Сообщение про микроскоп по биологии. Микроскоп для школьника: виды, описание, устройство, выбор. Подвиды световых микроскопов

В обычной жизни многие хотя бы раз, но могли познакомиться с таким устройством, как микроскоп. Например, кто-то работает в сфере, где необходим такой прибор, кто-то другой в школе на биологии пользовался им. При помощи микроскопа можно наблюдать за самыми маленькими частицами и организмами.

Микроскоп - это довольно сложный прибор, он имеет длительную историю. Она будет интересна и полезна для каждого человека. Сперва нужно рассмотреть, что же это такое - микроскоп.

Определение

На данный момент в школе используются микроскопы, которые могут увеличивать до 300-600 крат. Для того чтобы рассмотреть живую клетку, этого будет вполне достаточно. При помощи микроскопа можно увидеть ее вакуоли, стенки, ядро. Но для того, чтобы стать настолько мощным приспособлением, он прошел большой путь открытий и разочарований со стороны ученых.

Значение

Что означает слово "микроскоп"? Оно образуется из двух греческих слов: micros, что значит маленький, и skopeo, что в переводе означает смотрю. Таким образом, прямое предназначение устройства - это рассматривать маленькие объекты. Если говорить о более точной характеристике, то микроскопом является оптический прибор, который работает с одной или несколькими линзами. Благодаря ему можно получать изображение многих объектов, которые нельзя увидеть невооруженным глазом.

История открытия микроскопа

Что такое микроскоп, мы уже рассмотрели. Самое время поговорить о истории его открытия. Точная дата неизвестна. Дело в том, что устройство для рассмотрения небольших объектов археологи находили в совершенно разных эпохах. В старые времена они были обычной лупой. На тот момент она представляла собой двояковыпуклое устройство, которое могло увеличить объект всего лишь в несколько раз. Качество изображения было на низшем уровне, так как изготавливались они не из стекла, а из прозрачного камня.

Развитие

Чуть позже появилось такое понятие, как микроскопы. Принцип работы на тот момент был основан на использовании двух линз. Первая являлась объективом, который необходимо было направить на изучаемый объект. Вторая же была окуляром. В нее смотрел наблюдатель. Из-за хроматических отклонений, а также сферических, получаемое изображение было сильно испорчено. Более того картинка была неточной, нечеткой, а также окрашенной в неправильные цвета. Но даже в то время кратность устройства достигала несколько сот, что являлось неслабым показателем.

Значение слова "микроскоп" обрело смысл с разработкой системы линз, которая была осложнена только в начале XIX века. На тот момент в устройстве объектива уже устанавливалась сложнейшая система, в которую были добавлены собирательные и рассеивающие линзы. Они были созданы из специального стекла, которое компенсировало недостатки друг друга.

Чуть позже был создан микроскоп, который получил предметный столик. Туда можно было складывать все объекты, которые следует изучить. В конструкцию также был добавлен винт, который позволял столик перемещать. И уже немного позже появилось зеркало, которое позволяло идеально освещать объекты. Лабораторные микроскопы на данный момент имеют похожее строение. Они идеально показывают себя в эксплуатации и являются незаменимыми помощниками.

Строение микроскопа

На данный момент существуют простые и сложные микроскопы. Первые работают с одной системой линз, именно такое строение получила лупа. В сложном же сочетают две простейшие линзы. Поговорим немного о последнем варианте.

Сложный микроскоп будет давать большее увеличение, также он имеет хорошую разрешающую способность. Именно благодаря ей можно различать элементы образцов. Например, клетка под микроскопом сложной конструкции будет идеально разложена на составляющие. Увеличенное изображение, где нельзя различать подробности, никакой полезной информации не несет.

Большая часть сложных микроскопов основана на двухступенчатых схемах. Одна линза подносится практически вплотную к объекту, то есть благодаря ей и создается увеличенное изображение. После при помощи окуляра, то есть другой системы линз, само изображение увеличивается. Именно он располагается ближе к глазу наблюдателя. Описанные системы линз должны находиться на разных концах тубуса прибора.

Современные микроскопы

Что такое микроскоп в современном мире? Это приборы, которые могут давать колоссальное увеличение. Оно достигает 2000 крат. При этом нужно отметить, что качество получаемого изображения просто идеальное. Чаще всего такие микроскопы, фото которых имеются в статье, используются в лабораториях для того, чтобы проводить исследования.

Огромную популярность получили бинокулярные микроскопы, так как в них изображение раздваивается, имея один объектив. За счет двух окуляров можно смотреть на объект сразу двумя глазами. А за счет этого можно рассмотреть даже самые мелкие детали.

Виды микроскопов

Первый и самый древний микроскоп - световой. Определение данного устройства звучит таким образом: прибор, который позволяет увеличивать изображение и их структуру, которую нельзя заметить невооруженным глазом. Соответственно, данное устройство работает с набором линз, которые могут регулировать расстояние и зеркало. Последнее необходимо для того, чтобы подсвечивать объект. Довольно часто, когда нет возможности установить рабочую поверхность, можно использовать независимый источник света. Суть этого микроскопа заключается в том, чтобы можно было менять длину волны оптического спектра, который является видимым.

Второй вид микроскопа - это электронный. Он устроен гораздо сложнее, чем описанный выше световой. Последний имеет некоторые недостатки, например, такой микроскоп не сможет дать рассмотреть клетку вируса или любого другого организма, который имеет небольшие размеры, так как свет просто будет его огибать. В этом случае используются электронные приборы. Учитывая, что его магнитное поле делает волны света намного тоньше, можно рассмотреть даже самые маленькие детали. Чаще всего используют такой прибор в биологии.

Третий вид - это зондирующий. Если говорить упрощенно, то это устройство работает при помощи зонда, который посредством движений и колебаний создает трехмерное или же растровое изображение и переносит на компьютер.

Электронные микроскопы

Многих интересует вопрос, что за микроскоп это? Определение будет таким же, как и было описано выше. Разница заключается в совершенно другой конструкции. Благодаря таким микроскопам можно рассмотреть изображения атомов. При этом глагол рассмотреть используется в переносном смысле, так как изображение получается не при помощи объектива. Человеку не нужно смотреть в линзу, все данные переносятся на компьютер. Программное обеспечение само обрабатывает полученную информацию. Конструкция электронного микроскопа имеет другие физические принципы. Для исследования поверхность объектов пронзается тончайшей иглой. Ее кончик имеет размер всего лишь в один атом.

USB-микроскопы

Определение слова "микроскоп" в общем виде мы рассмотрели выше. Но надо также немного узнать об одном из видов этого прибора - USB-технологии. На данный момент, в свете развития цифровых данных, практически каждый человек может приобрести накладку на свой телефон. Благодаря такому USB-микроскопу можно сделать очень мощные и красивые фотографии. Также существуют хорошие микроскопы такого типа, которые подключаются к компьютеру. Нередко они оснащаются памятью, сохраняя полученные изображения. Множество цифровых фотоаппаратов работают с режимом макросъемки. Профессиональная техника позволит сделать фото мельчайших объектов. Если установить собирающую линзу перед объективом фотоаппарата, то можно получить увеличение изображения до 500 крат.

Рентгеновский микроскоп

Рентгеновский микроскоп, фото которого есть в статье, представляет собой устройство, которое может исследовать даже самые маленькие объекты, размеры которых имеют длину рентгеновской волны. Довольно часто такие устройства используют для исследования различных материалов, которые имеют большой атомный номер. На данный момент по разрешающей способности эти устройства находятся между электронными и оптическими микроскопами. Сейчас существуют приборы, показатель которых составляет 5 нанометров.

Разработка такого микроскопа имела ранее серьезные трудности. К сожалению, рентгеновские лучи имеют такое строение, из-за которого фокусировать обычными линзами их невозможно. Дело заключается в том, что они слишком сильно преломляются в прозрачных средах, соответственно, их довольно сложно уловить. В электрических и магнитных полях преломление отсутствует, поэтому линзы такого типа также нельзя использовать для фокусировки.

Устройство

Сейчас в современной оптике имеются отличные линзы, которые имеют эффект обратного лучепреломления.

Человеческий глаз не может уловить рентгеновский луч. Именно поэтому приходится использовать фототехнику или преобразователь, которые помогут увидеть их. Первый рентгеновский микроскоп, который использовался в коммерческих целях, был создан в пятидесятых годах XX века. На тот момент он являлся проекционным микроскопом, в котором были использованы фотопластинки.

На данный момент имеется два типа рентгеновских микроскопов. Они называются "отражательный" и "проекционный". В первом используется явление, которое действует при скользящем падении. Это позволяет максимально улучшить и увеличить проникающую способность лучей. Для того чтобы работать с такими приборами, необходимо поместить источник излучения за изучаемым объектам. Тогда рентгеновские лучи будут просвечиваться. За счет этого такой метод позволяет давать не только информацию о структуре, но и о химическом составе объекта.

Проекционные же представляют собой камеры, расположенные на противоположных концах. С одной стороны находится источник излучения, а с другой человек смотрит.

С микроскопами такого типа довольно часто используются дополнительные оптические приборы. Для того, чтобы получить максимальное увеличение необходимо размещать объект на минимальном расстоянии от излучения. Для этого необходимо фокус расположить на окне рентгеновской трубки. Последнее время ведутся разработки микроскопов, которые будут использовать специальные пластинки френеля, чтобы максимально сфокусировать изображение. Такие микроскопы получили разрешающую способность до 30 нанометров.

Использование и польза

Проекционный микроскоп получил применение во многих сферах науки. Речь идет как минимум о медицине, минералогии, металловедении. Что же можно сделать при помощи рентгеновского проекционного микроскопа? С легкостью изучить качество тонких покрытий. Благодаря данному устройству, можно увеличить срезы ботанических и биологических объектов с толщиной до 200 мкм. Также можно их использовать для того, чтобы провести анализ порошков металлов, как легких, так и тяжелых, изучая строение объектов. Как правило, таковые вещества являются непрозрачными для световых лучей и электронов. Именно поэтому используются рентгеновские микроскопы. Важное достоинство таких приборов заключается в том, что в них можно наблюдать жизненный цикл непрепарированной живой клетки.

Итоги

Что такое микроскоп, мы рассмотрели в данной статье. Его фотографии и полное описание позволят человеку полностью разобраться в данном вопросе. Следует обратить внимание, что сейчас существует большое количество видов данных устройств. Поэтому нужно четко понимать, какие из них в каких сферах используются.

Наиболее популярным сейчас и более известным является световой. Дело в том, что он используется в школах, в государственных лабораториях, то есть в тех организациях, где нет смысла приобретать более дорогостоящее оборудование.

Стоимость на микроскопы заметно варьируется также в зависимости от видов. Например, оптические и цифровые обойдутся потребителям минимум в 2500 руб. Однако у таких моделей небольшое увеличение, полностью соответствующее ценовой категории.

Что такое микроскоп? Это довольно популярное изделие, которое на слуху, и в последнее время часто пользуется спросом. Благодаря ему можно рассматривать клетки, вирусы, разные биологические объекты, которые необходимы для улучшения жизни человека.

Сегодня трудно представить себе научную деятельность человека без микроскопа. Микроскоп широко применяется в большинстве лабораторий медицины и биологии, геологии и материаловедения.

Полученные с помощью микроскопа результаты необходимы при постановке точного диагноза, при контроле над ходом лечения. С использованием микроскопа происходит разработка и внедрение новых препаратов, делаются научные открытия.

Микроскоп - (от греческого mikros - малый и skopeo - смотрю), оптический прибор для получения увеличенного изображения мелких объектов и их деталей, не видимых невооруженным глазом.

Глаз человека способен различать детали объекта, отстоящие друг от друга не менее чем на 0,08 мм. С помощью светового микроскопа можно видеть детали, расстояние между которыми составляет до 0,2 мкм. Электронный микроскоп позволяет получить разрешение до 0,1-0,01 нм.

Изобретение микроскопа, столь важного для всей науки прибора обусловлено, прежде всего, влиянием развития оптики. Некоторые оптические свойства изогнутых поверхностей были известны еще Евклиду (300 лет до н.э.) и Птоломею (127-151 гг.), однако их увеличительная способность не нашла практического применения. В связи с этим первые очки были изобретены Сальвинио дели Арлеати в Италии только в 1285 г. В 16 веке Леонардо да Винчи и Мауролико показали, что малые объекты лучше изучать с помощью лупы.

Первый микроскоп был создан лишь в 1595 году Захариусом Йансеном (Z. Jansen). Изобретение заключалось в том, что Захариус Йансен смонтировал две выпуклые линзы внутри одной трубки, тем самым, заложив основы для создания сложных микроскопов. Фокусировка на исследуемом объекте достигалось за счет выдвижного тубуса. Увеличение микроскопа составляло от 3 до 10 крат. И это был настоящий прорыв в области микроскопии! Каждый свой следующий микроскоп он значительно совершенствовал.

В этот период (XVI в.) датские, английские и итальянские исследовательские приборы постепенно начали свое развитие, закладывая фундамент современной микроскопии.

Быстрое распространение и совершенствование микроскопов началось после того, как Галилей (G. Galilei), совершенствуя сконструированную им зрительную трубу, стал использовать ее как своеобразный микроскоп (1609-1610), изменяя расстояние между объективом и окуляром.

Позднее, в 1624 г., добившись изготовления более короткофокусных линз, Галилей значительно уменьшил габариты своего микроскопа.

В 1625 г. членом Римской "Академии зорких" ("Akudemia dei lincei") И. Фабером был предложен термин "микроскоп" . Первые успехи, связанные с применением микроскопа в научных биологических исследованиях, были достигнуты Гуком (R. Hooke), который первым описал растительную клетку (около 1665 г.). В своей книге "Micrographia" Гук описал устройство микроскопа.

В 1681 г. Лондонское королевское общество в своем заседании подробно обсуждало своеобразное положение. Голландец Левенгук (A. van Leenwenhoek) описывал изумительные чудеса, которые открывал своим микроскопом в капле воды, в настое перца, в иле реки, в дупле собственного зуба. Левенгук с помощью микроскопа обнаружил и зарисовал сперматозоиды различных простейших, детали строения костной ткани (1673-1677).

"С величайшим изумлением я увидел в капле великое множество зверюшек, оживленно двигающихся во всех направлениях, как щука в воде. Самое мелкое из этих крошечных животных в тысячу раз меньше глаза взрослой вши."

Лучшие лупы Левенгука увеличивали в 270 раз. С ними он увидел впервые кровеносные тельца, движение крови в капиллярных сосудах хвоста головастика, полосатость мускулов. Он открыл инфузории. Он впервые погрузился в мир микроскопических одноклеточных водорослей, где лежит граница между животным и растением; где движущееся животное, как зеленое растение, обладает хлорофиллом и питается, поглощая свет; где растение, еще прикрепленное к субстрату, потеряло хлорофилл и заглатывает бактерии. Наконец, он видел даже бактерии и в великом разнообразии. Но, разумеется, тогда не было еще и отдаленной возможности понять ни значение бактерий для человека, ни смысла зеленого вещества - хлорофилла, ни границы между растением н животным.

Открывался новый мир живых существ, более разнообразный и бесконечно более оригинальный, чем видимый нами мир.

В 1668 г. Е. Дивини, присоединив к окуляру полевую линзу, создал окуляр современного типа. В 1673 г. Гавелий ввел микрометрический винт, а Гертель предложил под столик микроскопа поместить зеркало. Таким образом, микроскоп стали монтировать из тех основных деталей, которые входят в состав современного биологического микроскопа.

В середине 17 столетия Ньютон открыл сложный состав белого света и разложил его призмой. Рёмер доказал, что свет распространяется с конечной скоростью, и измерил ее. Ньютон высказал знаменитую гипотезу - неверную, как вам известно,- о том, что свет есть поток летящих частиц такой необычайной мелкости и частоты, что они проникают через прозрачные тела, как стекло через хрусталик глаза, и, поражая ретину ударами, производят физиологическое ощущение света. Гюйгенс впервые заговорил о волнообразной природе света и доказал, как естественно она объясняет и законы простого отражения и преломления, и законы двойного лучепреломления в исландском шпате. Мысли Гюйгенса и Ньютона встретились в резком контрасте. Таким образом, в XVII в. в остром споре действительно встала проблема о сущности света.

Как разгадка вопроса сущности света, так и усовершенствование микроскопа подвигались вперед медленно. Спор между идеями Ньютона и Гюйгенса продолжался целое столетие. К представлению о волновой природе света примкнул знаменитый Эйлер. Но решен был вопрос лишь через сто с лишним лет Френелем талантливым исследователем, какого знала наука.

Чем отличается поток распространяющихся волн - идея Гюйгенса - от потока несущихся мелких частиц - идея Ньютона? Двумя признаками:

1. Встретившись, волны могут взаимно уничтожиться, если горб одной ляжет на долину другой. Свет + свет, сложившись вместе, могут дать темноту. Это явление интерференции , это кольца Ньютона, непонятые самим Ньютоном; с потоками частиц этого быть не может. Два потока частиц - это всегда двойной поток, двойной свет.

2. Через отверстие поток частиц проходит прямо, не расходясь в стороны, а поток волн непременно расходится, рассеивается. Это дифракция .

Френель доказал теоретически, что расхождение во все стороны ничтожно, если волна мала, но все же и эту ничтожную дифракцию он обнаружил и измерил, а по ее величине определил длину волны света. Из явлений интерференции, которые так хорошо известны оптикам, полирующим до "одного цвета", до "двух полос", он также измерил длину волны - это полмикрона (половина тысячной доли миллиметра). И отсюда стали неоспоримыми волновая теория и исключительная тонкость и острота проникновения в сущность живого вещества. С тех пор все мы в разных модификациях подтверждаем и применяем мысли Френеля. Но и не зная этих мыслей, можно усовершенствовать микроскоп.

Так это и было в XVIII столетии, хотя события развивались очень медленно. Сейчас трудно даже представить себе, что первая труба Галилея, в которую он наблюдал мир Юпитера, и микроскоп Левенгука были простыми неахроматическими линзами.

Огромным препятствием в деле ахроматизации было отсутствие хорошего флинта. Как известно, ахроматизация требует двух стекол: крона и флинта. Последний представляет стекло, в котором одной из основных частей является тяжелая окись свинца, обладающая непропорционально большой дисперсией.

В 1824 г. громадный успех микроскопа дала простая практическая идея Саллига, воспроизведенная французской фирмой Шевалье. Объектив, раньше состоявший из одной линзы, расчленен на части, его начали изготовлять из многих ахроматических линз. Так умножено число параметров, дана возможность исправления ошибок системы, и стало впервые возможным говорить о настоящих больших увеличениях - в 500 и даже 1000 раз. Граница предельного видения передвинулась от двух к одному микрону. Далеко позади оставлен микроскоп Левенгука.

В 70-х годах 19 века победоносное шествие микроскопии двинулось вперед. Сказавшим был Аббе (Е. Abbe).

Достигнуто было следующее:

Во-первых, предельное разрешение передвинулось от полумикрона до одной десятой микрона.

Во-вторых, в построении микроскопа вместо грубой эмпирики введена высокая научность.

В-третьих, наконец, показаны пределы возможного с микроскопом, и эти пределы завоеваны.

Сформирован штаб ученых, оптиков и вычислителей, работающих при фирме Цейсса. В капитальных сочинениях учениками Аббе дана теория микроскопа и вообще оптических приборов. Выработана система измерений, определяющих качество микроскопа.

Когда выяснилось, что существующие сорта стекол не могут удовлетворить научным требованиям, планомерно созданы были новые сорта. Вне тайн наследников Гинана - Пара-Мантуа (наследники Бонтана) в Париже и Ченсов в Бирмингаме - созданы были вновь методы плавки стекла, и дело практической оптики развито до такой степени, что можно сказать: Аббе оптическим снаряжением армии почти выиграл мировую войну 1914-1918 гг.

Наконец, призвав на помощь основы волновой теории света, Аббе впервые ясно показал, что каждой остроте инструмента соответствует свой предел возможности. Тончайший же из всех инструментов - это длина волны. Нельзя видеть объекты меньше полудлины волны - утверждает дифракционная теория Аббе,- и нельзя получить изображения меньше полудлины волны, т.е. меньше 1/4 микрона. Или с разными ухищрениями иммерсии, когда мы применяем среды, в которых длина волны меньше,- до 0,1 микрона. Волна лимитирует нас. Правда, лимиты очень мелкие, но все же это лимиты для деятельности человека.

Физик-оптик чувствует, когда на пути световой волны вставлен объект толщиной в тысячную, в десятитысячную, в отдельных случаях даже в одну стотысячную длину волны. Сама длина волны измерена физиками с точностью до одной десятимиллионной своей величины. Можно ли думать, что оптики, соединившие свои усилия с цитологами, не овладеют той сотой длины волны, которая стоит в поставленной ими задаче? Найдутся десятки способов обойти предел, поставленный длиной волны. Вам известен один из таких обходов, так называемый метод ультрамикроскопии. Если невидимые в микроскоп микробы расставлены далеко друг от друга, то можно осветить их сбоку ярким светом. Как бы они малы ни были, они заблестят, как звезда на темном фоне. Форму их нельзя определить, можно лишь констатировать их присутствие, но и это часто чрезвычайно важно. Этим методом широко пользуется бактериология.

Труды английского оптика Дж. Сиркса (1893) положили начало интерференционной микроскопии. В 1903 г. Р. Жигмонди (R. Zsigmondy) и Зидентопф (Н. Siedentopf) создали ультрамикроскоп, в 1911 г. Саньяком (М. Sagnac) был описан первый двухлучевой интерференционный микроскоп, в 1935 г. Зернике (F. Zernicke) предложил использовать метод фазового контраста для наблюдения в микроскопах прозрачных, слабо рассеивающих свет объектов. В середине XX в. был изобретен электронный микроскоп, в 1953 г. финским физиологом Вильской (A. Wilska) был изобретен аноптральный микроскоп.

Большой вклад в разработку проблем теоретической и прикладной оптики, усовершенствование оптических систем микроскопа и микроскопической техники внесли М.В. Ломоносов, И.П. Кулибин, Л.И. Мандельштам, Д.С. Рождественский, А.А. Лебедев, С.И. Вавилов, В.П. Линник, Д.Д. Максутов и др.

Литература:

Д.С. Рождественский Избранные труды. М.-Л., "Наука", 1964.

Рождественский Д.С. К вопросу об изображении прозрачных объектов в микроскопе. - Тр. ГОИ, 1940, т. 14

Соболь С.Л. История микроскопа и микроскопических исследований в России в XVIII веке. 1949.

Clay R.S., Court T.H. The history of the microscope. L., 1932; Bradbury S. The evolution of the microscope. Oxford, 1967.


12.08.2017 10:20 6278

Что такое микроскоп и зачем он нужен? Микроскоп – это прибор который увеличивает изображения предметов с помощью линз. Первые сведения о микроскопе известны ещё в 16 веке, когда мастера по изготовлению очков из Голландии придумали наряду с телескопом новое устройство, способное увеличивать предметы благодаря двум линзам.

Со временем микроскопы постоянно усовершенствовались. Появилось более мощное увеличение, позволяющее разглядеть мельчайшие вещи, которые нельзя увидеть невооружённым глазом. Кроме обычных оптических микроскопов на принципе увеличения линз, существуют электронные микроскопы. Их изобрели в 20 веке. Вместо светового потока на объект изучения направляется пучок электронов, которые фокусируются и при помощи специальной магнитной линзы выдают изображение. Электронный микроскоп мощнее оптического, поскольку может больше увеличивать изображение объекта.

Микроскоп нужен для изучения мельчайших деталей, фрагментов тел человека и животных, которые сложно увидеть невооружённым глазом. Микроскопом пользуются врачи, изучая образцы ДНК и анализы крови. Учёные из разных сфер науки, проводят опыты и делают новые открытия. Инженеры проверяют с помощью микроскопа качество деталей на наличие в них дефекта.

Школьники и студенты пользуются микроскопами на уроках биологии, химии и физики. Интересно рассматривать при микроскопом поверхности некоторых предметов, а также насекомых, например муху или муравья. При большом увеличении можно хорошо разглядеть их глаза, челюсти и лапки.

Микроскоп для ребенка - окно в абсолютно неведомый ранее мир клеток, крохотных частиц и микроорганизмов. Кому из детей не интересно узнать, например, как выглядят вблизи крылышки и лапки насекомого? С этой точки зрения данный прибор можно отнести к развивающим игрушкам.

Прежде чем решиться на покупку микроскопа, родителям следует проанализировать ситуацию: возраст ребенка, степень его заинтересованности в новой игрушке, склонность к "исследованиям", усидчивость и т. д. "Серьезность" приобретаемой модели (соответственно, и цена) зависит от суммы всех этих факторов.

Для первого знакомства с "наномиром" ребенку годится детский микроскоп с минимальным набором опций. Если же речь идет о школьнике, то лучше остановиться на т. н. учебном с увеличением не менее 650 крат.

Отправляемся в магазин

Как выбрать качественный микроскоп для школьника? Те, что продаются в магазинах игрушек, даже относительно дорогие, настоящей техникой не являются, как ни жаль. А о дешевых и говорить не приходится. Картинка, которую способен разглядеть ребенок с такой игрушкой, вряд ли вдохновит его на долгие "исследования", и интерес будет вскоре утрачен.

Тогда как выбрать микроскоп для школьника? Хорошие приборы, конечно же, существуют. Но цена их - на порядок выше, чем у игровых. Хотя ряд недорогих по стоимости вполне можно сравнить с наиболее "навороченными" из игрушечных. Относится это к моделям, именуемым школьными и профессиональными.

С какой целью приобретается микроскоп для школьника?

Если лишь как игрушку, лучше приобретите лупу хорошего качества. Покупкой его следует озадачиться лишь тогда, когда опыты с микроскопом для школьников не перестанут быть интересными через пару дней, а ребёнок "на полном серьезе" и достаточно давно увлечен естественными науками, такими как химия и биология. А также подумывает о профессии врача или биолога, планирует по данным предметам сдачу ЕГЭ или ОГЭ. В этом случае иметь дома высококачественный школьный микроскоп - реальная необходимость, и немалые затраты на приобретение его со всеми сопутствующими принадлежностями окажутся оправданными.

Как быть, когда ребёнок увлечен биологией, а родители совершенно не разбираются в ней? И если даже не знают, как выглядит микроскоп, как не прогадать с покупкой? Придется всерьез заняться изучением ассортимента магазинов оптики, читать соответствующие форумы, спрашивать у тех, кто "в теме", и в конце концов составить собственное мнение. К тому же определитесь заранее с суммой, которую вы сможете себе позволить потратить на покупку, и, исходя из нее, выбирайте самую оптимальную модель.

Итак, на что же нужно обратить основное внимание, покупая микроскоп для школьника?

Что такое увеличение?

Эта функция может быть оптической и цифровой. Обращать внимание следует в первую очередь на оптическое увеличение. Цифровое - это обычное зуммирование, то есть приближение картинки, без возможности разглядеть дополнительные детали. Тем, кто настроен на серьезную работу, следует ориентироваться на модели с увеличением, начиная с 1000-кратного и больше. Можно найти в продаже и доступные по цене экземпляры для домашнего использования с 2000-кратным оптическим увеличением.

Очень полезная функция - возможность регулировки диоптрий для страдающих плохим зрением. Обычно их можно настроить в пределах от +5 до -5. Согласитесь, работа с микроскопом без очков куда удобнее, чем заглядывание в окуляр через них.

Настройка грубая и тонкая

В более простых моделях предусмотрена, как правило, лишь грубая настройка. У вариантов "посерьезнее" дополнительно есть функция тонкой настройки. Зачастую потребители не в силах уловить разницу между двумя экземплярами с похожим описанием, но значительной разницей в цене (к примеру, за 12-13 и за 30 тысяч рублей), и недоумевают, мол, за что тут переплачивать? Ведь это всего лишь микроскоп для школьника!

Поясняем: разница может быть в качестве оптики. Или же та окажется монокулярной и не предусматривающей функцию настройки диоптрий. Оптика - именно та часть микроскопа, экономить на которой следует в последнюю очередь. В этом смысле стоит выбирать модель максимально дорогую из тех, что вы можете себе позволить.

Микроскоп может быть моно- или бинокулярным. В первом случае в него смотрят одним глазом, во втором - двумя, что, несомненно, удобнее. И хотя для многих этот момент не принципиален, его все же следует учитывать. Смотреть в бинокуляр как минимум легче на протяжении длительного времени - глаза меньше устают.

Что такое световой микроскоп? Немного о подсветке

Говоря об этом приборе, нельзя не упомянуть систему подсветки. Согласно определению, микроскоп является оптическим прибором с увеличением не менее чем двухступенчатым, позволяющим увидеть не различимые обычным глазом предметы и детали с расстояния 250 мм. Световой микроскоп, таким образом, немыслим без дополнительного источника освещения.

Возможны два варианта - LED-подсветка или галогенового типа. Какая же из них лучше?

LED-подсветка представлена встроенным светодиодом, дающим белый свет. Срок его службы больше, и нагревается он по минимуму. Галогены греются немного больше и свет имеют желтоватого оттенка. Варианты с LED-подсветкой обычно стоят немного дороже, но разница эта не принципиальна. Многие модели микроскопов могут существовать либо с одним, либо с другим видом подсветки - выбор за покупателем.

Камера для вывода изображения

Хороший школьный микроскоп должен быть оборудован камерой, при помощи которой изображение выводится на экран монитора. Эта функция весьма полезна. Она дает возможность сфотографировать или заснять на видео результаты своих опытов и проиллюстрировать снимками доклад или другую работу. Разглядывать образец на экране куда удобнее, чем через окуляр, к тому же делать это можно коллективно.

Отдельные модели (какие именно - требуется уточнять у продавцов-консультантов) позволяют в режиме реального времени производить вывод на компьютерный экран наблюдаемой картинки. Для этого микроскоп должен быть вместо окуляра оборудован специальным видеоокуляром, который крепится в тубус визуальной насадки.

Камеру можно купить и отдельно с последующей установкой на аппарат. Причем наличие ее никак не мешает обычному наблюдению через окуляры. Правда, покупка ее потребует дополнительного расхода порядка 8-10 тысяч руб. или даже больше. Такие камеры располагают возможностью как фото-, так и видеосъемки. Если вы решили, что такая опция вам необходима, лучше выбрать для покупки тринокулярный микроскоп.

Возможность выбирать поле

Наблюдения можно вести как в темном, так и в светлом поле. Это, скорее всего, потребует наличия специальных объективов. На практике темное поле в домашних условиях используется редко - это ведь не специальная лаборатория.

Как выбрать микроскоп для школьника, если вы настроены на серьезную покупку? Какие модели посоветовать родителям? Оптимальным соотношением цены и качества, на наш взгляд, обладают микроскопы "Альтами БИО 6" (трино) стоимостью от 32 000 до 35 000 рублей или "Альтами БИО 7" (трино) - примерно за 38 000. В том же ценовом сегменте Levenhuk D320L (чуть дороже за счет встроенной камеры) или биомикроскопы Levenhuk 670T по цене около 40 тысяч рублей, а также Levenhuk 740T. Это вполне достойные тринокулярные модели с хорошей оптикой. Дополнительное приобретение камеры, как уже говорилось, увеличивает бюджет покупки еще на сумму порядка 10 тысяч.

Если хотите уложиться в сумму чуть меньше (например, в пределах 30 000 руб.), выбирайте "Альтами БИО 4" - хоть он и бинокулярный и обладает увеличением всего лишь до 1000 крат, зато продается сразу с камерой.

Максимально же недорогие школьные микроскопы "Альтами" продаются по цене 6-8 тысяч рублей и обладают увеличением порядка 800 крат, что тоже совсем неплохо, особенно если бюджет ваш ограничен.

В комплектах с такими моделями, как, например, "Альтами БИО 6" идут, как правило, наборы светофильтров диаметром 32 мм (желтого, голубого, зеленого цвета), чехол для защиты от пыли, иммерсионное масло в специальном флаконе-капельнице. Наличие руководства по эксплуатации подразумевается само собой. Все остальное придется докупать отдельно.

Что именно докупить?

Вам потребуется набор для подготовки микропрепаратов. Имеются в виду образцы тканей и т. п., которые планируется рассматривать. Готовые образцы также продаются, бывают самых различных тематик. Стоит покупать те из них, которые содержат максимально разнообразное число экземпляров.

Микротом - тоже очень полезная штука для изготовления тонких срезов (менее полумиллиметра). Стоимость его невелика (примерно рублей 350), но зато не придется возиться с грубым "выпиливанием" образцов или наблюдать неуклюжие "обломки".

Также не обойтись без набора стекол, которые бывают предметными и покровными. У хороших стекол с низкой интерференцией волн наилучшее соответствие с длиной световой волны. Стоимость наборов сравнительно невелика (от двухсот рублей до полутысячи). Покровными стеклами называют очень тоненькие стеклянные пластинки, которые могут быть в форме квадрата или круга. Применяются они, чтобы защитить препарат, помещенный на нижнее, предметное стекло.

От качества стекол зависит изображение, поэтому китайские наборы лучше не покупать.

Линейка популярных и качественных прямых микроскопов марки "Альтами" представляет модели стоимостью от 23 до 45 тысяч (цены ориентировочные) в зависимости от класса прибора. Модели сложнее и дороже, чем "БИО 8" (стоимостью около 60 000 рублей) приобретать для домашнего использования нет смысла, если речь не идет о покупке для практикующего на дому врача. Но мы с вами сейчас рассматриваем микроскоп для школьника.

Следует учитывать, что если комплектующие впоследствии можно поменять или докупить, то оптику или тип подсветки (галоген или светодиод) изменить в процессе эксплуатации не получится, так что определитесь с этим заранее.

Российский или китайский?

Перечисленные марки ("Альтами", "Микромеды", "Биомеды"), а также многие другие, несмотря на высокое качество, относятся все же к китайским (именно там производятся комплектующие для них).

Настоящие советские микроскопы (старые) - "Бимам 13" (другое название его "Микмед-2"), "Биолам" - сейчас можно найти, пожалуй, лишь бывшими в употреблении или не использовавшимися со старых времен. К ним довольно тяжело найти комплектующие (к тому же нужно знать, как их правильно поменять), вдобавок почти наверняка они потребуют замены смазки, но если данные моменты вас не смущают, то такой вариант - для вас.

В сравнении старые советские микроскопы немного превосходят современные по разрешающей способности, но к величине кривизны изображения это, как правило, не относится. Да и увеличения современные модели позволяют добиться немного большего.

Вариант попроще

Если вы не готовы тратить столь серьезные суммы, или интерес вашего ученика носит довольно поверхностный характер, то есть неплохой бюджетный вариант - микроскоп для школьника "Юный ученый", который продается в комплекте с набором предметов для изучения общим числом около 60. Его окуляр обладает 10- и 20-кратным увеличением, к набору прилагается три различных объектива. Наименьший из них ведет к увеличению под микроскопом исследуемого объекта в пять раз, наибольший - в 60.

То есть если вы выберете самый мощный объектив микроскопа и настроите окуляр по максимуму, то добьетесь увеличения в 1200 раз. Этого достаточно для рассмотрения крылышек насекомых, волосков, шерсти домашних животных и еще массы всего.

В данном аппарате имеется встроенный прожектор, проецирующий изображения на стену или экран, - эту функцию можно использовать для занятий в группе. Кроме того, в комплект входит набор светофильтров для большей четкости и контрастности.

Микроскоп - это оптический прибор, позволяющий получить увеличенные изображения мелких предметов или их деталей, которые невозможно рассмотреть невооружённым глазом.

Дословно слово «микроскоп» означает «наблюдать за чем-то маленьким, (от греческого «малый» и «смотрю»).

Глаз человека, как любая оптическая система, характеризуется определённым разрешением. Это наименьшее расстояние между двумя точками или линиями, когда они ещё не сливаются, а воспринимаются раздельно друг от друга. При нормальном зрении на расстоянии 250 мм разрешение составляет 0,176 мм. Поэтому все объекты, размер которых меньше этой величины, наш глаз уже не в состоянии различить. Мы не можем видеть клетки растений и животных, различные микроорганизмы и др. Но это можно сделать с помощью специальных оптических приборов - микроскопов.

Как устроен микроскоп

Классический микроскоп состоит из трех основных частей: оптической, осветительной и механической. Оптическая часть - это окуляры и объективы, осветительная - источники освещения, конденсор и диафрагма. К механической части принято относить все остальные элементы: штатив, револьверное устройство, предметный столик, систему фокусировки и многое другое. Все вместе и позволяет проводить исследования микромира.

Что такое «диафрагма микроскопа»: поговорим об осветительной системе

Для наблюдений микромира хорошее освещение настолько же важно, как и качество оптики микроскопа. Светодиоды, галогенные лампы, зеркало - для микроскопа могут использоваться разные источники освещения. У каждого есть свои плюсы и минусы. Подсветка может быть верхней, нижней или комбинированной. Ее расположение влияет на то, какие микропрепараты можно изучать при помощи микроскопа (прозрачные, полупрозрачные или непрозрачные).

Под предметным столиком, на который кладется образец для исследований, располагается диафрагма микроскопа. Она может быть дисковой или ирисовой. Диафрагма предназначена для регулировки интенсивности освещения: с ее помощью можно отрегулировать толщину светового пучка, идущего от осветителя. Дисковая диафрагма - это небольшая пластина с отверстиями разного диаметра. Ее обычно устанавливают на любительские микроскопы. Ирисовая диафрагма состоит из множества лепестков, с помощью которых можно плавно изменять диаметр светопропускающего отверстия. Она чаще встречается в микроскопах профессионального уровня.

Оптическая часть: окуляры и объективы

Объективы и окуляры - наиболее популярные запчасти для микроскопа. Хотя далеко не все микроскопы поддерживают смену этих аксессуаров. Оптическая система отвечает за формирование увеличенного изображения. Чем она лучше и совершеннее, тем картинка получается четче и подробнее. Но высочайший уровень качества оптики нужен только в профессиональных микроскопах. Для любительских исследований достаточно стандартной стеклянной оптики, обеспечивающей увеличение до 500-1000 крат. А вот пластиковых линз мы рекомендуем избегать - качество картинки в таких микроскопах обычно расстраивает.

Механические элементы

В любом микроскопе присутствуют элементы, которые позволяют исследователю управлять фокусом, регулировать положение исследуемого образца, настраивать рабочее расстояние оптического прибора. Все это часть механики микроскопа: коаксиальные механизмы фокусировки, препаратоводитель и препаратодержатель, ручки регулировки резкости, предметный столик и многое другое.

История создания микроскопа

Когда появился первый микроскоп, точно неизвестно. Простейшие увеличительные приборы - двояковыпуклые оптические линзы, находили ещё при раскопках на территории Древнего Вавилона.

Считается, что первый микроскоп создали в 1590 г. голландский оптик Ганс Янсен и его сын Захарий Янсен. Так как линзы в те времена шлифовали вручную, то они имели различные дефекты: царапины, неровности. Дефекты на линзах искали с помощью другой линзы - лупы. Оказалось, что если рассматривать предмет с помощью двух линз, то происходит его многократное увеличение. Смонтировав 2 выпуклые линзы внутри одной трубки, Захарий Янсен получил прибор, который напоминал подзорную трубу. В одном конце этой трубки находилась линза, выполняющая функцию объектива, а в другом - линза-окуляр. Но в отличие от подзорной трубы прибор Янсена не приближал предметы, а увеличивал их.

В 1609 г. итальянский учёный Галилео Галилей разработал составной микроскоп с выпуклой и вогнутой линзами. Он называл его «оккиолино» - маленький глаз.

10 лет спустя, в 1619 г. нидерландский изобретатель Корнелиус Якобсон Дреббель сконструировал составной микроскоп с двумя выпуклыми линзами.

Мало кто знает, что свой название микроскоп получил только в 1625 г. Термин «микроскоп» предложил друг Галилео Галилея немецкий доктор и ботаник Джованни Фабер.

Все созданные в то время микроскопы были довольны примитивными. Так, микроскоп Галилея мог увеличивать всего в 9 раз. Усовершенствовав оптическую систему Галилея, английский учёный Роберт Гук в 1665 г. создал свой микроскоп, который обладал уже 30-кратным увеличением.

В 1674 г. нидерландский натуралист Антони ван Левенгук создал простейший микроскоп, в котором использовалась всего одна линза. Нужно сказать, что создание линз было одним из увлечений учёного. И благодаря его высокому мастерству в шлифовании, все сделанные им линзы получались очень высокого качества. Левенгук называл их «микроскопиями». Они были маленькие, размером с ноготь, но могли увеличивать в 100 или даже в 300 раз.

Микроскоп Левенгука представлял собой металлическую пластину, в центре которой находилась линза. Наблюдатель смотрел через неё на образец, закреплённый с другой стороны. И хотя работать с таким микроскопом было не совсем удобно, Левенгук смог сделать с помощью своих микроскопов важные открытия.

В те времена было мало известно о строении органов человека. С помощью своих линз Левенгук обнаружил, что кровь состоит из множества крошечных частиц - эритроцитов, а мышечная ткань - из тончайших волокон. В растворах он увидел мельчайшие существа разной формы, которые двигались, сталкивались и разбегались. Теперь мы знаем, что это бактерии: кокки, бациллы и др. Но до Левенгука об этом не было известно.

Всего учёным было изготовлено более 25 микроскопов. 9 из них сохранились до наших дней. Они способны увеличивать изображение в 275 раз.

Микроскоп Левенгука был первым микроскопом, который завезли в Россию по указанию Петра I.

Постепенно микроскоп совершенствовался и приобретал форму, близкую к современной. Учёные России также внесли огромный вклад в этот процесс. В начале XVIII века в Петербурге в мастерской Академии наук создавались усовершенствованные конструкции микроскопов. Русский изобретатель И.П. Кулибин построил свой первый микроскоп, не имея никаких знаний о том, как это делали за границей. Он создал производство стекла для линз, придумал приспособления для их шлифовки.

Великий русский учёный Михаил Васильевич Ломоносов первым из русских учёных стал использовать микроскоп в своих научных исследованиях.

Однозначного ответа на вопрос «Кто же всё-таки изобрел микроскоп?», пожалуй, не существует. В развитие микроскопного дела внесли вклад лучшие ученые и изобретатели разных эпох.