных реакций - прежде всего синтез гелия из ядер лейтерия и трития. Подобные реакции в сравнительно крупных масштабах осуществимы пока только в испытательных взрывах водородных бомб. Тем не менее, постоянно ведутся все новые разработки с целью эффективного получения мирной электроэнергии. Традиционная атомная энергетика использует реакцию распада, а в термоядерной энергетике задействован синтез. При этом термоядерная реакция имеет ряд неоспоримых преимуществ перед реакцией ядерного распада.

1. При термоядерных реакциях есть возможность избежать выделения радиоактивного излучения, поскольку энергетическим продуктом в данном случае является «чистая» энергия света.

2. По количеству получаемой энергии термоядерные процессы намного обгоняют традиционные атомные реакции, которые используются в современных реакторах.

3. Чтобы поддерживать реакцию ядерного распада, необходим постоянный контроль потока нейтронов, иначе может последовать неуправляемая цепная реакция, опасная для человечества. Для получения термоядерной энергии вместо потока нейтронов используется высокая температура, поэтому подобные риски исчезают.

4. Топливо для термоядерных реакций безвредно, в отличие от продуктов распада реакторов.

Не так давно американские ученые сумели создать рабочую модель термоядерной реакции, в которой энергоотдача в сто раз превышает энергозатраты. Это является хорошей заявкой на дальнейшее успешное "приручение" термоядерной энергетики.

Вы уже знаете, что в середине XX в. возникла проблема поиска новых источников энергии. В связи с этим внимание учёных привлекли термоядерные реакции.

  • Термоядерной называется реакция слияния лёгких ядер (таких как водород, гелий и др.), происходящая при температурах от десятков до сотен миллионов градусов

Создание высокой температуры необходимо для придания ядрам достаточно большой кинетической энергии - только при этом условии ядра смогут преодолеть силы электрического отталкивания и сблизиться настолько, чтобы попасть в зону действия ядерных сил. На таких малых расстояниях силы ядерного притяжения значительно превосходят силы электрического отталкивания, благодаря чему возможен синтез (т. е. слияние, объединение) ядер.

В § 58 на примере урана было показано, что при делении тяжёлых ядер может выделяться энергия. В случае с лёгкими ядрами энергия может выделяться при обратном процессе - при их синтезе. Причём реакция синтеза лёгких ядер энергетически более выгодна, чем реакция деления тяжёлых (если сравнивать выделившуюся энергию, приходящуюся на один нуклон).

Примером термоядерной реакции может служить слияние изотопов водорода (дейтерия и трития), в результате чего образуется гелий и излучается нейтрон:

Это первая термоядерная реакция, которую учёным удалось осуществить. Она была реализована в термоядерной бомбе и носила неуправляемый (взрывной) характер.

Как уже было отмечено, термоядерные реакции могут идти с выделением большого количества энергии. Но для того чтобы эту энергию можно было использовать в мирных целях, необходимо научиться проводить управляемые термоядерные реакции. Одна из основных трудностей в осуществлении таких реакций заключается в том, чтобы удержать внутри установки высокотемпературную плазму (почти полностью ионизированный газ), в которой и происходит синтез ядер. Плазма не должна соприкасаться со стенками установки, в которой она находится, иначе стенки обратятся в пар. В настоящее время для удерживания плазмы в ограниченном пространстве на соответствующем расстоянии от стенок применяются очень сильные магнитные поля.

Термоядерные реакции играют важную роль в эволюции Вселенной, в частности в преобразованиях химических веществ в ней.

Благодаря термоядерным реакциям, протекающим в недрах Солнца, выделяется энергия, дающая жизнь обитателям Земли.

Наше Солнце излучает в пространство свет и тепло уже почти 4,6 млрд лет. Естественно, что во все времена учёных интересовал вопрос о том, что является «топливом», за счёт которого на Солнце вырабатывается огромное количество энергии в течение столь длительного времени.

На этот счёт существовали разные гипотезы. Одна из них заключалась в том, что энергия на Солнце выделяется в результате химической реакции горения. Но в этом случае, как показывают расчёты, Солнце могло бы просуществовать всего несколько тысяч лет, что противоречит действительности.

Оригинальная гипотеза была выдвинута в середине XIX в. Она состояла в том, что увеличение внутренней энергии и соответствующее повышение температуры Солнца происходит за счёт уменьшения его потенциальной энергии при гравитационном сжатии. Она тоже оказалась несостоятельной, так как в этом случае срок жизни Солнца увеличивается до миллионов лет, но не до миллиардов.

Предположение о том, что выделение энергии на Солнце происходит в результате протекания на нём термоядерных реакций, было высказано в 1939 г. американским физиком Хансом Бете.

Им же был предложен так называемый водородный цикл , т. е. цепочка из трёх термоядерных реакций, приводящая к образованию гелия из водорода:

где - частица, называемая «нейтрино», что в переводе с итальянского означает «маленький нейтрон».

Чтобы получились два ядра , необходимые для третьей реакции, первые две должны произойти дважды.

Вы уже знаете, что в соответствии с формулой Е = mс 2 с уменьшением внутренней энергии тела уменьшается и его масса.

Чтобы представить, какое колоссальное количество энергии теряет Солнце в результате превращения водорода в гелий, достаточно знать, что масса Солнца ежесекундно уменьшается на несколько миллионов тонн. Но, несмотря на потери, запасов водорода на Солнце должно хватить ещё на 5-6 миллиардов лет.

Такие же реакции протекают в недрах других звёзд, масса и возраст которых сравнимы с массой и возрастом Солнца.

Вопросы

  1. Какая реакция называется термоядерной? Приведите пример реакции.
  2. Почему протекание термоядерных реакций возможно только при очень высоких температурах?
  3. Какая реакция энергетически более выгодна (в расчёте на один нуклон): синтез лёгких ядер или деление тяжёлых?
  4. В чём заключается одна из основных трудностей при осуществлении термоядерных реакций?
  5. Какова роль термоядерных реакций в существовании жизни на Земле?
  6. Что является источником энергии Солнца по современным представлениям?
  7. На какой период должно хватить запаса водорода на Солнце по подсчётам учёных?

Это любопытно...

Элементарные частицы. Античастицы

Частицы, из которых состоят атомы различных веществ - электрон, протон и нейтрон, - назвали элементарными. Слово «элементарный» подразумевало, что эти частицы являются первичными, простейшими, далее неделимыми и неизменяемыми. Но вскоре оказалось, что эти частицы вовсе не являются неизменяемыми. Все они обладают способностью превращаться друг в друга при взаимодействии.

Поэтому в современной физике термин «элементарные частицы» обычно употребляется не в своём точном значении, а для наименования большой группы мельчайших частиц материи, не являющихся атомами или ядрами атомов (исключение составляет протон, представляющий собой ядро атома водорода и в то же время относящийся к элементарным частицам).

В настоящее время известно более 350 различных элементарных частиц. Частицы эти очень разнообразны по своим свойствам. Они могут отличаться друг от друга массой, знаком и величиной электрического заряда, временем жизни (т. е. временем с момента образования частицы и до момента её превращения в какую-либо другую частицу), проникающей способностью (т. е. способностью проходить сквозь вещество) и другими характеристиками. Например, большинство частиц являются «коротко-живущими» - они живут не более двух миллионных долей секунды, в то время как среднее время жизни нейтрона, находящегося вне атомного ядра, 15 мин.

Важнейшее открытие в области исследования элементарных частиц было сделано в 1932 г., когда американский физик Карл Дейвид Андерсон обнаружил в камере Вильсона, помещённой в магнитное поле, след неизвестной частицы. По характеру этого следа (по радиусу кривизны, направлению изгиба и пр.) учёные определили, что он оставлен частицей, которая представляет собой как бы электрон с положительным по знаку электрическим зарядом. Эту частицу назвали позитроном.

Интересно, что за год до экспериментального открытия позитрона его существование было теоретически предсказано английским физиком Полем Дираком (существование именно такой частицы следовало из выведенного им уравнения). Более того, Дирак предсказал так называемые процессы аннигиляции (исчезновения) и рождения электрон-позитронной пары. Аннигиляция заключается в том, что электрон и позитрон при встрече исчезают, превращаясь в γ-кванты (фотоны). А при столкновении γ-кванта с каким-либо массивным ядром происходит рождение электрон-позитронной пары.

Оба эти процесса впервые удалось пронаблюдать на опыте в 1933 г. На рисунке 166 показаны треки электрона и позитрона, образовавшихся в результате столкновения γ-кванта с атомом свинца при прохождении γ-лучей сквозь свинцовую пластинку. Опыт проводился в камере Вильсона, помещённой в магнитное поле. Одинаковая кривизна треков свидетельствует об одинаковой массе частиц, а искривление в разные стороны - о противоположных знаках электрического заряда.

Рис. 166. Треки электрон-позитронной пары в магнитном поле

В 1955 г. была обнаружена еще одна античастица- антипротон (существование которой тоже вытекало из теории Дирака), а несколько позже - антинейтрон. Антинейтрон, так же как и нейтрон, не имеет электрического заряда, но он, бесспорно, относится к античастицам, поскольку участвует в процессе аннигиляции и рождения пары нейтрон-антинейтрон.

Возможность получения античастиц привела учёных к идее о создании антивещества. Атомы антивещества должны быть построены таким образом: в центре атома - отрицательно заряженное ядро, состоящее из антипротонов и антинейтронов, а вокруг ядра обращаются позитроны. В целом атом нейтрален. Эта идея тоже получила блестящее экспериментальное подтверждение. В 1969 г. на ускорителе протонов в г. Серпухове советские физики получили ядра атомов антигелия.

В настоящее время экспериментально обнаружены античастицы почти всех известных элементарных частиц.

Итоги главы. Самое главное

Ниже даны физические понятия и явления. Последовательность изложения определений и формулировок не соответствует последовательности понятий и т. п.

Перенесите в тетрадь названия понятий и в квадратные скобки впишите порядковый номер определения (формулировки), соответствующего данному понятию.

  • Радиоактивность ;
  • ядерная (планетарная) модель строения атома ;
  • атомное ядро ;
  • радиоактивные превращения атомных ядер ;
  • экспериментальные методы изучения частиц в атомной и ядерной физике ;
  • ядерные силы ;
  • энергия связи ядра ;
  • дефект масс атомного ядра ;
  • цепная реакция ;
  • ядерный реактор ;
  • экологические и социальные проблемы, возникающие при использовании АЭС ;
  • поглощённая доза излучения .
  1. Регистрация частиц с помощью счётчика Гейгера, изучение и фотографирование треков частиц (в том числе участвовавших в ядерных реакциях) в камере Вильсона и пузырьковой камере.
  2. Силы притяжения, действующие между нуклонами в ядрах атомов и значительно превосходящие силы электростатического отталкивания между протонами.
  3. Минимальная энергия, необходимая для расщепления ядра на отдельные нуклоны.
  4. Самопроизвольное излучение атомами некоторых элементов радиоактивных лучей.
  5. Устройство, предназначенное для осуществления управляемой ядерной реакции.
  6. Состоит из нуклонов (т. е. из протонов и нейтронов).
  7. Радиоактивные отходы, возможность аварий, содействие распространению ядерного оружия.
  8. Атом состоит из расположенного в его центре положительно заряженного ядра, вокруг которого на расстоянии, значительно превышающем размер ядра, обращаются электроны.
  9. Превращение одного химического элемента в другой при α- или β-распаде, в результате которого ядро исходного атома претерпевает изменения.
  10. Разность между суммой масс нуклонов, образующих ядро, и массой этого ядра.
  11. Самоподдерживающаяся реакция деления тяжёлых ядер, в которой непрерывно воспроизводятся нейтроны, делящие всё новые и новые ядра.
  12. Энергия ионизирующего излучения, поглощённая излучаемым веществом (в частности, тканями организма) и рассчитанная на единицу массы.

Проверь себя