Здоровые кости и суставы. Кости человека: строение, состав их соединение и устройство суставов

Средний химический состав костной ткани включает 20-25 % воды, 75-80 % сухого остатка, в том числе 30 % белков и 45 % неорганических соединений. Однако состав ткани изменяется в зависимости от вида и возраста животных, а также от структуры кости. Химический состав различных видов костей крупного рогатого скота представлен в табл. 5.5.

Таблица 55. Химический состав костей крупного рогатого скота

Кости

Содержание, %

влаги

белка

жира

золы

Позвоночник

30-41

14-23

13-20

20-30

Грудная кость

48-53

16-21

13-16

1Ф 17

Тазовая кость

24-30

16-20

22-24

30-33

Ребра

28 31

19-22

10-11

36-40

Трубчатая

15-23

17-23

13-24

40-50

Кулак

17 32

14-21

18 33

28-36

При обработке костной ткани кислотами (соляной, фосфорной и др.) минеральные вещества растворяются и остается мягкая органическая часть - оссеин. Размягчение кости в результате удаления минеральных веществ называют мацерацией. х

В структуру оссеина входят в основном белковые вещества -- коллаген (93 %), оссемукоид, альбумины, глобулины и др. Аминокислотный состав кости отличается низким содержанием глютаминовой кислоты, лизина, отсутствием цистина, триптофана; высоким содержанием глицина, пролнна, оксипролина, составляющих до 43 % обшей суммы аминокислот. Таким образом, белки кости не являются полноценными.

Из органических соединений в составе костной ткани присутствуют липиды, в частности лецитин, соли лимонной кислоты и пр.

Наиболее характерными компонентами костной ткани являются минеральные вещества, составляющие половину массы ткани. Они представлены главным образом фосфорно-кальциевыми солями, необходимыми для жизнедеятельности организма, а также микроэлементами - Al, Mn, Си, РЬ и др.

С возрастом животного наряду с общим увеличением содержания минеральных веществ в костной ткани нарастает содержание карбонатов и уменьшается количество фосфатов. В результате такого изменения кости утрачивают упругость и становятся хрупкими. Изменение свойств кости может быть связано и с недостатком определенных солей в питании, в частности при недостатке кальция при жомовом откорме. Электрооглушение такого скота приводит к раздроблению позвоночника и тазовых костей.

Костный мозг, заполняющий костномозговые полости, содержит в основном жиры (до 98 % в сухом остатке желтого мозга) и в меньшем количестве холинфосфатиды, холестерин, белки и минеральные вещества. В составе жиров преобладают пальмитиновая, олеиновая, стеариновая кислоты.

В соответствии с особенностями химического состава кость используют для производства полуфабрикатов, студней, зельцев, костного жира, желатина, клея, костной муки.

Хрящевая ткань. Хрящевая ткань выполняет опорную п механическую функции. Она состоит из плотного основного вещества, в котором располагаются клетки округлой формы, коллагеновые и эластиновые волокна (рис. 5.14). В зависимости от состава межклеточного вещества различают гиалиновые, волокнистые и эластичные хрящи. Гиалиновый хрящ покрывает суставные поверхности костей, из него построены реберные хрящи и трахея. В межклеточном веществе такого хряща с возрастом откладываются соли кальция. Гиалиновый хрящ полупрозрачен, имеет голубоватый оттенок.

Из волокнистого хряща состоят связки между позвонками, а также сухожилия и связки в месте их прикрепления к костям. Волокнистый хрящ содержит много коллагеновых волокон и незначительное количество аморфного вещества. Он имеет вид полупрозрачной массы.

Эластический хрящ кремового цвета, в межклеточном веществе которого преобладают эластиновые волокна. В эластическом хряще никогда не откладывается известь. Он входит в состав ушной раковины, гортани.

Средний химический состав хрящевой ткани включает: 40-70 % воды,

19-20 % белков, 3,5 % жиров, 2-10 % минеральных веществ, около 1 % гликогена.

Для хрящевой ткани характерно высокое содержание мукопротеида - хондромукоида и мукополисахарида - хондроитинсерной кислоты в основном межклеточном веществе. Важным свойством этой кислоты является её способность образовывать солеобразные соединения с различными белками: коллагеном, альбумином и др. Этим, видимо, объясняется «цементирующая» роль мукополисахаридов в хрящевой ткани.

Хрящевая ткань используется на пищевые цели, а также из нее вырабатываются желатин и клей. Однако качество желатина и клея часто бывает недостаточно высоким, так как мукополисахариды и глюкопротеиды переходят в раствор из ткани вместе с желатином, снижая вязкость и прочность студня.

О своем организме человек знает много, например, где расположены органы, какую функцию они выполняют. Почему бы не проникнуть вглубь кости и не узнать ее строение и состав? Это очень занимательно, ведь химический состав костей весьма разнообразен. Он помогает понять, почему каждый костный элемент очень важен и какую функцию он несет.

Основная информация

Живая кость у взрослых людей имеет:

  • 50% - вода;
  • 21, 85% - вещества неорганического типа;
  • 15, 75% - жир;
  • 12,4% - коллагеновые волокна.

Вещества неорганического типа – это разные соли. Большая их часть представлена известковым фосфатом (шестьдесят процентов). В не таком большом количестве присутствует известковый карбонат и магниевый сульфат (5,9 и 1,4% соответственно). Интересно, что в костях представлены все земные элементы. Минеральные соли поддаются растворению. Для этого нужен некрепкий раствор азотной или соляной кислоты. Процесс растворения в этих веществах имеет свое название – декальцинация. После нее остается лишь органической вещество, которое сохраняет костную форму.

Органическое вещество отличается пористостью и эластичностью. Его можно сравнить с губкой. Что происходит, когда удаляется это вещество через сжигание? Кость по форме остается прежней, но теперь она становится хрупкой.

Понятно, что только взаимосвязь неорганических и органических веществ делает костный элемент прочным, упругим. Еще более прочной кость становится благодаря составу губчатого и компактного вещества.

Неорганический состав

Примерно век назад было высказано мнение, что костная ткань человека, точнее, ее кристаллы, по структуре похожи на апатиты. Со временем это было доказано. Костные кристаллы – гидроксилапатиты, а по форме похожи на палочки и пластины. Но кристаллы – это лишь доля минеральной фазы ткани, другая доля – это аморфный фосфат кальция. Его содержание зависит от возраста человека. У молодых людей, подростков и детей его много, больше, чем кристаллов. Впоследствии соотношение меняется, поэтому в более старшем возрасте больше уже кристаллов.

Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция

Организм взрослого человека имеет более одного килограмма кальция. Он содержится в основном в зубных и костных элементах. В сочетании с фосфатом образуется гидроксилапатит, который не растворяется. Особенность в том, что в костях основная часть кальция регулярно обновляется. Каждый день кости человеческого скелета теряют и опять приобретают около восьмисот миллиграмм кальция.

Минеральная доля имеет много ионов, но чистый гидроксилапатит их не содержит. Есть ионы хлора, магния и других элементов.

Органический состав

95% матрикса органического типа – это коллаген. Если говорить о его значимости, то вместе с минеральными элементами он является основным фактором, от которого зависят механические костные свойства. Коллаген ткани кости имеет особенности:

  • в нем больше оксипролина по сравнению с кожным коллагеном;
  • в нем много свободных ε-амино групп оксилизиновых и лизиновых остатков;
  • в нем больше фосфата, основная часть которого связана с сериновыми остатками.

Сухой деминерализованный костный матрикс содержит почти двадцать процентов белков неколлагеновых. Среди них есть части протеогликанов, но их немного. Органический матрикс содержит глюкозаминогликаны. Считается, что они напрямую связаны с оссификацией. Кроме того, если они изменяются, происходит окостенение. В костном матриксе есть липиды – прямой компонент ткани кости. Они участвуют в минерализации. Костный матрикс имеет еще одну особенность – в нем очень много цитрата. Почти девяносто его процентов – доля костной ткани. Считается, что цитрат важен для процесса минерализации.

Вещества кости

Большая часть костей взрослого человека имеет в составе пластинчатую костную ткань, из которой образуется два вида вещества: губчатой и компактное. Их распределение зависит от функциональных нагрузок, осуществляемых на кость.

Если рассматривать строение костей, то в образовании диафизов трубчатых костных элементов играет важную роль компактное вещество. Оно как тонкая пластина покрывает снаружи их эпифизы, плоские, губчатые кости, которые построены из губчатого вещества. В компактном веществе очень много тоненьких канальцев, которые состоят из кровеносных сосудов и волокон нервов. Некоторые каналы находятся в основном параллельно костной поверхности.

Стенки каналов, расположенных в центре, сформированы пластинками, толщина которых от четырех до пятнадцати мкм. Они как будто вставлены друг в друга. Один канал возле себя может иметь двадцать подобных пластинок. Состав кости включает в себя остеон, то есть объединение канала, расположенного в центре, с пластинками возле него. Между остеонами есть пространства, которые наполнены вставочными пластинками.

В строении кости не менее важное значение имеет губчатое вещество. Его название дает основание предположить, что оно похоже на губку. Так оно и есть. Она выстроена с балок, между которыми присутствуют ячейки. Кость человека постоянно испытывает нагрузки в виде сжатия и растяжения. Именно они определяют размеры балок, их расположение.

Костное строение включает надкостницу, то есть соединительнотканную оболочку. Она прочно соединена с костным элементом с помощью волокон, которые проходят в его глубину. Накостница имеет два слоя:

  1. Наружный, фиброзный. Он формируется волокнами коллагена, благодаря которым оболочка отличается прочностью. Этот слой имеет в строении нервы и сосуды.
  2. Внутренний, ростковый. В его строении есть остеогенные клетки, благодаря которым кость расширяется и восстанавливается после травм.

Получается, что надкостница выполняет три основные функции: трофическую, защитную, костеобразующую. Говоря о строении кости также следует упомянуть об эндосте. Им кость покрыта изнутри. Он похож на тонкую пластинку и несет в себе остеогенную функцию.

Еще немного о костях

Благодаря удивительному строению и составу кости обладают уникальными характеристиками. Они очень пластичны. Когда человек выполняет физические нагрузки, тренируется, кости проявляют гибкость и подстраиваются под изменяющиеся обстоятельства. То есть в зависимости от нагрузок увеличивается или уменьшается количество остеонов, меняется толщина пластинок веществ.

Каждый человек может посодействовать оптимальному костному развитию. Для этого необходимо регулярно и умеренно заниматься физическими упражнениями. Если в жизни преобладает сидячий образ действий, кости начнут ослабляться и станут более тонкими. Есть заболевания костей, которые ослабляют их, например, остеопороз, остеомиелит. На строение кости может оказать влияние профессия. Конечно, не последнюю роль играет наследственность.

Итак, на некоторые особенности костного строения человек не способен повлиять. Все же некоторые факторы зависят от него. Если с детства родители будут следить за тем, чтобы ребенок правильно питался и занимался умеренной физической нагрузкой, его кости будут в прекрасном состоянии. Это значительно повлияет на его будущее, ведь ребенок вырастет крепким, здоровым, то есть успешным человеком.

В состав свежей кости взрослого человека входит вода – 50%, жир – 16%, прочие органические вещества – 12%, неорганические в-ва – 22%.

Обезжиренные и высушенные кости содержат приблизительно 2/3 неорганических и 1/3 органических веществ. Кроме того, в составе костей имеются витамины А, Д и С.

Органическое вещество костной ткани – оссеин – придает им эластичность. Он растворяется при кипячении в воде, образуя костный клей. Неорганическое в-во костей представлено главным образом солями кальция, которые с небольшой примесью других минеральных в-в образуют кристаллы гидрооксиапатита.

Сочетание органических и неорганических в-в обуславливают прочность и легкость костной ткани. Так, при малом удельном весе, равном 1.87, т.е. в два раза не превышающим удельный вес воды, прочность кости превосходит прочность гранита. Бедренная кость, например, при сжатии по продольной оси выдерживает нагрузки свыше 1500 кг. Если кость подвергнуть обжиганию, то органическое в-во сгорает, а неорганическое остается и сохраняет форму кости и ее твердость, но такая кость становится очень хрупкой и при надавливании крошится. Наоборот, после вымачивания в растворе, кислот, в результате которого растворяются минеральные соли, а органическое в-во остается, кость также сохраняет свою форму, но становится настолько эластичной, что ее можно завязать в узел. Следовательно, эластичность кости зависит от оссеина, а твердость ее – от минеральных в-в.

Химический состав костей связан с возрастом, функциональной нагрузкой, общим состоянием организма. Чем большее нагрузка на кость, тем больше неорганических в-в. Так, например бедренная кость и поясничные позвонки содержат наибольшее количество углекислого кальция. С увеличением возраста количество органических в-в уменьшается, а неорганических увеличивается. У маленьких детей оссеина сравнительно больше, соответственно, кости отличаются большой гибкостью и поэтому редко ломаются. Наоборот, в старости соотношение органических и неорганических в-в изменяется в пользу последних. Кости становятся менее эластичными и более хрупкими, вследствие чего переломы костей чаще всего наблюдаются у стариков.

Классификация костей

По форме, функции и развитию кости делятся на три части: трубчатые, губчатые, смешанные.

Трубчатые кости входят в состав скелета конечностей, играя роль рычагов в тех отделах тела, где преобладают движения с большим размахом. Трубчатые кости делятся на длинные – плечевая кость, кости предплечья, бедренная кость, кости голени и короткие – кости пясти, плюсны и фаланг пальцев. Трубчатые кости характеризуются наличием средней части – диафиза , содержащего полость (костномозговая полость), и двух расширенных концов – эпифизов . Один из эпифизов располагается ближе к туловищу – проксимальный , другой находится дальше от него – дистальный . Участок трубчатой кости, расположенный между диафизом и эпифизом, носит название метафиза . Отростки кости, служащие для прикрепления мышц, называются апофизами.

Губчатые кости находятся в тех отделах скелета, где необходимо обеспечить достаточную прочность и опору при небольшом размахе движений. Среди губчатых костей различают длинные (ребра, грудина), короткие (позвонки, кости запястья, предплюсны) и плоские (кости черепа, кости поясов). К губчатым костям относятся и сесамовидные кости (коленная чашечка, гороховидная кость, сесамовидные кости пальцев кисти и стопы). Они располагаются около суставов, с костями скелета непосредственно не связаны и развиваются в толще сухожилий мышц. Присутствие этих костей способствует увеличению плеча силы мышцы и, следовательно, увеличению ее момента вращения.

Смешанные кости – сюда относятся кости, сливающиеся из нескольких частей, имеющих разную функцию, строение и развитие (кости основания черепа).

Межклеточный органический матрикс компактной кости составляет около 20%, неорганические вещества – 70% и вода – 10%. В губчатой кости преобладают органические компоненты, которые составляют более 50%, на долю неорганических соединений приходится 33-40%. Количество воды приблизительно то же, что и в компактной кости.

Органический матрикс костной ткани. Приблизительно 95% органического матрикса приходится на коллаген типа I. Данный тип коллагена входит также в состав сухожилий и кожи, однако коллаген костной ткани обладает некоторыми особенностями. В нем несколько больше оксипролина, а также свободных аминогрупп лизиновых и оксилизиновых остатков. Это обусловливает наличие большего количества поперечных связей в коллагеновых волокнах и их большую прочность. По сравнению с коллагеном других тканей костный коллаген характеризуется повышенным содержанием фосфата, который в основном связан с остатками серина.

Белки неколлагеновой природы представлены гликопротеинами, белковыми компонентами протеогликанов. Принимают участие в росте и развитии кости, процессе минерализации, водно-солевом обмене. Альбумины участвуют в транспорте гормонов и других веществ из крови.

Преобладающим белком неколлагеновой природы является остеокальцин . Он присутствует только в костях и зубах. Это небольшой (49 аминокислотных остатков) белок, называемаый также костным глутаминовым белком или gla-белком. В молекуле остеокальцина обнаружены три остатка
γ-карбоксиглутаминовой кислоты. За счет этих остатков он способен связывать кальций. Для синтеза остеокальцина необходим витамин К (рис. 34).

Рис. 34. Посттрансляционная модификация остеокальцина

В состав органического матрикса костной ткани входят гликозаминогликаны, основным представителем которых является хондроитин-4-сульфат. Хондроитин-6-сульфат, кератансульфат и гиалуроновая кислота содержатся в небольших количествах. Окостенение сопровождается изменением гликозаминогликанов: сульфатированные соединения уступают место несульфатированным. Гликозаминогликаны участвуют в связывании коллагена с кальцием, регуляции водного и солевого обмена.

Цитрат необходим для минерализации костной ткани. Он образует комплексные соединения с солями кальция и фосфора, обеспечивая возможность повышения концентрации их в ткани до такого уровня, при котором могут начаться кристаллизация и минерализация. Также принимет участие в регуляции уровня кальция в крови. Кроме цитрата, в костной ткани обнаружены сукцинат, фумарат, малат, лактат и другие органические кислоты.

Костный матрикс содержит небольшое количество липидов. Липиды играют существенную роль в образовании ядер кристаллизации при минерализации кости.

Остеобласты богаты РНК. Высокое содержание РНК в костных клетках отражает их активность и постоянную биосинтетическую функцию.

Неорганический состав костной ткани.

В раннем возрасте в костной ткани преобладает аморфныйм фосфат кальция Са 3 (РО 4) 2 . В зрелой кости преобладающим становится кристаллический гидроксиапатит Са 10 (РО 4) 6 (ОН) 2 (рис. 35). Его кристаллы имеют форму пластин или палочек. Обычно аморфный фосфат кальция рассматривают как лабильный резерв ионов Са 2+ и фосфата.

В состав минеральной фазы кости входят ионы натрия, магния, калия, хлора и др. В кристаллической решетке гидроксиапатита ионы Са 2+ могут замещаться другими двухвалентными катионами, тогда как анионы, отличные от фосфата и гидроксила, либо адсорбируются на поверхности кристаллов, либо растворяются в гидратной оболочке кристаллической решетки.

Рис. 35. Строение кристалла гидроксиапатита

Метаболизм костной ткани характеризуется двумя противоположными процессами: образованием новой костной ткани остеобластами и резорбцией (деградацией) старой остеокластами. В норме количество новообразованной ткани эквивалентно разрушенной. Костная ткань скелета человека практически полностью перестраивается в течение 10 лет.

Образование костной ткани

На1 этапе остеобласты синтезируют сначала протеогликаны и гликозаминогликаны, образующие матрикс, а затем продуцируют фибриллы костного коллагена, которые распределяются в матриксе. Костный коллаген является матрицей для процесса минерализации. Необходимым условием процесса минерализации является пересыщение среды ионами кальция и фосфора. Образование кристаллов минерального остова кости запускают
Са-связывающие белки на матрице коллагена. Остеокальцин прочно связан с гидроксиапатитом и участвует в регуляции роста кристаллов за счет связывания Са 2+ в костях. Электронномикроскопические исследования показали, что формирование минеральной кристаллической решетки начинается в зонах, находящихся в регулярных промежутках между коллагеновыми фибриллами. Образовавшиеся кристаллы в зоне коллагена затем в свою очередь становятся ядрами минерализации, где в пространстве между коллагеновыми волокнами откладывается гидроксиапатит.

На 2 этапе в зоне минерализации при участии лизосомных протеиназ происходит деградация протеогликанов; усиливаются окислительные процессы, распадается гликоген, синтезируется необходимое количество АТФ. Кроме того, в остеобластах увеличивается количество цитрата, необходимого для синтеза аморфного фосфата кальция.

По мере минерализации костной ткани кристаллы гидроксиапатита вытесняют не только протеогликаны, но и воду. Плотная, полностью минерализованная кость практически обезвожена.

Фермент щелочная фосфатаза принимает участие в минерализации. Одним из механизмов ее действия является локальное увеличение концентрации ионов фосфора до точки насыщения, за которым следуют процессы фиксации кальций-фосфорных солей на органической матрице кости. При восстановлении костной ткани после переломов содержание щелочной фосфатазы в костной мозоли резко увеличивается. При нарушении костеобразования наблюдается уменьшение содержания и активности щелочной фосфатазы в костях, плазме и в других тканях.

Ингибитором кальцификации является неорганический пирофосфат. Ряд исследователей считают, что процессу минерализации коллагена в коже, сухожилиях, сосудистых стенках препятствует постоянное наличие в этих тканях протеогликанов.

Процессы моделирования и ремоделирования обеспечивают постоянное обновление костей, а также модификацию их формы и структуры. Моделирование (образование новой кости) имеет место в основном в детском возрасте. Ремоделирование является доминирующим процессом в скелете взрослых; в этом случае происходит лишь замена отдельного участка старой кости. Таким образом, в физиологических и патологическтх условиях происходит не только образование, но и резорбция костной ткани.

Катаболизм костной ткани

Практически одновременно имеет место «рассасывание» как минеральных, так и органических структур костной ткани. При остеолизе усиливается продукция органических кислот, что приводит к сдвигу рН в кислую сторону. Это способствует растворению минеральных солей и их удалению.

Резорбция органического матрикса происходит под действием лизосомных кислых гидролаз, спектр которых в костной ткани довольно широк. Они участвуют во внутриклеточном переваривании фрагментов резорбируемых структур.

При всех заболеваниях скелета происходят нарушения процессов ремоделирования кости, что сопровождается возникновением отклонений в уровне биохимических маркеров.

Имеются общие маркеры формирования новой костной ткани , такие как костно-специфическая щелочная фосфатаза, остеокальцин плазмы, проколлаген I, пептиды плазмы. К биохимическим маркерам резорбции кости относятся кальций в моче и гидроксипролин, пиридинолин мочи и дезоксипиридинолин, являющиеся производными поперечных волокон коллагена, специфичных для хрящей и костей.

Факторами , влияющими на метаболизм костной ткани, являются гормоны, ферменты и витамины.

Минеральные компоненты костной ткани находятся практически в состоянии химического равновесия с ионами кальция и фосфата сыворотки крови. В регуляции поступления, депонирования и выделения кальция и фосфата важную роль играют паратгормон и кальцитонин.

Действие паратгормона приводит к увеличению числа остеокластов и их метаболической активности. Остеокласты способствуют ускоренному растворению содержащихся в костях минеральных соединений. Таким образом, происходит активация клеточных систем, участвующие в резорбции кости.

Паратгормон увеличивает также реабсорбцию ионов Са 2+ в почечных канальцах. Суммарный эффект проявляется в повышении уровня кальция в сыворотке крови.

Действие кальцитонина состоит в снижении концентрации ионов Са 2+ за счет отложения его в костной ткани. Он активирует ферментную систему остеобластов, повышает минерализацию кости и уменьшает число остеокластов в зоне действия, т. е. угнетает процесс костной резорбции. Все это увеличивает скорость формирования кости.

Витамин D участвует в биосинтезе Са 2+ -связывающих белков, стимулирует всасывание калиция в кишечнике, повышает реабсорбцию кальция, фосфора, натрия, цитрата, аминокислот в почках. При недостатке витамина D эти процессы нарушаются. Прием в течение длительного времени избыточных количеств витамина D приводит к деминерализации костей и увеличению концентрации кальция в крови.

Кортикостероиды увеличивают синтез и секрецию паратгормона, усиливают деминерализацию кости; половые гормоны ускоряют созревание и сокращают период роста кости; тироксин усиливает рост и дифференцировку ткани.

Действие витамина С на метаболизм костной ткани обусловлено, прежде всего, влиянием на процессе биосинтеза коллагена. Аскорбиновая кислота является кофактором пролил- и лизилгидроксилаз и необходима для осуществления реакции гидроксилирования пролина и лизина. Недостаток витамина С приводит также к изменениям в синтезе гликозаминогликанов: содержание гиалуроновой кислоты в костной ткани увеличивается в несколько раз, тогда как биосинтез хондроитинсульфатов замедляется.

При недостатке витамина А происходит изменение формы костей, нарушение минерализации, задержка роста. Считают, что данный факт обусловлен нарушением синтеза хондроитинсульфата. Высокие дозы витамина А приводят к избыточной резорбции кости.

При недостатке витаминов группы В рост кости замедляется, что связано с нарушением белкового и энергетического обмена.

Особенности зубной ткани

Основную часть зуба составляет дентин . Выступающая из десны часть зуба, коронка, покрыта эмалью , а корень зуба покрыт зубным цементом . Цемент, дентин и эмаль построены подобно костной ткани. Белковый матрикс этих тканей состоит главным образом из коллагенов и протеогликанов. Содержание органических компонентов в цементе – около 13%, в дентине – 20%, в эмали – всего 1-2%. Высокое содержание минеральных веществ (эмаль – 95%, дентин – 70%, цемент – 50%) определяет высокую твердость зубной ткани. Наиболее важным минеральным компонентом является гидроксиапатит [Са 3 РО 4) 2 ] 3 Са(ОН) 2 . Содержатся также карбонатный апатит, хлорапатит и стронцевый апатит.

Эмаль, покрывающая зуб, полупроницаема. Она участвует в обмене ионами и молекулами со слюной. На проницаемость эмали влияют рН слюны, а также ряд химических факторов.

В кислой среде ткань зуба подвергается атаке и утрачивает твердость. Такое распространенное заболевание, как кариес , вызывается микроорганизмами, живущими на поверхности зубов и выделяющими в качестве продукта анаэробного гликолиза органические кислоты, вымывающие из эмали ионы Са 2+ .

Контрольные вопросы

1. Назовите основные органические компоненты костной ткани.

2. Какие неорганические соединения входят в состав костной ткани?

3. В чем различие биохимических процессов, протекающих в остеокластах и остеобластах?

4. Опишите процесс формирования кости.

5. Какие факторы влияют на формирование костной ткани и ее метаболизм?

6. Какие вещества могут быть биохимическими маркерами процессов, протекающих в костной ткани?

7. Каковы особенности биохимического состава зубной ткани?


Литература

1. Березов, Т.Т. Биологическая химия. / Т.Т. Березов, Б.Ф. Коровкин. - М.: ОАО «Издательство «Медицина»», 2007. - 704 с.

2. Биохимия. / Под ред. Е.С. Северина. - М.: ГЭОТАР-Медиа, 2014. -
768 с.

3. Биологическая химия с упражнениями и задачами. / Под ред. Е.С. Северина. - М.: ГЭОТАР-Медиа, 2013. - 624 с.

4. Зубаиров, Д.М. Руководство к лабораторным занятиям по биологической химии. / Д.М. Зубаиров, В.Н. Тимербаев, В.С. Давыдов. - М.: ГЭОТАР-Медиа, 2005. - 392 с.

5. Шведова, В.Н. Биохимия. /В.Н. Шведова. – М.: Юрайт, 2014. – 640 с.

6. Николаев, А.Я. Биологическая химия. / А.Я. Николаев. - М.: Медицинское информационное агентство, 2004. - 566 с.

7. Кушманова, О.Б. Руководство к лабораторным занятиям по биологической химии. / О.Б. Кушманова, Г.И. Ивченко. - М. - 1983.

8. Ленинджер, А. Основы биохимии / А. Ленинджер. - М., «Мир». - 1985.

9. Марри, Р. Биохимия человека. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл. - Т. 1. - М.: Мир, 1993. - 384 с.

10. Марри, Р. Биохимия человека. / Р. Марри, Д. Греннер, П. Мейес, В. Родуэлл. - Т. 2. - М.: Мир, 1993. - 415 с.

В состав скелета любого взрослого человека входит 206 различных костей, все они различны по строению и роли. На первый взгляд они кажутся твердыми, негибкими и безжизненными. Но это ошибочное впечатление, в них непрерывно происходят различные обменные процессы, разрушение и регенерация. Они, в совокупности с мышцами и связками, образуют особую систему, что носит название "костно-мышечная ткань", основная функция которой - опорно-двигательная. Она образована из нескольких видов особых клеток, которые различаются по структуре, функциональным особенностям и значению. О костных клетках, их строение и функциях далее и пойдет речь.

Строение костной ткани

Это отдельный вид соединительной ткани, из нее образуются все кости в человеческом теле. В ее состав входят особые клетки и межклеточное вещество. Последнее включает органический матрикс, состоящий из коллагеновых волокон (90-95% от общей массы) и минеральных компонентов, в основном солей кальция (5-10%). Благодаря такому составу костная ткань человека имеет гармоничное сочетание твердости и эластичности. Различают три группы клеток: остеокласты (слева), остеобласты (посередине), остеоциты (справа на фото).

Более подробно остановимся на них далее. Коллаген, содержащийся в матриксе, имеет отличия от своих аналогов, находящихся в других тканях, главным образом за счет того, что содержит больше специфических полипептидов. Волокна расположены, как правило, параллельно уровню наиболее вероятных нагрузок на кость. Именно благодаря нему сохраняется эластичность и упругость.

Если кость подвергнуть действию соляной кислоты, то минеральные вещества будут растворены, а вот органические (оссеин) останутся. Они сохранят форму, но станут чрезмерно гибкими и сильно подверженными деформированию. Такое состояние характерно для маленьких детей. У них высоко содержание оссеина, поэтому кости более эластичны, чем у взрослых. И обратный случай, когда теряются органические вещества, но остаются минеральные. Это происходит, если, к примеру, кость обжечь: она сохранит свою форму, но приобретет вместе с тем сильную хрупкость и может разрушиться даже от незначительного прикосновения. Такие изменения состав костной ткани претерпевает в старости. Доля минеральных солей доходит до 80% от всей массы. Поэтому пожилые люди более подвержены различного рода переломам и травмам.

Если установить плотность костной ткани (объем), то это позволит оценить прочность скелета и его отдельных частей. Такие исследования проводятся с использованием компьютерной томографии. Своевременная диагностика позволяет начать лечение или поддерживающую терапию вовремя.

Остеобласты (активные): особенности строения

Остеобласты - это клетки костной ткани, располагающиеся в верхних ее слоях, имеющие многоугольную, кубическую форму с различного вида отростками. Внутреннее содержимое мало чем отличается от других. Хорошо развитый зернистый эндоплазматический ретикуллум содержит различные элементы, рибосомы, аппарат Гольджи, округлой или овальной формы ядро богатое хроматином и содержащее ядрышко. Снаружи эти клетки костной ткани окружены тончайшими микрофибриллами.

Главная функция остеобластов - синтез компонентов межклеточного вещества. Это коллаген (преимущественно первого типа), гликопротеины матрикса (остеокальцин, остеонектин, остеопонтин, костный сиалопротеин), протеогликаны (бигликан, гиалуроновая кислота, декорин), а также различные костные морфогенетические белки, факторы роста, ферменты, фосфопротеины. Нарушение выработки всех этих соединений остеобластами наблюдается при некоторых заболеваниях. Например, недостаток витамина С (цинга) у детей характеризуется нарушением развития и роста костей вследствие дефекта синтеза коллагена и гликозаминогликанов. По этой же причине и замедляется восстановление костной ткани, заживление при переломах. Так как остеобласты фактически отвечают за рост, то присутствуют исключительно в развивающейся костной ткани.

Механизм минерализации остеобластами органического матрикса

Существует два способа:

  1. Отложение кристаллов гидроксилата вдоль фибрилл коллагена из перенасыщенной внеклеточной жидкости. Особую роль при этом отводят некоторым протеогликанам, которые связывают кальций и удерживают его в зонах зазоров.
  2. Секреция особых матричных пузырьков. Это мелкие мембранные структуры, которые синтезируются и выделяются остеобластами. В них в большой концентрации содержится фосфат кальция и щелочная фосфатаза. Особая микросреда, создаваемая внутри пузырьков, благоприятствует образованию первых гидроксиапатитовых кристаллов.

Скорость минерализации остеоида (костная ткань на стадии формирования) может существенно меняться, в норме она занимает около 15 суток. Нарушения могут происходить при снижении концентрации ионов кальция в крови или фосфата. Результатом этого является размягчение и деформация костей - остеомаляция. Аналогичные нарушения наблюдаются, например, при рахите (дефицит витамина D).

Неактивные (покоящиеся) остеобласты

Они образуются из активных остеобластов, у нерастущей кости покрывают около 80-95% ее поверхности. Они имеют уплощенную форму с веретеновидным ядром. Остальные органеллы редуцированы. Но сохраняются рецепторы, реагирующие на различные гормоны и факторы роста. Между покоящимися остеобластами и остеоцитами сохраняется связь и таким образом образуется система, регулирующая минеральный обмен. Если происходит какое-либо повреждение (травмы, переломы), то они активизируются, и начинается активный синтез коллагена, выработка органического матрикса. Другими словами, за счет их происходит регенерация костных тканей. В то же время они могут быть причиной злокачественной опухоли - остеосаркомы.

Остеоциты: строение и функции

Эти клетки составляют основу зрелой костной ткани. Форма у них веретенообразная, с множеством отростков. Органелл значительно меньше по сравнению с остеобластами, есть округлое ядро (в нем преобладает гетеохроматин) с ядрышком. Остеоциты располагаются в лакунах, но непосредственно с матриксом не соприкасаются, а окружены тонким слоем костной жидкости. За счет нее осуществляется питание клеток.

Аналогично отделены и их отростки, имеющие достаточно большую длину до 50 мкм, располагающиеся в специальных канальцах. Их очень много, костная ткань буквально пронизана ими, они образуют ее дренажную систему, в которой и содержится тканевая жидкость. Через нее осуществляется обмен веществ между межклеточным веществом и клетками. Также стоит отметить, что они не делятся, а образуются из остеобластов и являются основными компонентами в сформировавшейся костной ткани.

Основная функция остеоцитов - поддержание нормального состояния костного матрикса и баланса кальция и фосфора в организме. Они способны воспринимать механические напряжения, и чувствительны к электрическим потенциалам, возникающим при действии деформирующих сил. Реагируя на них, они запускают локальный процесс, при котором соединительная костная ткань начинает перестраиваться.

Остеокласты

Такое название получили крупные клетки, содержащие от 5 до 100 ядер, имеющие моноцитарное происхождение, разрушающие кости и хрящи или, по-другому, вызывающие их резорбцию. В цитоплазме остеокластов содержится много митохондрий, элементов ЭПС (зернистой) и аппарат Гольджи, рибосомы, а также различные по функции лизосомы. В ядрах содержится большое количество хроматина и есть хорошо различимые ядрышки. Также имеется достаточное количество цитоплазматических отростков, больше всего их располагается на поверхности, прилегающей к разрушаемой кости. Они увеличивают площадь соприкосновения с ней. Костная ткань начинает разрушаться при повышении уровня особого гормона (паратиреоидного), который приводит к активации остеокластов. Механизм этого процесса связывают с выделением ими углекислого газа, который под воздействием специального фермента (карбоангидраза) превращается в кислоту, имеющую название угольная, она и растворяет соли кальция.

Механизм резорбции костной ткани

Стоит отметить, что процесс разрушения протекает циклически, и периоды высокой активности каждой клетки неизменно сменяются периодами покоя. Резорбция протекает в несколько этапов:

  1. Прикрепление остеокласта к разрушаемой поверхности кости, при этом наблюдается выраженная перестройка его цитоскелета.
  2. Окисление содержимого лакун. Это происходит либо путем выделения в них содержимого вакуолей, имеющего кислую среду, либо в результате действия протонных насосов.
  3. Разрушение минерального компонента матрикса.
  4. Растворение органических соединений в результате действия ферментов, секретируемых остеокластами в лакуну и активированными кислой средой.
  5. Выведение продуктов разрушения костной ткани.

Регуляция деятельности остеокластов определяется общими и местными факторами. К первым, например, относятся паратгормон, витамин D, они стимулируют активность. А угнетающими являются кальцитонин и эстрогены. К местным относится такой фактор, как создание электрического локального поля при механическом напряжении, к которому эти клетки очень чувствительны.

Строение грубоволокнистой костной ткани

Второе ее название - ретикулофиброзная. Она формируется у зародыша, как будущая основа костей. У взрослого же человека ее присутствие минимально, она сохраняется в швах черепа после того, как они зарастают и в зонах, где сухожилия прикрепляются к костям, а также в участках остеогенеза, например, при заживлении различного рода переломов. Строение костной ткани этого вида специфическое. Коллагеновые волокна собраны в плотные пучки, которые расположены неупорядоченно, имеют между собой «перекладины». Она обладает низкой механической прочностью, содержание остеоцитов значительно выше по сравнению с пластинчатой разновидностью. В патологических условиях наращивание костной ткани этого типа происходит при переломе кости или при болезни Педжета.

Особенности пластинчатой костной ткани

Она образована костными пластинками, имеющими толщину 4-15 мкм. Они, в свою очередь, состоят их трех компонентов: остеоцитов, основного вещества и коллагеновых тонких волокон. Из этой ткани образованы все кости взрослого человека. Волокна коллагена первого типа лежат параллельно относительно друг друга и ориентированы в определенном направлении, у соседних же костных пластинок они направлены в противоположную сторону и перекрещиваются практически под прямым углом. Между ними находятся тела остеоцитов в лакунах. Такое строение костной ткани обеспечивает ей наибольшую прочность.

Губчатое вещество кости

Встречается также название "трабекулярное вещество". Если проводить аналогию, то структура сравнима с обычной губкой, построенной из костных пластинок с ячейками между ними. Расположены они упорядоченно, в соответствии с распределенной функциональной нагрузкой. Из губчатого вещества в основном построены эпифизы длинных костей, часть смешанных и плоских и все короткие. Видно, что в основном это легкие и в то же время прочные части скелета человека, которые испытывают нагрузку в различных направлениях. Функции костной ткани находятся в прямой взаимосвязи с ее строением, которое в данном случае обеспечивает большую площадь для метаболических процессов, осуществляемых на ней, придает высокую прочность в совокупности с небольшой массой.

Плотное (компактное) вещество кости: что это?

Из компактного вещества состоят диафизы трубчатых костей, кроме того, оно тонкой пластинкой покрывает их эпифизы снаружи. Его пронизывают узкие каналы, через них проходят нервные волокна и кровеносные сосуды. Некоторые из них располагаются параллельно костной поверхности (центральные или гаверсовы). Другие выходят на поверхность кости (питательные отверстия), через них внутрь проникают артерии и нервы, а наружу - вены. Центральный канал, в совокупности с окружающими его костными пластинками, образует так называемую гаверсову систему (остеон). Это основное содержимое компактного вещества и их рассматривают как его морфофункциональную единицу.

Остеон - структурная единица костной ткани

Второе его название - гаверсова система. Это совокупность костных пластинок, имеющих вид цилиндров вставленных друг в друга, пространство между ними заполняют остеоциты. В центре располагается гаверсов канал, через него проходят обеспечивающие обмен веществ в костных клетках кровеносные сосуды. Между соседними структурными единицами есть вставочные (интерстициальные) пластинки. По сути, они являются остатками остеонов, существовавших ранее и разрушившихся в тот момент, когда костная ткань претерпевала перестройку. Также существуют еще генеральные и окружающие пластинки, они образуют самый внутренний и наружный слой компактного вещества кости соответственно.

Надкостница: строение и значение

Исходя из названия, можно определить, что она покрывает кости снаружи. Прикрепляется она к ним с помощью коллагеновых волокон, собранных в толстые пучки, которые проникают и сплетаются с наружным слоем костных пластинок. Имеет два выраженных слоя:

  • наружный (его образует плотная волокнистая, неоформленная соединительная ткань, в ней преобладают волокна, располагающиеся параллельно к поверхности кости);
  • внутренний слой хорошо выражен у детей и менее заметен у взрослых (образован рыхлой волокнистой соединительной тканью, в которой есть веретенообразные плоские клетки - неактивные остеобласты и их предшественники).

Надкостница выполняет несколько важных функций. Во-первых, трофическую, то есть обеспечивает кость питанием, поскольку на поверхности содержит сосуды, которые проникают внутрь вместе с нервами через специальные питательные отверстия. Эти каналы питают костный мозг. Во-вторых, регенераторную. Она объясняется наличием остеогенных клеток, которые при стимуляции трансформируются в активные остеобласты, вырабатывающие матрикс и вызывающие наращивание костной ткани, обеспечивающие ее регенерацию. В-третьих, механическую или опорную функцию. То есть обеспечение механической связи кости с другими прикрепляющимися к ней структурами (сухожилиями, мышцами и связками).

Функции костной ткани

Среди основных функций можно перечислить следующие:

  1. Двигательная, опорная (биомеханическая).
  2. Защитная. Кости оберегают от повреждений головной мозг, сосуды и нервы, внутренние органы и т. д.
  3. Кроветворная: в костном мозге происходит гемо - и лимфопоэз.
  4. Метаболическая функция (участие в обмене веществ).
  5. Репараторная и регенераторная, заключающиеся в восстановлении и регенерации костной ткани.
  6. Морфобразующая роль.
  7. Костная ткань - это своеобразное депо минеральных веществ и ростовых факторов.