Понятие о лимбической системе. Лимбическая система мозга: строение и функционирование

ЛИМБИЧЕСКАЯ СИСТЕМА И РЕТИКУЛЯРНАЯ ФОРМАЦИЯ

    Структуры лимбической системы

    Ретикулярная формация мозга

Вопрос_1

Структуры лимбической системы

Название лимбическая система получила от латинского слова limbus

край или граница.

Определение_1

Лимбическая система представляет собой совокупность подкорковых и корковых структур головного мозга , которая охватывает верхнюю часть ствола головного мозга.

Первую характеристику этой структуре дал французский физиолог Поль Брока (1878 г.). Он рассматривал филогенетически старые области мозга, расположенные вокруг мозгового ствола, и назвал ее «большой лимбической долей». В последствие эту область стали обозначать как «обонятельный мозг», что не отражает ведущей функции этой структуры в организации сложных поведенческих актов.

Обонятельный мозг – филогенетически самая древняя часть переднего мозга, которая возникла в связи с развитием обоняния. Так, например, у рыб обонятельный мозг практически полностью составляет передний мозг. У млекопитающих эта область переднего мозга переходит в подчинение коре полушарий, и вытесняется на нижнюю и медиальную поверхность полушарий переднего мозга. В обонятельном мозге условно выделяют периферический и центральный отделы.

К периферическому отделу относятся структуры древней коры (палеокертекс):

    обонятельную луковицу (bulbus olfactorius )

    обонятельный тракт (tractus olfactorius )

    обонятельный треугольник (trigonum olfactorium )

    переднее продырявленное вещество (substantia perforata anterior )

К центральному отделу относятся структуры старой коры (архиокортекса):

    сводчатая извилина (gyrus fornicatus )

    зубчатая извилина (gyrus dentatus )

    гиппокамп (hippocampus )

    миндалевидное тело (corpus amygdaloideum )

    мамиллярные тела (corpus mamillare )

Выявление роли данных образований в регуляции вегетативно-висцеральных функций повлекло возникновение термина «висцеральный мозг» (Пауль Мак-Лин, 1949). Дальнейшее уточнение анатомо-функциональных особенностей и физиологической роли этих структур привело к употреблению определения – «лимбическая система».

Сводчатая извилина имеет кольцевидную форму, огибает мозолистое тело и расположена на медиальной поверхности полушарий мозга. Сводчатая извилина состоит из трех частей: поясной извилина, перешейка и парагиппокампальной извилины. Сверху поясную извилину ограничивает поясная борозда, а снизу борозда мозолистого тела. Сзади, на уровне теменно-затылочной борозды поясная борозда переходит в перешеек свода, переходящий в извилину гиппокампа. Извилина гиппокампа, или парагиппокампальная извилина у переднего продырявленного вещества загибается в виде крючка (корковый центр обонятельного анализатора).

Рисунок 1 – Основные структуры лимбической системы

Гиппокамп (аммонов рог) – это парное образование в головном мозге позвоночных, которое является основной частью архиокортекса – старой коры и лимбической системы млекопитающих. Впервые гиппокамп появился у двоякодышащих рыб и безногих амфибий. Гиппокамп земноводных надстраивался над гипоталамусом, у пресмыкающихся появились связи между гиппокампом и гипоталамусом, а у млекопитающих возникли связи с амигдалярным комплексом базальных ганглиев головного мозга. В результате развития архиокортекса и возникла лимбическая система.

Зубчатая извилина представляет скрученную часть коры височной доли, которая примыкает к гиппокампальной борозде. Миндалевидное тело – это группа ядер, которые расположены внутри височной доли мозга, и относящейся одновременно к базальным ганглиям и лимбической системе. Мамиллярные тела – это система толстых миелинизированных волокон и ядерных образований, которые входят в состав гипоталамуса промежуточного мозга и лимбической системы. Мамилярные тела принимают волокна от коры больших полушарий и мозжечка и оказывают тормозящее влияние на структуры лимбической системы.

Свод (fornix ) – структура обеспечивающая соединение гиппокампа с мамиллярными телами. Она состоит из двух дугообразных тяжей, имеет столбы, тело, две ножки и спайку, соединяющую ножки свода. Каждая ножка, спускается вниз и переходит в бахрому гиппокамп.

Кроме указанных структур в лимбическую систему в настоящее время включают гипоталамус и ретикулярную формацию среднего мозга.

Лимбическая система имеет кольцевую структуру, афферентные входы осуществляются от различных областей головного мозга, через гипоталамус, ретикулярную формацию и волокна обонятельного нерва, которые считаются главными источниками ее возбуждения. Эфферентные выходы из лимбической системы осуществляются через гипоталамус на вегетативные и соматические центры ствола мозга и спинного мозга.

Рисунок 2 – Схема основных внутренних связей лимбической системы.

А – круг Пейпеца, Б – круг Наута; ГТ/МТ – мамилярные тела гипоталамуса, СМ – средний мозг (по В.М. Смирнову)

Особенностью лимбической системы является то, что между ее структурами имеются простые двусторонние связи и сложные пути, образующие множество замкнутых кругов. Такая организация создает условия для длительного циркулирования одного и того же возбуждения в системе – реверберации возбуждения, и тем самым служит для сохранения в ней единого состояния и навязывания этого состояния другим системам мозга.

В настоящее время хорошо известны связи между структурами мозга, организующие круги, имеющие свою функциональную специфику. К ним относится круг Пейпеца (гиппокамп - сосцевидные тела - передние ядра таламуса - кора поясной извилины - парагиппокампова извилина - гиппокамп). Этот круг имеет отно­шение к памяти и процессам обучения. Другой круг, круг Наута (миндалевидное тело - гипоталамус - мезенцефальные структуры - миндалевидное тело) регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения.

Вопрос_2

Ретикулярная формация мозга

Ретикулярная формация (лат. reticulum – сетка, formatio – образование) – это участок ствола головного мозга, состоящий из диффузного скопления нейронов с разветвлёнными аксонами и дендритами, представляющих единый комплекс. Ретикулярная формация осуществляет активацию коры головного мозга и контролирует рефлекторную деятельность спинного мозга. Эта сеть нейронов располагается в самой большой части мозгового ствола. Она берет начало из нижней части продолговатого мозга и протягивается до ядер таламуса.

Рисунок 3 – Ретикулярная формация в структуре мозга

Термин «ретикулярная формация» ввел немецкий анатом и гистолог Отто Дейтерс. Он описал сетевидное образование, расположенное в центральных отделах стволовой части мозга (продолговатом и среднем мозге, зрительных буграх). В ретикуляной формации можно выделить две морфологические части – «белую» ретикулярную формацию (с преобладанием миелинизированных волокон) и «серую» ретикулярную формацию (состоящую из клеток и слабо миелинизированных волокон). РФ образована группами мелких, средних и крупных мультиполярных вставочных нейронов с различным характером ветвления дендритов и аксонов, содержащих различные нейромедиаторы. Диффузно расположенные элементы сменяются участками отдельных ядерных скоплений.

Нейроны ретикулярной формации характеризуются большим количеством афферентных связей, идущих от сенсорных образований. Их отростки направляются в кору больших полушарий, в ядра различных отделов головного мозга и мозжечка. Восходящие проекции обеспечивают активирующие влияние ретикулярной формации на высшие центры нервной системы. Нисходящие проекционные пути ретикулярной формации рассматривают как систему, угнетающую активность нижележащих центров. Важной особенностью ретикулярной формации является существование в ней большого количества ретикулярных нейронов, посылающих одновременно крупные аксоны в спинной мозг и таламус. Основной объем проекций представлен волокнами ретикулоспинального тракта, который угнетает активность мотонейронов спинного мозга. Основные медиаторы ретикулярной формации: ацетилхолин, норадренолин, дофамин, серотонин.

Открытие функции ретикулярной формации, приписывается Джузеппе Моруцци (Giuseppe Moruzzi) и Горацию Магоуну (Horace Magoun). Эти исследователи обнаружили в 1949 году, что при электрической стимуляции ретикулярной формации, у подопытных животных, находящихся под наркозом, на ЭЭГ волновые активность сна сменяется на волновую активность бодрствования.

Ретикулярная формация приписывают участие в восприятии боли агрессивном и половом поведении.

Лимбическая система (limbicus - кайма) - комплекс структур головного мозга (рис. 11), имеющих отношение к эмоциям, сну, бодрствованию, вниманию, памяти, вегетативной регуляции, мотивациям, внутренним побуждениям; мотивация включает в себя сложнейшие инстинктивные и эмоциональные реакции, например пищевые, оборонительные и др. Термин «лимбическая система» введен Мак Лейном (Mac Lean) в 1952 г.

Эта система окружает ствол мозга как оболочка. Ее обычно называют «обонятельным мозгом», так как она непосредственно связана с обонянием и осязанием. Медицинские препараты, влияющие на настроение, воздействуют именно на лимбическую систему, и поэтому те люди, которые их принимают, ощущают эмоциональный подъем или депрессию.

Лимбическая система состоит из зрительного бугра, гипоталамуса, гипофиза, гиппокампа, шишковидного тела, миндалевидного тела и ретикулярной формации. Наличие функциональных связей лимбических структур с ретикулярной формацией позволяет говорить о так называемой лимбико-ретикулярной оси, которая является одной из важнейших интегративных систем организма.

Зрительный бугор (таламус) - парное образование промежуточного мозга. Таламус правого полушария отделен от таламуса левого третьим желудочком. Зрительный бугор является переключающей «станцией» всех чувствительных путей (болевые, температурные, тактильные, вкусовые, висцеральные). В каждое ядро таламуса поступают импульсы с противоположной стороны тела, лишь область лица имеет в зрительном бугре двусторонние представительства. Зрительный бугор участвует также в аффективно-эмоциональной деятельности. Поражение отдельных ядер таламуса приводит к уменьшению чувства страха, тревоги и напряженности, а также к снижению интеллектуальных способностей, вплоть до развития слабоумия и нарушения процессов сна и бодрствования. Клинические симптомы при полном поражении таламуса характеризуются развитием так называемого «таламического синдрома». Этот синдром впервые подробно описан Ж. Дежерином и Г. Руси в 1906 г. и проявляется снижением всех видов чувствительности, жестокими болями на противоположной половине тела и нарушением познавательных процессов (внимание, память, мышление и др.)

Гипоталамус (гипоталамическая область) - отдел промежуточного мозга, расположенный книзу от таламуса. Гипоталамус является высшим вегетативным центром, регулирующим работу внутренних органов, многих систем организма и обеспечивающий постоянство внутренней среды организма (гомеостаз). Гомеостаз - поддержание оптимального уровня обмена веществ (белкового, углеводного, жирового, минерального, водного), температурного баланса организма, нормальной деятельности сердечно-сосудистой, дыхательной, пищеварительной, выделительной и эндокринной систем. Под контролем гипоталамуса находятся все железы внутренней секреции, в частности гипофиз. Тесная взаимосвязь гипоталамуса и гипофиза образует единый функциональный комплекс - гипотала-мо-гипофизарную систему. Гипоталамус - одна из главных структур, участвующих в регуляции смены сна и бодрствования. Клиническими исследованиями установлено, что повреждение гипоталамуса приводит к летаргическому сну. С физиологической точки зрения гипоталамус участвует в формировании поведенческих реакций организма. Гипоталамусу принадлежит главная роль в формировании основных влечений организма (пищевое, питьевое, половое, агрессивное и др.), мотивационной и эмоциональной сферах. Гипоталамус участвует также в формировании таких состояний организма, как голод, страх, жажда и др. Таким образом, гипоталамус осуществляет вегетативную регуляцию внутренних органов, поддерживает постоянство внутренней среды организма, температуру тела, управляет кровяным давлением, подает сигналы о голоде, жажде, страхе и является источником сексуальных чувств.


Поражение гипоталамической области и гипоталамо-гипофизарной системы, как правило, приводит прежде всего к нарушению постоянства внутренней среды организма, что сопровождается самыми различными клиническими симптомами (повышение артериального давления, сердцебиение, усиление потоотделения и мочеиспускания, появление чувства страха смерти, болевого синдрома в области сердца, нарушение работы пищеварительного тракта), а также рядом эндокринных синдромов (Иценко-Кушинга, гипофизарная кахексия, несахарный диабет и др.).

Гипофиз. Его иначе называют - мозговой придаток, питуитарная железа - железа внутренней секреции, вырабатывающая ряд пептидных гормонов, регулирующих функцию эндокринных желез (половых, щитовидной железы, коры надпочечников). Ряд гормонов передней доли гипофиза называют тройными (соматотропный гормон и др.). Они имеют отношение к росту. Так, поражение этой области (в частности при опухоли - ацидофильная аденома) приводит к гигантизму или акромегалии. Недостаточность этих гормонов сопровождается гипофизарной карликовостью. Нарушение продукции фолликулостимулирующего и лютеинизирующего гормонов является причиной половой недостаточности или расстройств половых функций.

Иногда после поражения гипофиза расстройство регуляции половых функций сочетается с нарушениями жирового обмена (адипозо-генитальная дистрофия, при которой снижение половой функции сопровождается ожирением тазовой области, бедер и живота). В других случаях, наоборот, развивается преждевременное половое созревание. При поражениях нижних отделов гипофиза развивается нарушение функции коры надпочечников, что приводит к ожирению, усиленному росту волос, изменению голоса и др. Гипофиз, тесно связанный через гипоталамус со всей нервной системой, объединяет в функциональное целое эндокринную систему, которая участвует в обеспечении постоянства внутренней среды организма (гомеостаз), в частности постоянства гормонов в крови и их концентраций.

Поскольку гипофиз является важнейшим звеном в системе работы внутренних органов, нарушение его функции ведет к нарушениям вегетативной нервной системы, регулирующей функционирование внутренних органов. Основными причинами патологии гипофиза являются опухоли, инфекционные заболевания, сосудистая патология, травмы черепа, венерические болезни, облучение, патология беременности, врожденная его недостаточность и др. Поражение различных отделов гипофиза приводит к разнообразным клиническим синдромам. Так, избыточная продукция соматотропного гормона (гормон роста) приводит к гигантизму или акромегалии, а недостаточность его сопровождается гипофизарной карликовостью. Нарушение продукции фолликулостимулирующего и лютеинизирующего гормонов (половые гормоны) является причиной половой недостаточности или расстройств половых функций. Иногда нарушение регуляции половых желез сочетается с нарушением жирового обмена, что приводит к адипозо-генитальной дистрофии. В других случаях проявляется преждевременное половое созревание. Часто патология гипофиза приводит к усилению функций коры надпочечников, которое характеризуется гиперпродукцией адренокортикотропного гормона и развитием синдрома Иценко - Кушинга. Обширное разрушение передней доли гипофиза приводит к гипофизарной кахексии, при которой снижается функциональная активность щитовидной железы и функции коры надпочечников. Это приводит к нарушению метаболизма и к развитию прогрессирующего исхудания, атрофии костей, угасанию половых функций и атрофии половых органов.

Разрушение задней доли гипофиза приводит к развитию несахарного мочеизнурения (несахарный диабет).

Гипоплазия и атрофия - уменьшение размеров и веса гипофиза - развиваются в старческом возрасте, что приводит к артериальной гипертензии (повышение артериального давления) у людей пожилого возраста. В литературе описаны случаи врожденной гипоплазии гипофиза с клиническими проявлениями гипофизарной недостаточности (гипопитуитаризм). У людей, подвергшихся облучению, часто развивается гицокортицизм (адиссонова болезнь). Изменение функционирования гипофиза может носить и временный, функциональный характер, в частности при беременности, когда отмечается гиперплазия гипофиза (увеличение его размеров и веса).

Основные клинические симптомы заболеваний, возникающих при поражениях гипоталамо-гипофизарного комплекса, описаны в разделе «Клинические особенности отдельных нозологических форм».

Гиппокамп в переводе с греческого - морское чудовище с телом коня и рыбьим хвостом. Его иначе называют - аммонов рог. Он является парным образованием и располагается на стенке боковых желудочков. Гиппокамп участвует в организации ориентировочного рефлекса и внимания, регуляции вегетативных реакций, мотиваций и эмоций, в механизмах памяти и обучения. При поражении гиппокампа изменяется поведение человека, оно становится менее гибким, трудно перестраивающимся в соответствии с меняющимися условиями окружающей среды, а также резко нарушается кратковременная память. При этом исчезает способность к запоминанию любой новой информации (антероградная амнезия). Таким образом, страдает так называемый общий фактор памяти - возможность перехода кратковременной памяти в долговременную.

Шишковидное тело (эпифиз, пинеальная железа) - железа внутренней секреции, представляет собой непарное округлое образование весом 170 мг. Оно расположено в глубине мозга под большими полушариями и примыкает к задней части третьего желудочка. Шишковидное тело принимает участие в процессах гомеостаза, половом созревании, в росте, а также во взаимосвязи внутренней среды организма с окружающей средой. Гормоны шишковидной железы угнетают нервно-психическую деятельность, оказывая снотворный, анальгезирующий и седативный эффект. Так, уменьшение продукции мелатонина (основной гормон железы) приводит к стойкой бессоннице и развитию депрессивного состояния. Нарушения гормональной функции шишковидного тела проявляются также в повышении внутричерепного давления, а зачастую в маниакально-депрессивном синдроме с выраженными интеллектуальными расстройствами.

Миндалевидное тело (амигдалоидная область) - сложный комплекс ядер головного мозга, располагающийся в глубине височной доли и являющийся центром «агрессии». Так, раздражение этой области приводит к типичной реакции пробуждения с элементами беспокойства, тревоги (зрачки расширяются, учащается ритм сердца, дыхания и т.д.), а также наблюдаются симптомы орального комплекса движений - слюноотделение, принюхивание, облизывание, жевание, глотание. Миндалевидное тело оказывает значительное влияние и на половое поведение, приводя к гиперсексуальности. Амигдалоидная область оказывает определенное влияние и на высшую нервную деятельность, память и сенсорное восприятие, а также на эмоционально-мотивационную среду.

Клинические наблюдения показывают, что у больных эпилепсией судорожный синдром часто сочетается со страхом, тоской или сильной немотивированной депрессией. Поражение этой области приводит к так называемой височной эпилепсии, при которой выражены симптомы психомоторного, вегетативного и эмоционального характера. У таких больных нарушаются многие основные мотивации (повышение или снижение аппетита, гипер- или гипосексуальность, приступы неудовольствия, немотивированного страха, озлобленности, ярости, а порой и агрессивности).

Лимбическая система (от лат. limbus – край, кайма) – это совокупность ряда нервных образований головного мозга, расположенных на границе новой коры в виде кольца, отделяющего кору от ствола мозга (рис. 97). Лимбическая система – это функциональное объединение различных структур конечного, промежуточного и среднего мозга, обеспечивающее эмоционально-мотивационные компоненты поведения и интеграцию висцеральных функций организма. К основным корковым областям лимбической системы относятся гиппокамп, парагиппокампова извилина, крючок, поясная извилина, обонятельные луковицы. Из подкорковых ядер в лимбическую систему входит миндалевидное тело (миндалина, амигдала). Кроме того, в лимбическую систему в настоящее время включают ряд ядер таламуса, гипоталамуса, ретикулярную формацию среднего мозга.

Характерной особенностью лимбической системы является наличие хорошо выраженных кольцевых нервных взаимосвязей , объединяющих различные ее структуры. Эти связи дают возможность длительной циркуляции (реверберации) возбуждения, повышения проводимости синапсов и формирования памяти. Реверберация возбуждения создает условия для сохранения единого функционального состояния структур замкнутого круга и навязывания этого состояния другим структурам мозга.

Различают несколько лимбических кругов. Важнейшим является большой гиппокампальный круг Папеца (Papez J. W. 1937), играющий большую роль в формировании эмоций, обучении и памяти. Другой лимбический круг имеет важное значение в формировании агрессивно-оборонительных, пищевых и сексуальных реакций (рис. 98).

Лимбическая система получает информацию о внешней и внутренней среде организма через различные области головного мозга, через гипоталамус от ретикулярной формации, а также практически от всех органов чувств. В структурах лимбической системы (в крючке) находится корковый отдел обонятельного анализатора. В связи с этим лимбическую систему ранее называли «обонятельным мозгом».

Лимбическая система обеспечивает взаимодействие экстероцептивных, поступивших из внешней среды, и интероцептивных воздействий. После сравнения и обработки поступившей информации лимбическая система посылает нервные импульсы к нижележащим нервным центрам и запускает вегетативные, соматические и поведенческие реакции, обеспечивающие приспособление организма к внешней среде и поддержание гомеостаза .

Приспособление организма к внешней среде осуществляется благодаря регуляции лимбической системой висцеральных функций, в связи с чем лимбическую систему иногда называют «висцеральным мозгом». Эта регуляция выполняется главным образом через деятельность гипоталамуса. При этом эффекты могут проявляться в виде, как активации, так и угнетения висцеральных функций: происходит повышение или понижение частоты сердечных сокращений, перистальтики и секреции желудка и кишечника, секреции различных гормонов аденогипофизом и др.


Важнейшей функцией лимбической системы является формирование эмоций , в которых отражается субъективное отношение человека к предметам окружающего мира и результатам собственной деятельности. Эмоции же тесно связаны с мотивациями, запускающими и реализующими поведение, направленное на удовлетворение возникающих потребностей.

В структуре эмоций выделяют собственно эмоциональные переживания и периферические, т.е. вегетативные и соматические, проявления. Структурой, ответственной преимущественно за вегетативные проявления эмоций, является гипоталамус . Кроме гипоталамуса к структурам лимбической системы, наиболее тесно связанным с эмоциями, принадлежат миндалевидное тело и поясная извилина .

Электрическая стимуляция миндалевидного тела у человека вызывает чаще всего отрицательные эмоции – страх, гнев, ярость. Наряду с этим миндалевидное тело участвует в процессе выделения доминирующей эмоции, а также и мотивации, влияя таким образом на выбор поведения. Функции поясной извилины менее изучены. Предполагается, что поясная извилина, имеющая многочисленные связи, как с новой корой, так и с центрами ствола мозга, исполняет роль главного интегратора различных систем мозга, формирующих эмоции.

Еще одной важной функцией лимбической системы является ее участие в процессах памяти и осуществлении обучения . Эта функция преимущественно связана с большим гиппокампальным кругом Папеца. Главную роль в обеспечении памяти и обучения играют гиппокамп и связанные с ним задние зоны лобной коры. Они осуществляют консолидацию памяти , т.е. переход кратковременной памяти в долговременную. Повреждение гиппокампа у человека приводит к резкому нарушению усвоения новой информации, формирования промежуточной и долговременной памяти, образования навыков. Кроме того, утрачиваются старые навыки, затрудняется вспоминание ранее усвоенной информации.

Электрофизиологические исследования гиппокампа выявили две характерные особенности. Во-первых, в ответ на сенсорное раздражение, стимуляцию ретикулярной формации и задних ядер гипоталамуса в гиппокампе развивается синхронизация электрической активности в виде низкочастотного тета-ритма (θ-ритма) с частотой 4–7 Гц. Предполагается, что этот ритм является свидетельством участия гиппокампа в ориентировочных рефлексах, реакциях внимания, настороженности, развития эмоционального напряжения.

Второй электрофизиологической особенностью гиппокампа является его способность в ответ на стимуляцию отвечать длительной (в течение часов, дней и даже недель) посттетанической потенциацией , которая приводит к облегчению синаптической передачи и является основой формирования памяти. Участие гиппокампа в процессах памяти подтверждается также электронномикроскопическими исследованиями. Установлено, что в процессе запоминания информации происходит увеличение числа шипиков на дендритах пирамидных нейронов гиппокампа, что свидетельствует о расширении синаптических связей.

Таким образом, лимбическая система участвует в регуляции вегетативно-висцерально-гормональных функций, направленных на обеспечение различных форм деятельности (пищевое и сексуальное поведение, процессы сохранения вида), в регуляции систем, обеспечивающих сон и бодрствование, внимание, эмоциональную сферу, процессы памяти, осуществляя соматовегетативную интеграцию.

5.20. Вегетативная нервная система

5.20.1. Структурно-функциональные особенности вегетативной нервной системы, ее симпатического и парасимпатического отделов

Вегетативной нервной системой называют часть нервной системы, которая регулирует и координирует деятельность внутренних органов, обмен веществ, гладкую мускулатуру, железы внутренней секреции, постоянство внутренней среды организма и функциональную активность тканей. ВНС иннервирует весь организм, все органы и ткани. Структурные и функциональные особенности ВНС дали определенные основания рассматривать ее как «автономную», т.е. не зависящую в своих функциях от деятельности центральной нервной системы и от воли человека. Однако представление об автономности вегетативной нервной системы является весьма условным. В настоящее время не подлежит сомнению, что посредством ВНС центральная нервная система выполняет важнейшие функции: 1) регулирует функции внутренних органов, а также кровоснабжение и трофику всех тканей организма; 2) обеспечивает энергетические потребности различных форм психической и физической деятельности (изменение интенсивности процессов обмена веществ, функционирования сердечно-сосудистой и дыхательной систем и др.).

Вегетативные рефлекторные дуги построены по такому же плану, что и соматические, и содержат чувствительные, вставочные и эфферентные звенья. Вместе с тем, рефлекторные дуги ВНС имеют ряд отличий от дуг соматических рефлексов. 1. Тела эффекторных нейронов ВНС лежат в ганглиях за пределами центральной нервной системы. 2. Рефлекторная дуга ВНС может замыкаться вне ЦНС в экстра- и интраорганных (интрамуральных) ганглиях. 3. Дуга центрального вегетативного рефлекса, т.е. замыкающегося в спинном или головном мозге включает, как минимум, четыре нейрона: чувствительный, вставочный, преганглионарный и постганглионарный. Дуга же периферического вегетативного рефлекса, т.е. замыкающегося в ганглии, может состоять из двух нейронов: афферентного и эфферентного. 4. Афферентное звено дуги вегетативного рефлекса может быть образовано как собственными вегетативными, так и соматическими чувствительными нервными волокнами.

В вегетативной нервной системе выделяют симпатический отдел , или симпатическую нервную систему, и парасимпатический отдел , или парасимпатическую нервную систему (рис. 99). Иногда выделяют еще метасимпатическую часть ВНС. Сфера иннервации метасимпатической части ВНС охватывает только те внутренние органы, которые обладают собственным моторным ритмом, например желудок, кишечник.

Симпатический и парасимпатический отделы ВНС различаются между собой: 1) по расположению центров в мозге, от которых идут к органам нервные волокна; 2) по близости расположения ганглиев к органам-мишеням; 3) по медиатору, который используют постганглионарные нейроны в синапсах на клетках органов-мишеней для регулирования их функций; 4) по характеру оказываемых влияний на внутренние органы.

Для периферического отдела ВНС характерно диффузное распространение возбуждения. Это обусловлено явлением мультипликации в вегетативных ганглиях, главным образом в симпатических, а также многократным ветвлением в органах окончаний постганглионарных нервов. Число эфферентных (постганглионарных) нейронов в симпатических ганглиях в 10–30 раз больше, чем входящих в узлы преганглионарных волокон. Поэтому каждое преганглионарное волокно образует синапсы на нескольких ганглионарных нейронах, что обеспечивает дивергенцию возбуждения и генерализованное влияние на иннервируемые органы.

Вследствие длительной синаптической задержки (около 10 мс) и продолжительной следовой деполяризации нейроны вегетативных ганглиев обладают низкой лабильностью. Они способны воспроизводить всего 10–15 импульсов в секунду, тогда как у мотонейронов соматической нервной системы эта величина может достигать 200 имп/с.

Преганглионарные волокна ВНС относятся к типу В, имеют диаметр 2–3,5 мкм, покрыты тонкой миелиновой оболочкой и проводят импульсы со скоростью от 3 до 18 м в секунду. Постганглионарные волокна принадлежат к типу С, имеют диаметр до 2 мкм, большая часть их не покрыта миелиновой оболочкой. Скорость распространения по ним нервных импульсов от 1 до 3 м в секунду.

Симпатический и парасимпатический отделы ВНС взаимодействуют между собой на разных уровнях: на эффекторной клетке, на уровне нервных окончаний, в вегетативных ганглиях и на центральном уровне. Так, наличие у эффекторной клетки симпатической и парасимпатической иннервации обеспечивают возможность осуществления этой клеткой противоположных реакций. В сердце, желудочно-кишечном тракте, мышцах бронхов может наблюдаться реципрокное торможение выделения медиатора из адренергических и холинергических нервных окончаний. В симпатических ганглиях имеются М-холинорецепторы, возбуждение которых угнетает передачу с преганглионарных симпатических волокон на ганглионарные нейроны. На уровне вегетативных центров взаимодействие проявляется в том, что возбуждение симпатической нервной системы при эмоциональном и физическом напряжениях одновременно ведет к снижению тонуса парасимпатической нервной системы. В других случаях, например в регуляции работы сердца, повышенный тонус парасимпатического отдела сменяется повышенной активностью симпатического отдела ВНС.

Симпатическая нервная система иннервирует все органы и ткани организма, в том числе скелетные мышцы и центральную нервную систему. Симпатический и парасимпатический отделы ВНС, как правило, оказывают на органы противоположное влияние. Например, при возбуждении симпатических нервов ритм сердца ускоряется, а под влиянием парасимпатических (блуждающих) нервов замедляется. За счет разнонаправленного влияния двух отделов ВНС на деятельность органов обеспечивается лучшее приспособление организма к условиям существования.

С участием симпатического отдела ВНС протекают рефлекторные реакции, направленные на обеспечение деятельного состояния организма , в том числе двигательной деятельности. Происходит расширение бронхов, сосудов сердца и скелетных мышц, усиливаются и учащаются сердцебиения, выбрасывается кровь из депо, увеличивается содержание глюкозы в крови, усиливается работа эндокринных и потовых желез и др. Одновременно уменьшаются процессы мочеобразования и пищеварения, предотвращаются акты мочеиспускания, дефекации и др. Происходит мобилизация резервов организма, активируются процессы терморегуляции, механизмы свертывания крови, защитные реакции иммунитета. В связи с этим симпатическую нервную систему образно называют «системой для борьбы или бегства».

Симпатическая нервная система оказывает на функции организма диффузное и генерализованное действие благодаря интенсивному ветвлению симпатических волокон. Например, при различных эмоциональных состояниях организма (страх, гнев, злость), когда симпатическая нервная система возбуждена, одновременно наблюдается учащение сокращений сердца, сухость во рту, расширение зрачков и т.д. Генерализованное воздействие почти на все структуры организма возникает также при выбросе в кровь адреналина из мозгового вещества надпочечников, которое иннервируется симпатическими нервами.

Симпатическая нервная система не только регулирует работу внутренних органов, но и оказывает влияние на обменные процессы, протекающие в скелетных мышцах и в нервной системе. Это было впервые установлено Л.А. Орбели и получило название адаптационно-трофической функции симпатической нервной системы. Огромное значение для двигательной деятельности организма имеет адаптационно-трофическое влияние симпатических нервов на скелетные мышцы. Так, небольшие сокращения утомленной мышцы могут снова увеличиться при возбуждении симпатической нервной системы – эффект Орбели-Гинецинского . Было также обнаружено, что стимуляция симпатических волокон может значительно изменять возбудимость рецепторов и даже функциональные свойства ЦНС. Следовательно, за счет трофического влияния симпатической нервной системы лучше, полнее осуществляются специфические функции органов и тканей, повышается работоспособность организма.

Удаление симпатической нервной системы у животных или медикаментозное выключение ее у людей при некоторых формах стойкой гипертонии не сопровождается значительными расстройствами функций. Однако в экстремальных условиях, требующих напряжения организма, после удаления симпатической нервной системы обнаруживается значительно меньшая выносливость и нередко гибель животных.

Функцией парасимпатической нервной системы является активное участие в процессах восстановления организма после деятельного состояния, обеспечение процессов, стабилизирующих внутреннюю среду организма на протяжении длительного периода времени. Влияния парасимпатических нервов могут сказываться либо прямо на иннервируемые органы, как в кольцевой мускулатуре радужной оболочки глаза или в слюнных железах, либо через посредство нейронов интрамуральных ганглиев, в том числе и метасимпатической части ВНС. В первом случае постганглионарные парасимпатические волокна сами непосредственно контактируют с клетками рабочего органа и вызываемое ими действие, как правило, противоположно влиянию симпатических нервов . Например, раздражение парасимпатического блуждающего нерва вызывает уменьшение частоты и силы сердцебиений, сужение бронхов, усиление моторики желудка и кишечника и другие эффекты.

На органы, в которых имеются интрамуральные ганглии метасимпатической части ВНС, парасимпатическая нервная система может оказывать (в зависимости от функционального состояния иннервируемого органа) как возбуждающее, так и тормозящее влияние.

За счет парасимпатической нервной системы осуществляются рефлекторные реакции защитного характера, например сужение зрачка при вспышке яркого света. Происходят рефлекторные реакции, направленные на сохранение состава и свойств внутренней среды организма (возбуждение блуждающего нерва стимулирует процессы пищеварения и тем самым обеспечивает восстановление уровня питательных веществ в организме). Парасимпатическая нервная система оказывает пусковые влияния на деятельность органов, способствуя опорожнению желчного пузыря, мочеиспусканию, дефекации и т.д.

Лимбическая система -это функционально единый ком­плекс нервных структур, ответственных за эмоциональное пове­дение, побуждения к действию (мотивации), процессы научения и запоминания, инстинкты (пищевые, оборонительные, половые) и регуляцию цикла «сон-бодрствование». В связи с тем, что лимбическая система воспринимает большое количество информа­ции от внутренних органов, она получила второе название - «висцеральный мозг».

В состав лимбической системы входят три структурных ком­плекса: древняя кора (палеокортекс), старая кора (архикортекс), срединная кора (мезокортекс). Древняя кора (палеокортекс) включает в себя препериформную, периамигдалярную, диаго­нальную кору, обонятельные луковицы, обонятельный бугорок, прозрачную перегородку. Второй комплекс -старая кора (архи­кортекс) состоит из гиппокампа, зубчатой фасции, поясной изви­лины. Структурами третьего комплекса (мезокортекса) являются островковая кора и парагиппокампальная извилина.

Лимбическая система включает в себя такие подкорковые об­разования, как миндалины мозга, ядра перегородки, переднее таламическое ядро, мамиллярные тела, гипоталамус.

Основное отличие лимбической системы от других отделов центральной нервной системы -это наличие двусторонних реципрокных связей между ее структурами, образующими замкну­тые крути, по которым циркулируют импульсы, обеспечивающие функциональное взаимодействие между различными частями лимбической системы.

В так называемый «крут Пейпеса» входят: гиппокамп -ма­миллярные тела -передние ядра таламуса -кора поясной изви­лины -парагиппокампальная извилина -гиппокамп. Этот крут отвечает за эмоции, формирование памяти и обучения.

Другой круг: амигдала -гипоталамус -мезенцефальные структуры -амигдала регулирует агрессивно-оборонительные, пищевые и сексуальные формы поведения.

Лимбическая система образует связи с новой корой посред­ством лобных и височных долей. Последние передают информацию от зрительной, слуховой и соматосенсорной коры к миндалине и гиппокампу. Считают, что лобные области мозга являются основным корковым регулятором деятельности лимбической системы.

Функции лимбической системы

Многочисленные связи лимбической системы с подкорковы­ми структурами мозга, корой больших полушарий и внутренними органами позволяют ей принимать участие в реализации различ­ных функций, как соматических, так и вегетативных. Она контро­лирует эмоциональное поведение и совершенствует приспособительные механизмы организма в новых условиях существоваания. При поражении лимбической системы или эксперименталь­ном воздействии на нее нарушается пищевое, половое и социаль­ное поведение.

Лимбическая система, ее древняя и старая кора отвечают за обонятельные функции, а обонятельный анализатор является са­мым древним. Он запускает все виды деятельности коры больших полушарий. В состав лимбической системы входит высший веге­тативный центр -гипоталамус, создающий вегетативное обес­печение любого поведенческого акта.

Более всего изучены такие структуры лимбической системы, как миндалина, гиппокамп и гипоталамус. Последний описан ра­нее (см. с. 72).

Миндалина (амигдала, миндалевидное тело) располагается в глубине височной доли мозга. Нейроны миндалины полисенсорны и обеспечивают ее участие в оборонительном поведении, сомати­ческих, вегетативных, гомеостатических и эмоциональных реак­циях и в мотивации условно-рефлекторного поведения. Раздраже­ние миндалины приводит к изменениям в сердечно-сосудистой системе: колебаниям частоты сердечных сокращений, появлению аритмий и экстрасистол, понижению артериального давления, а также реакциям со стороны желудочно-кишечного тракта: жева­нию, глотанию, саливации, изменениям моторики кишечника.

После двустороннего удаления миндалин у обезьян утрачива­ется способность к социальному внутригрупповому поведению, они избегают остальных членов группы, ведут себя отчужденно, кажутся встревоженными и неуверенными в себе животными. Они не отличают съедобные предметы от несъедобных (психиче­ская слепота), у них становится выраженным оральный рефлекс (берут в рот все предметы) и возникает гиперсексуальность. По­лагают, что подобные расстройства у амигдалаэктомированных животных связаны с нарушением двусторонних связей между ви­сочными долями и гипоталамусом, которые отвечают за приобре­тенное мотивационное поведение и эмоции. Эти структуры мозга сопоставляют вновь поступившую информацию с уже накопив­шимся жизненным опытом, т.е. с памятью.

В настоящее время довольно распространенным эмоциональ­ным нарушением, связанным с патологическими функциональ­ными изменениями в структурах лимбической системы, является состояние тревоги, которое проявляется в двигательных и веге­тативных нарушениях,возникновение чувства страха перед ре­альной или вымышленной опасностью.

Гиппокамп - одна из основных структур лимбической систе­мы расположен в глубине височных долей мозга. Он образует комплекс стереотипно повторяющихся взаимосвязанных микро сетей или модулей, позволяющих циркулировать информации в данной структуре при обучении, т.е. гиппокамп имеет прямое от­ношение кпамяти. Повреждение гиппокампа приводит к ретроантероградной амнезии или нарушению памяти на события, близ­кие к моменту повреждения, снижению эмоциональности, ини­циативности.

Гиппокамп участвует в ориентировочном рефлексе, реакции настороженности, повышении внимания. Он отвечает за эмоцио­нальное сопровождение страха, агрессии, голода, жажды.

В общей регуляции поведения человека и животного большое значение имеет связь между лимбической и моноаминергической системами мозга. К последним относятсядофаминергические, норадренергические исеротонинергические системы. Они начи­наются в стволе и иннервируют различные отделы мозга, в том числе и некоторые структуры лимбической системы.

Так, норадренергические нейроны посылают свои аксоны из голубого пятна, где они находятся в большом количестве, в минда­лину, гиппокамп, поясную извилину, энторинальную кору.

Дофаминергические нейроны помимо черной субстанции и базальных ядер иннервируют миндалину, перегородку и обоня­тельный бугорок, лобные доли, поясную извилину и энториналь­ную область коры.

Серотонинергические нейроны располагаются в основном в срединных и околосрединных ядрах (ядра срединного шва) про­долговатого мозга и в составе медиального пучка переднего моз­га иннервируют почти все отделы промежуточного и переднего мозга.

Опыты с самораздражением с помощью вживленных элект­родов или на человеке во время нейрохирургических операций "оказали, что стимуляция зон иннервации катехоламинергичес-кими нейронами, расположенными в области лимбической системы, приводит к возникновению приятных ощущений. Эти зоны получили название«центры удовольствия». Рядом с ними нахо­дятся скопления нейронов, раздражение которых вызывает реак­цию избегания, их назвали«центрами неудовольствия».

Многие психические расстройства связывают с моноаминергическими системами. За последние десятилетия для лечения нарушений деятельности лимбической системы разработаны пситропные препараты, влияющие на моноаминергические системы и опосредованно -на функции лимбической системы. К ним относятся транквилизаторы бензодиазепинового ряда (седуксен, элениум и др.), снимающие состою (имизин), нейролептики (аминозин, галоперидол и др.)

Область, расположенная между корой больших полушарий и продолговатым мозгом и как бы окаймляющая его, получила название лимбической системы (от латинского слова «limbus» - кромка, кайма). Лимбическая система состоит из различных анатомически и функционально связанных образований головного мозга. К ней принято относить: некоторые ядра нервных клеток, располагающихся в передней области таламуса, гипоталамус, располагающееся глубоко в боковой части среднего мозга клеточное скопление, величиной с орех, под названием миндалина (миндалевидное ядро) и гиппокамп, находящийся по соседству с миндалиной.

Сегодня пока еще нет полного описания лимбической системы, как, собственно говоря, нет пока и четкого, окончательного мнения о ее границах, но уже точно установлено, что это «не что-нибудь», а именно Система, и что входящие в нее структуры действуют дружно и сообща, т.е. возбуждение, возникающее в одной структуре, тут же охватывает другие.

Половое влечение, голод, жажда - эти наиглавнейшие побудительные причины деятельности всех живых существ связаны, прежде всего, именно с лимбической системой. Так в гипоталамусе располагаются группы клеток, реагирующих на изменения уровня питательных веществ и воды в крови. При низком содержании «еды» в крови эти клетки тут же передают «тревожные» сигналы в высшие отделы коры головного мозга. Вот так и возникают чувства голода и жажды, которые и заставляют наш организм активно заняться поиском пропитания.

Так же интересно, что при поражении лимбического отдела мозга, часто возникают двигательные и психические реакции, которые могут быть абсолютно противоположны: или беспокойство, настороженность, агрессия, стремление бежать или, наоборот: спокойствие, пассивность, умиротворенность. А ведь все дело-то в том, что лимбическая система участвовала в приспособительных реакциях, сложившихся у наших далеких предков на ранних стадиях эволюции, тогда, когда в критических и опасных ситуациях могло быть лишь два варианта спасения: активный – убегать или нападать и пассивный - замаскироваться, спрятаться, затихнуть и замереть. Именно так до сих пор поступает какая-нибудь букашка, замирая на нашей ладони. Ну, правильно, ведь умение быстро приспособиться к изменениям внешней среды, быстро и адекватно отреагировать на опасность - это вопрос жизни и смерти, никак не меньше!

Так вот, главнейшее место в этой приспособительной деятельности принадлежит эмоциям, биологический смысл которых, их биологическое предназначение как раз и заключается в быстрой оценке текущих потребностей организма и стимуляции соответствующего ответа на действие того или иного раздражителя.


Именно в лимбической системе и формируются эмоции, причем в основном в гипоталамусе. Соответственно, изменения лимбических структурах, возникающие, например, при определенных стрессовых состояниях, неврозах, иногда в результате опухоли или нарушения мозгового кровообращения или даже инфекционного заболевания, запросто могут повлечь за собой и нарушение эмоционального равновесия. Болезнь не радость, а значит, и преобладать будут в таких случаях отрицательные эмоции - страх, напряжение, тоска, беспричинная тревога.

Конечно, возможны и прямо противоположные реакции - чрезмерно повышенное настроение, двигательная активность, переоценка своих возможностей, но это уже скажется поражение миндалевидного комплекса.

Сегодня уже не вызывает сомнений, что развитие таких заболеваний, какишемическая болезнь сердца, гипертоническая и язвенная болезни, во многом связано с отрицательными эмоциями. А что это значит? А значит это то, что нормализуя эмоциональные реакции человека, можно избавить его от многих болезней. Ну не зря ж прибаутка то есть, что «все болезни от нервов, и только венерические от удовольствия» ;)

Собственно говоря, как раз на этом принципе и построен эффект психотропных средств, которые прежде всего воздействуют на лимбическую систему, а уже через нее - на функции сердца, сосудов, органов пищеварения. Так что если при жалобах на сердце врач вам назначит не сердечные, а психотропные препараты, не удивляйтесь - это и есть лечение «причины», а не «следствия».

Но и это еще не все заслуги лимбической системы. Лимбическая система, а точнее в основном гиппокамп , принимает активнейшее участие в сложнейших процессах, лежащих в основе памяти. Правда гиппокамп не является длительным хранилищем поступающей в мозг информации, так как эту роль выполняет кора больших полушарий, но зато из-за особенностей анатомического строения вся лимбическая система как будто создана для кратковременного хранения информации. Благодаря переплетению пучков аксонов (помните, отростки нервной клетки?), соединяющих различные образования лимбической системы, в ней формируется ряд больших и малых замкнутых кругов, приспособленных для повторного курсирования нервных импульсов и сохранения возбуждения в течение определенного времени.

Случаи повреждения гиппокампа или хирургического его удаления подтверждают, что эта структура является решающей для запоминания новых событий и хранения их в долговременной памяти, но не необходимой для воспроизведения старых воспоминаний. Например, после удаления гиппокампа больной без труда узнает старых друзей, помнит свое прошлое, может читать и пользоваться ранее приобретенными навыками. Но зато он врядли сможет вспомнить о том, что происходило в течение примерно года до операции. А вот события или людей, встреченных после операции, он не будет помнить вообще. Такой пациент не сможет узнать нового человека, с которым он провел много часов ранее в этот же день. Он будет неделю за неделей собирать одну и ту же головоломку и никогда не вспомнит, что уже собирал ее раньше, будет снова и снова читать ту же газету, не помня ее содержания.

Но для того, что бы это понять, необязательно даже удалять гиппокамп. При поражении гиппокампа алкоголем, у человека так же нарушается память на недавние события. Как показывают наблюдения врачей, алкоголики, находящиеся на лечении в больнице, затрудняются ответить на вопросы о том, обедали они сегодня или нет, когда принимали лекарство, работали ли в мастерской. И в то же время давние события своей жизни они помнят хорошо.

Интересно, а у вас уже возникла мысль о том, что если одно воздействие на гиппокамп «убивает» память, то другое может ее и улучшить? Т.е. нельзя ли воздействием на какой то участок гиппокампа, например, ускорять обучение и запоминание? Эх, это было бы замечательно и уверяю вас, эта мысль уже пришла в голову ученым! Ну, а пока учителям и педагогам следует учесть тот факт, что интересное изложение материала способствует лучшему - более быстрому, полному и на более длительный срок усвоению информации. И объясняется это просто, дело в том, что интересный рассказ или интересное объяснение материала вызывает эмоциональное возбуждение и как бы настраивает на более высокий уровень всю лимбическую систему, в том числе и «зав.памятью» памятью гиппокамп.

Ну, а теперь, временно упуская из виду мозолистое тело, переходим к Бооооольшому мозгу и коре его полушарий.

Итак, основу большого мозга составляют два больших полушария. На первый взгляд, их поверхность кажется беспорядочным нагромождением возвышающихся извилин и разделяющих их борозд. Но на самом-то деле у каждой извилины и борозды свое место и предназначение.

В то же время, как утверждают ученые, нет двух оди­наковых экземпляров мозга с полностью совпадающим рисунком по­верхности. Так что рисунок борозд и извилин на поверхности коры больших полушарий мозга у людей столь же различен, как их лица, но, в то же время, отличается некоторым семейным сходством. Одни борозды и извилины, в основном наиболее крупные, встречаются в каждом мозге, другие же не столь постоянны, и их приходиться еще и поискать. Кроме того, различие борозд и извилин так же проявляется в их длине, глубине, прерывистости и многих других, более индивидуальных особенностях.

Так вот, поверхность этих борозд да извилин покрыта корочкой серого вещества. Трудно поверить, но секрет превосходства человека над его «братьями меньшими» находится именно в ней. Прикиньте, её толщина не больше слоя масла на бутерброде, но за то какой эффект! Именно благодаря этой серой корочке человек и становиться ЧЕЛОВЕКОМ, творцом, мыслителем, покорителем и завоевателем всеё и всея.

Конечно же, по-научному она называется более весомо и солидно – кора больших полушарий, а по латыни это звучит как «Cerebral cortex», что, собственно, и означает «мозговая или умственная кора».

Сама по себе кора мозга имеет серый цвет, потому как состоит, в основном, из тел нервных клеток и нервных волокон серого цвета. Собственно говоря, отсюда и взялся термин «серое вещество». А вот внутренняя часть большого мозга, находящаяся под корой, состоит из аксонов этих самых нервных клеток , покрытых особым веществом миелином, придающим им белый окрас. Именно поэтому, то, что у нас спрятано под «серым веществом», еще называют «белым веществом» головного мозга.

Так вот, площадь коры большого мозга одного полушария человека составляет около 800 кв. см., толщина - 1,5-5 мм. (нифига себе слой маслица!!! :)), а количество нейронов в коре может достигать 10 млрд.

Сама же по себе кора больших полушарий имеет слоистое строение, поэтому различают древнюю, старую и новую кору (соответственно: палео-, архи- и неокортекс) Блин, такое ощущение, что кто-то проводил у нас в голове археологические раскопки. :)

Но как бы то ни было, а новая кора занимает 95,6% поверхности полушарий большого мозга, и большая ее часть имеет 6 слоев или пластинок: молекулярную, наружную зернистую, наружную пирамидную, внутреннюю зернистую, внутреннюю пирамидную, полиморфную, причем степень развития этих пластинок и их клеточный состав неодинаковы в разных частях полушария.

А вот нервные волокна коры бывают всего двух типов: радиальные - расположенные перпендикулярно ее поверхности, и тангенциальные - идущие параллельно поверхности коры. Получается, что нейронам в нашей голове важно дружить друг с другом и как можно теснее и крепче, поэтому они и связанны между собой и по горизонтали и по вертикали.

Сами по себе полушария головного мозгасоединены между собой не гвоздиками, не шурупчиками, не клеем и даже не примотаны друг к другу скотчем, а соединяются они между собой мозолистым телом - эдакимсплетением нервных волокон соединяющих правое и левое полушария. Конечно же, кроме мозолистого тела, полушария соединяют еще передняя спайка, задняя спайка и спайка свода, но мозолистое тело, состоящее из более чем двухсот миллионов нервных волокон, является самой большой и важной структурой, соединяющей оба полушария.

Так вот, мозолистое тело представляет собой широкую плоскую полосу, состоящую из аксонов. По большей части их волокна в мозолистом теле проходят поперечно, связывая симметричные места противоположных полушарий, но некоторые, особо «хитрые» аксоны умудряются связывать совсем несимметричные места противоположных полушарий, например лобные извилины с теменными или затылочными, или разные участки одного и того же полушария (так называемые ассоциативные волокна )

ЗОНЫ МОЗГА

Ну, продолжим. Борозды и извилины коры большого мозга увеличивают ее поверхность без увеличения объема полушарий, что, согласитесь, актуально в ограниченном пространстве нашего черепа. Кроме того, самые крупные борозды еще и «делят» каждое полушарие нашего мозга на четыре доли: лобную, теменную, затылочную и височную.

Но, кроме такого вот географического, а точнее топографического деления, кору головного мозга принято еще разграничивать и по функциональному признаку.

Сейчас поясню: каждая из наших сенсорных систем, например, зрительная ,слуховая , осязательная , отправляет свою информацию в определенные участки коры. Так же свой участок коры выделен для контроля движения частей тела - т.е. моторных реакций. Остальная же часть коры, не являющаяся ни сенсорной, ни моторной, выделена нам матушкой природой под ассоциативные зоны, которые отвечают за память, мышление, речь, и занимают, кстати, большую часть мозговой коры.

Вот и получается, что по своим функциям участки коры делятся на сенсорные, моторные (двигательные) и ассоциативные зоны.

Конечно же, сенсорные и моторные зоны располагаются на обоих полушариях, но есть и такие функции, которые представлены только на одной, как правило, левой стороне мозга. К ним относятся зона Брока и зона Вернике, участвующие в порождении и понимании речи, а так же угловая извилина, соотносящая зрительную и слуховую формы слова.

Еще не задались вопросом, почему я написал «как правило, на левом полушарии»? А все дело то в том, что у правшей речевые центры действительно расположены в левом полушарии, а вот у левшей - в правом.

Но, есть и другое разделение коры головного мозга - так называемая картаполей Бродмана. В 1903 годугерманский анатом, физиолог, психолог и психиатр К. Бродман опубликовал описание пятидесяти двухцитоархитектонических полей , которые представляют собой участки коры головного мозга, различные по своему клеточному строению. Каждое такое поле отличается по величине, форме, расположению нервных клеток и нервных волокон и, конечно же, различные поля связаны с различными функциями головного мозга. На основании описания этих полей и была составлена карта полей Бродмана.

Но, давайте все же по порядку.

СЕНСОРНЫЕ И МОТОРНЫЕ ЗОНЫ МОЗГА

Итак, моторная зона. Моторная зона уютно расположилась как раз перед центральной бороздой (поля 4,6,8) и занимается тем, что контролирует произвольные движения тела. Причем, большие участки этой зоны регулируют сокращения мышц пальцев рук, губ и языка, осуществляющие многочисленные и очень тонкие движения (например, речь, письмо, игра на фортепиано). А вотмышцам спины , живота и нижних конечностей, участвующим в поддержании позы и осуществлении менее тонких движений, отведена лишь небольшая область двигательной зоны.

Забавно, но наше тело представлено в моторной зоне как бы в перевернутом виде, т.е., например, за движения ног отвечает верхняя часть зоны, а за движения глаз или губ - нижняя. Кроме того, движениями правой части тела управляет моторная кора левого полушария, а движениями левой части - моторная кора правого полушария.

Электрическая стимуляция определенных участков моторной коры (т.е. кто-то все же тыкал нам в мозг оголенными проводами) заставляет двигаться соответствующие части тела, соответственно, если эти же участки моторной коры повредить, то и движения нарушатся.

Сенсорные зоны.

В теменной зоне, отделенной от моторной зоны центральной бороздой, (поля 1,2,3,5,7) находится участок, отвечающий за прием сигналов от рецепторов поверхности кожи тела человека, который носит гордое имя соматосенсорной зоны. Именно здесь происходит определение места и силы раздражения на поверхности тела, здесь же происходит различение местоположения и силы двух одновременно наносимых раздражителей, (так называемая дискриминация) и именно здесь же определяется и само качество раздражителя: острота, шероховатость, температура, т.е. ощущения тепла, холода, прикосновения, боли и ощущения движений тела.

Интересно что, как и в моторной зоне, на верхние отделы соматосенсорной зоны выведены рецепторы кожи нижних конечностей, на средние - туловища, на нижние отделы - рук, головы и т.д. Причем, так же как и в моторной зоне, правая часть мозга «чувствует» левую сторону нашего тела, ну, а левая - правую. Кроме того, как и в моторной, наибольшую поверхность соматосенсорной зоны занимают рецепторы рук, голосового аппарата и лица, а меньшую часть - рецепторы туловища, бедер и голени.

Именно поэтому ученые и считают, что размер соматосенсорной или моторной зоны, связанной с определенной частью тела, напрямую зависит от ее чувствительности и от частоты ее использования, причем эта зависимость наблюдается не только у человека, но и у животных. Например, у собаки передние лапы представлены только на очень небольшом участке коры, а вот у енота, который очень активно пользуется передними лапами для изучения окружающего мира, полоскания белья, и прочих норо-уборочных мероприятий (шучу), соответствующая зона значительно больше, и в ней даже есть участки для каждого пальца лапы. Да и у крыс, получающих много информации с помощью чувствительных усиков, то же имеется свой участок коры для каждого отдельного уса.

Продолжаем.

В задней части каждой затылочной доли есть участок коры (17,18,19 поля Бродмана), называемый зрительной зоной . Как-то неожиданно, но, тем не менее то, что мы видим, глазами, т.е. спереди, «отражается» у нас на затылке, т.е. сзади. Причем, обратите внимание - каждый зрительный нерв делится в области основания мозга на две половины, одна из них идет к своей половине мозга, а другая - к противоположной (т.е. образует неполный перекрест).


1. Сетчатка глаза. 2. Зрительный нерв 3. Зрительные пути и зрительная зона.

Получается, что волокна от правых сторон обоих глаз идут в правое полушарие мозга, а волокна от левых сторон обоих глаз идут в левое полушарие. Поэтому, удаление или повреждение зрительной зоны на одной половине мозга вызывает слепоту на одной половине каждого глаза. Этим фактом умело пользуются медики, устанавливая местоположение опухоли мозга и других аномалий, в зависимости от того, какая часть глаза не видит.

Так вот, центральный зрительный путь заканчивается в поле 17, и сообщает о наличии и интенсивности зрительного сигнала. А уже в полях 18 и 19 анализируются цвет, форма, размеры и качества предметов, причем поражение поля 19 коры большого мозга при­водит к тому, что больной видит, но не узнает предмет – так называемая зрительная агнозия, при этом утрачивается еще и цветовая память.

Слуховая зона. Слуховая зона находится на поверхности височных долей обоих полушарий (поля 41, 42, 22) и участвует в анализе сложных и не очень сложных слуховых сигналов. Именно здесь выделяется громкость, высота, тембр звука, определяется местоположение его источника, направление движения, изменение расстояния от источника, речеподобность по звучанию и многое-многое другое.

Оба наших уха имеют свои «официальные представительства» в обоих полушариях за счет того, что слуховые нервы, так же как зрительные, частично идут к «своему» полушарию, но, все же, большая их часть, перекрещиваясь, направляется в противоположные уху участки слуховой зоны коры. Так что и тут - левое ухо, в основном, слышит правое полушарие, а правое - левое.

Ну, и, конечно же, при разрушении 22 поля - возникают слуховые галлюцинации, сопровождающиеся нарушением слуховых ориентировочных реакций, музыкальная глухота и прочие неприятности, а при разрушении 41 поля – даже корковая глухота. Вот.

Другие же сенсорные функции, такие как вкус, обоняние, чувство равновесия , в меньшей степени представлены в коре головного мозга и рассказывать то о них, в общем то и нечего, за исключением того, что обонятельная системарасполагается в 34 поле Бродмана, и ее повреждение вызывает обонятельные галлюцинации. Вкусовая зона соседствует с обонятельной и обосновалась на 43 поле, что не удивительно, так как обоняние и вкус очень тесно между собой взаимосвязаны, о чем вот тут уже говорилось.

АССОЦИАТИВНЫЕ ЗОНЫ КОРЫ ГОЛОВНОГО МОЗГА. ЦЕНТРЫ СЛУХА И РЕЧИ

Как уже говорилось, в коре нашего мозга есть много обширных и бескрайних зон, не связанных непосредственно с сенсорными или моторными процессами. Они называются ассоциативными зонами и занимают около 80% территории коры.

Так вот, каждая такая ассоциативная область коры тесно связана сразу же с несколькими проекционными (сенсорными или моторными) зонами. Поэтому и считается, что в ассоциативных областях происходит ассоциация (а попросту соединение или совмещение) разно сенсорной информации, в результате чего и формируются сложные элементы нашего сознания.

Наибольшие места скопления и обитания ассоциативных областей у человека обнаружены в лобной, затылочно-теменной и височной и областях .

Вообще, каждая проекционная область коры, будь то сенсорная или моторная, окружена ассоциативными областями, причем нейроны этих областей чаще полисенсорны, т.е. умеют реагировать на различные сигналы, поступающие от слуховой, зрительной, кожной и других систем. И вот именно эта вот полисенсорность нейронов позволяет им объединять сенсорную информацию и организовывать и координировать взаимодействие сенсорных и моторных областей коры.

Итак, лобные доли являются ответственными за осуществление высших психических функций, которые проявляются в формировании личностных качеств, разнообразных творческих процессов и влечений.

При повреждении лобных отделов коры большого мозга, резко нарушается построение целенаправленного поведения, основанного на предвидении.

Что это такое? Сейчас поясню:
Например, у обезьян, повреждение этих самых лобных долей нарушает их способность решать задачи с отсроченной ответной реакцией. Проведите такой вот эксперимент: найдите где-нибудь такую вот больную обезьянку и на ее глазах поместите еду в одну из двух чашек, а чашки накройте одинаковыми предметами. Затем между обезьяной и чашками поставьте ненадолго непрозрачный экран. Потом экран уберите, и пусть обезьянка выберет одну из этих чашек. Так вот, нормальная обезьяна запомнит нужную чашку после задержки в несколько минут, а вот наша, болезлая, с поврежденными лобными долями, увы, не сможет решить эту задачу, если задержка превысит всего то несколько секунд. Это и будет отсроченная ответная реакция, а точнее - ее отсутствие, т.е. такие обезьяны просто-напросто не запоминают то, что было совсем недавно из-за «поломки» нужных нейронов в лобных долях. Что уж говорить о людях…

Далее.В теменной ассоциативной области коры формируются субъек­тивные представления об окружающем пространстве, о нашем теле. Это становится возможным благодаря соединению и сопоставлению соматосенсорной (чувствительной), проприоцептивной (Проприоцепция - способность воспринимать положение и перемещение в пространстве собственного тела, ну или отдельных его частей) и зрительной информации.

При повреждении наружной поверхности затылочной доли, не проекционной, а ассоциативной зрительной зоны, зрение сохранится, но тут же наступит расстройство узнавания – так называемая зрительная агнозия. Такой человек, будучи абсолютно грамотным, не сможет прочесть написанное, и будет в состоянии признать знакомого человека только после того, как тот заговорит. Ну не узнает он его «глазами» и все тут!

Продолжаем.В височной коре расположен слуховой центр речи Вернике, находящийся в задних отделах верхней височной извилины (поля 22, 37, 42 левого полушария). Эта зона асимметрична - у правшей она находиться в левом, а у левшей – в правом полушарии.

Задача этого центра – распознавание и хранение устной речи, как собственной, так и чужой. При поражении слухового центра речи человек может го­ворить, излагать устно свои мысли, но не понимает чужой речи, и хотя слух и сохранен - человек не узнает слов. Такое вот состояние назы­вается сенсорной слуховой афазией. Такой человек часто много говорит (логорея), но речь его неправильная (аграмматизм), при этом наблюдается замена слогов и слов (парафазии).

Но, речевая функция связана не только с сенсорной, но и с двигательной системой. И такой вот двигательный центр речи у нас действительно имеется. Он рас­положен в заднем отделе третьей лобной извилины (поле 44) чаще всего левого полушария (опять же правши и левши) и был описан вначале господином Даксом в 1835 году, а затем уже господином Брока в 1861 году. При поражении моторного центра речи развивается моторная афазия - в этом случае человек понимает речь, но сам, увы, говорить не может.

В средней части верхней височной извилины (поле 22) находится центр распознавания музыкальных звуков и их сочетаний. А на границе височной, теменной и затылочной долей (поле 39) находится центр чтения письменной речи, обеспечивающий распознавание и хранение образов письменной речи. Понятно, что поражения этого центра приводят к невозможности чтения и письма.

Кстати, оба этих центра так же ассиметричны и находятся в разных полушариях у левшей и правшей.

Так же в височной области расположено поле 37, отвечающее за запоминание слов. Люди с поражениями этого поля не помнят названия предметов. При этом они очень напоминают забывчивых людей, которым постоянно приходится подсказывать нужные слова. Такой человек, забыв название предмета, четко помнит его назначение и свойства, поэтому долго опи­сывает его качества, объясняет, что делают с этим предметом, но назвать его, хоть убей, не может. Ну, например, вместо слова «галстук» человек, глядя на него, говорит примерно следующее: «это то, что надевают на шею и завязывают специальным узлом, чтобы было красиво, когда идут в гости».

Так же с височной корой связывают функцию памяти и сновидений.