Электрохимические методы анализа. Электрохимические анализаторы медицинского назначения Электрохимические анализаторы

Краткая историческая справка . Начало развития электроанализа связывают с возникновением классического электрогравиметрического метода (около 1864 года, У. Гиббс). Открытие М. Фарадеем в 1834 году законов электролиза легло в основу метода кулонометрии, однако применение этого метода началось с 30-х годов ХХ века. Настоящий перелом в развитии электроанализа произошел после открытия в 1922 году Я. Гейровским метода полярографии. Полярографию можно определить как электролиз с капающим ртутным электродом. Этот метод остается одним из основных методов аналитической химии. В конце 50-х - начале 60-х годов проблема охраны окружающей среды стимулировала бурное развитие аналитической химии, и в частности электроаналитической химии, включая полярографию. В результате были разработаны усовершенствованные полярографические методы: переменнотоковая (г. Баркер, Б. Брейер) и импульсная полярография (г. Баркср, А. Гарднср), которые значительно превосходили по своим характеристикам классический вариант полярографии, предложенный Я. Гейровским. При использовании твердых электродов из различных материалов вместо ртутных (используемых в полярографии) соотвстствуюшие методы стали называться вольтамперометрическими. В конце 50-х годов работы В. Кемули и 3. Кублика положили начало методу инверсионной вольтамперометрии. Наряду с методами кулонометрии и вольтамперометрии развиваются методы, основанные на измерении электродных потенциалов и электродвижущих сил гальванических элементов, - методы потенциометрии и ионометрии (см. ).

Вольтамперометрия . Это группа методов, основанных на изучении зависимости силы тока в электролитической ячейке от величины потенциала, приложенного к погруженному в анализируемый раствор индикаторному микроэлектроду. Эти методы основаны на принципах электролиза; присутствующие в растворе определяемые вещества окисляются или восстанавливаются на индикаторном электроде. В ячейку помещают помимо индикаторного еще электрод сравнения со значительно большей поверхностью, чтобы при прохождении тока его потенциал практически не менялся. В качестве индикаторных микроэлектродов наиболее часто используют стационарные и вращающиеся электроды из платины или графита, а также ртутный капающий электрод, представляющий собой длинный узкий капилляр, на конце которого периодически образуются и отрываются небольшие ртутные капли диаметром 1-2 мм (рис. 1). Качественный и количественный составы раствора могут быть установлены из вольтамперограмм.

Рис. 4. Электрохимическая ячейка с капающим ртутным электродом: 1 - анализируемый раствор, 2 - ртутный капающий электрод, 3 - резервуар с ртутью, 4 - электрод сравнения

Вольтамперометрические методы, особенно такие чувствительные варианты, как дифференциальная импульсная полярография и инверсионная вольтамперометрия, постоянно используются во всех областях химического анализа и наиболее полезны при решении проблем охраны окружающей среды. Эти методы применимы для определения и органических и неорганических веществ, например для определения большинства химических элементов. С помощью метода инверсионной вольтамперометрии чаще всего решают проблему определения следов тяжелых металлов в водах и биологических материалах. Так, например, вольтамперометрические методики одновременного определения Си, Cd и РЬ, а также Zn и РЬ или ТI в питьевой воде включены в стандарт ФРГ. Важным достоинством вольтамперометрии является возможность идентифицировать формы нахождения ионов металлов в водах. Это позволяет оценивать качество воды, так как разные химические формы существования металлов обладают разной степенью токсичности. Из органических веществ можно определять соединения, обладающие группами, способными к восстановлению (альдегиды, кетоны, нитро -, нитрозосоединения, ненасыщенные соединения, галогенсодержащие соединения, азосоединения) или окислению (ароматические углеводороды, амины, фенолы, алифатические кислоты, спирты, серусодержашие соединения). Возможности определения органических вешеств методом инверсионной вольтамперометрии существенно расширяются при использовании химически модифицированных электродов. Модификацией поверхности электрода полимерными и неорганическими пленками, включаюшими реагенты со специфическими функциональными группами, в том числе и биомолекулы, можно создать для определяемого компонента такие условия, когда аналитический сигнал будет практически специфичным. Использование модифицированных электродов обеспечивает избирательное определение соединений с близкими окислительно-восстановительными свойствами (например, пестицидов и их метаболитов) или электрохимически неактивных на обычных электродах. Вольтамперометрию применяют для анализа растворов, но она может быть использована и для анализа газов. Сконструировано множество простых вольтамперометрических анализаторов для работы в полевых условиях.

Кулонометрия . Метод анализа, основанный на измерении количества электричества (Q), прошедшего через электролизер при электрохимическом окислении или восстановлении вещества на рабочем электроде. Согласно закону Фарадея, масса электрохимически превращенного вещества (Р) связана с Q соотношением:

P = QM/Fn ,

где М - молекулярная или атомная масса вещества, п - число электронов, вовлеченных в электрохимическое превращение одной молекулы (атома) вещества, р - постоянная Фарадея.

Различают прямую кулонометрию и кулонометрическос титрование. В первом случае определяют электрохимически активное вещество, которое осаждают (или переводят в новую степень окисления) на электроде при заданном потенциале электролиза, при этом затраченное количество электричества пропорционально количеству прореагировавшего вещества. Во втором случае в анализируемый раствор вводят электрохимически активный вспомогательный реагент, из которого электролитически генерируют титрант (кулонометрический титрант), и он количественно химически взаимодействует с определяемым веществом. Содержание определяемого компонента оценивают по количеству электричества, прошедшего через раствор при генерировании титранта вплоть до момента завершения химической реакции, который устанавливают, например, с помощью цветных индикаторов. Важно, чтобы при проведении кулонометрического анализа в исследуемом растворе отсутствовали посторонние вещества, способные вступать в электрохимические или химические реакции в тех же условиях, то есть не протекали побочные электрохимические и химические процессы.

Кулонометрию используют для определения как следовых (на уровне 109-10 R моль/л), так и весьма больших количеств веществ с высокой точностью. Кулонометрически можно определять многие неорганические (практически все металлы, в том числе тяжелые, галогены, S, NО з, N0 2) и органические вещества (ароматические амины, нитро- и нитрозосоединения, фенолы, азокрасители). Автоматические кулонометрические анализаторы для определения очень низких содержаний (до 104 %) газообразных загрязнений (S02" Оз, H 2 S, NO, N0 2) в атмосфере успешно зарекомендовали себя в полевых условиях.

Потенциометрия. Метод анализа, основанный на зависимости paвновесного электродного потенциала Е от активности а компонентов электрохимической реакции: аА + ЬВ + пе = тМ + рР.

При потенциометрических измерениях составляют гальванический элемент из индикаторного электрода, потенциал которого зависит от активности одного из компонентов раствора, и электрода сравнения и измеряют электродвижущую силу этого элемента.

Различают прямую потенциометрию и потенциометрическое титрование. Прямая потенциометрия применяется для непосредственного определения активности ионов по значению потенциала (Е) соответствующего индикаторного электрода. В методе потенциометрического титрования регистрируют изменение Е в ходе реакции определяемого компонента с подходящим титрантом.

При решении задач охраны окружающей среды наиболее важен метод прямой потенциометрии с использованием мембранных ионоселективных электродов (ИСЭ) - ионометрия. В отличие от многих других методов анализа, позволяющих оценить лишь общую концентрацию веществ, ионометрия позволяет оценить активность свободных ионов и поэтому играет большую роль в изучении распределения ионов между их различными химическими формами. Для контроля объектов окружающей среды особенно важны методы автоматизированного мониторинга, и использование ИСЭ очень удобно для этой цели.

Одним из основных показателей при характеристике состояния окружающей среды является значение рН среды, определение которого обычно проводят с помощью стеклянных электродов. Стеклянные электроды, покрытые полупроницаемой мембраной с пленкой соответствующего электролита, используют в анализе вод и атмосферы для контроля загрязнений (NН з, SO 2 NO, NO 2 , СO 2 , H 2 S). ИСЭ применяют обычно при контроле содержания анионов, для которых методов определения традиционно значительно меньше, чем для катионов. К настоящему времени разработаны и повсеместно применяются ИСЭ для определения F, СI , Вг, I , С1O 4 , CN , S 2 , NO] и NO 2 , позволяющие определять перечисленные ионы в интервале концентраций от 10 -6 до 10 -1 моль/л.

Одной из важных областей применения ионометрии являются гидрохимические исследования и определение концентрации анионов и катионов в разных типах вод (поверхностных, морских, дождевых). Другая область применения ИСЭ - анализ пищевых продуктов. Примером может служить определение NO - 3 и NO 2 - в овощах, мясных и молочных продуктах, продуктах детского питания. Создан миниатюрный ИСЭ в форме иглы для определения NO - 3 непосредственно в мякоти плодов и овощей.

Широко используется ионометрия и для определения различных биологически активных соединений и лекарственных препаратов. В настоящее время уже можно говорить, что существуют носители, селективные практически к любому типу органических соединений, а это означает что возможно создание неограниченного числа соответствующих ИСЭ. Перспективным направлением является использование ферментных электродов, в мембрану которых включены иммобилизованные ферменты. Эти электроды обладают высокой специфичностью, свойственной ферментативным реакциям. С их помощью, например, удастся определять ингибирующие холинэстеразу, инсектициды (фосфорорганические соединения, карбаматы) при концентрациях -1 нг/мл. Будущее метода связано с созданием компактных специфичных сенсоров, представляющих собой современные электронные устройства в cочетании с ионоселективными мембранами, которые позволят обходиться без разделения компонентов проб и заметно ускорят проведение анализов в полевых условиях.

Анализ сточных вод

Электроаналитические методы, которые обычно применяют в анализе воды для определения неорганических компонентов, часто уступают по чувствительности методам газовой и жидкостной хроматографии, атомно-адсорбционной спектрометрии. Однако здесь используется более дешевая аппаратура, иногда даже в полевых условиях. Основными электроаналитическими методами, применяемыми в анализе воды, являются вольтамперометрия, потенциометрия и кондуктометрия. Наиболее эффективными вольтамперометрическими методами являются дифференциальная импульсная полярография (ДИП) и инверсионный электрохимический анализ (ИЭА). Сочетание этих двух методов позволяет проводить определение с очень высокой чувствительностью - приблизительно 10-9 моль/л, аппаратурное оформление при этом несложно, что дает возможность делать анализы в полевых условиях. На принципе использования метода ИЭА или сочетания ИЭА с ДИП работают полностью автоматизированные станции мониторинга. Методы ДИП и ИЭА в прямом варианте, а также в сочетании друг с другом используют для анализа загрязненности воды ионами тяжелых металлов, различными органическими веществами. При этом часто способы пробоподготовки являются гораздо более простыми, чем в спектрометрии или газовой хроматографии. Преимуществом метода ИЭА является (в отличие от других методов, например, атомно-адсорбционной спектрометрии) также способность “отличать” свободные ионы от их связанных химических форм, что важно и для оценки физико-химических свойств анализируемых веществ, и с точки зрения биологического контроля (например, при оценке токсичности вод). Время проведения анализа иногда сокращается до нескольких секунд за счет повышения скорости развертки поляризующего напряжения.

Потенциометрия с применением различных ионоселективных электродов используется в анализе воды для определения большого числа неорганических катионов и анионов. Концентрации, которые удается определить таким способом, 100 -10-7 моль/л. Контроль с помощью ионоселективных электродов отличается простотой, экспрессностью и возможностью проведения непрерывных измерений. В настоящее время созданы ионоселективные электроды, чувствительные к некоторым органическим веществам (например, алкалоидам), поверхностно-активным веществами и моющим веществам (детергентам). В анализе воды используются компактные анализаторы типа зондов с применением современных ионоселективных электродов. При этом в ручке зонда смонтирована схема, обрабатывающая отклик, и дисплей.

Кондуктометрия используется в работе анализаторов детергентов в сточных водах, при определении концентраций синтетических удобрений в оросительных системах, при оценке качества питьевой воды. В дополнение к прямой кондуктометрии для определения некоторых видов загрязнителей могут быть использованы косвенные методы, в которых определяемые вещества взаимодействуют перед измерением со специально подобранными реагентами и регистрируемое изменение электропроводности вызывается только присутствием соответствующих продуктов реакции. Кроме классических вариантов кондуктометрии применяют и ее высокочастотный вариант (осциллометрию), в котором индикаторная электродная система реализуется в кондуктометрических анализаторах непрерывного действия.

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Разновидностями метода являются электрогравиметрический анализ (электроанализ), внутренний электролиз, контактный обмен металлов (цементация), полярографический анализ, кулонометрия и др. В частности, электрогравиметрический анализ основан на взвешивании вещества, выделяющемся на одном из электродов. Метод позволяет не только проводить количественные определения меди, никеля, свинца и др., но и разделять смеси веществ.

Кроме того, к электрохимическим методам анализа относят методы, основанные на измерении электропроводности (кондуктометрия) или потенциала электрода (потенциометрия). Некоторые электрохимические методы применяются для нахождения конечной точки титрования (амперометрическое титрование, кондуктометрическое титрование, потенциометрическое титрование, кулонометрическое титрование).

Различают прямые и косвенные электрохимические методы. В прямых методах используют зависимость силы тока (потенциала и т.д.) от концентрации определяемого компонента. В косвенных методах силу тока (потенциал и т. д.) измеряют с целью нахождения конечной точки титрования определяемого компонента подходящим титрантом, т.е. используют зависимость измеряемого параметра от объема титранта.

Для любого рода электрохимических измерений необходима электрохимическая цепь или электрохимическая ячейка, составной частью которой является анализируемый раствор.

Электрохимические методы классифицируют в зависимости от типа явлений, замеряемых в процессе анализа. Различают две группы электрохимических методов:

1. Методы без наложения постороннего потенциала, основанные на измерении разности потенциалов, который возникает в электрохимической ячейке, состоящей из электрода и сосуда с исследуемым раствором. Эту группу методов называют потенциометрическими. В потенциометрических методах используют зависимость равновесного потенциала электродов от концентрации ионов, участвующих в электрохимической реакции на электродах.

2. Методы с наложением постороннего потенциала, основанные на измерении: а) электрической проводимости растворов - кондуктометрия ; б) количества электричества, прошедшего через раствор - кулонометрия ; в) зависимости величины тока от приложенного потенциала - вольт-амперометрия ; г) времени, необходимого для прохождения электрохимической реакции - хроноэлектрохимические методы (хроновольтамперометрия, хронокондуктометрия). В методах этой группы на электроды электрохимической ячейки налагают посторонний потенциал.

Основным элементом приборов для электрохимического анализа является электрохимическая ячейка. В методах без наложения постороннего потенциала она представляет собой гальванический элемент , в котором вследствие протекания химических окислительно-восстановительных реакций возникает электрический ток. В ячейке типа гальванического элемента в контакте с анализируемым раствором находятся два электрода - индикаторный электрод, потенциал которого зависит от концентрации вещества, и электрод с постоянным потенциалом - электрод сравнения, относительно которого измеряют потенциал индикаторного электрода. Измерение разности потенциалов производят специальными приборами - потенциометрами.

В методах с наложением постороннего потенциала применяют электрохимическую ячейку , названную так потому, что на электродах ячейки под действием наложенного потенциала происходит электролиз - окисление или восстановление вещества. В кондуктометрическом анализе используют кондуктометрическую ячейку, в которой замеряют электрическую проводимость раствора. По способу применения электрохимические методы можно классифицировать на прямые, в которых концентрацию веществ измеряют по показанию прибора, и электрохимическое титрование, где индикацию точки эквивалентности фиксируют с помощью электрохимических измерений. В соответствии с этой классификацией различают потенциометрию и потенциометрическое титрование, кондуктометрию и кондуктометрическое титрование и т.д.

Приборы для электрохимических определений кроме электрохимической ячейки, мешалки, нагрузочного сопротивления включают устройства для измерения разности потенциалов, тока, сопротивление раствора, количества электричества. Эти измерения могут осуществляться стрелочными приборами (вольтметр или микроамперметр), осциллографами, автоматическими самопишущими потенциометрами. Если электрический сигнал от ячейки очень слабый, то его усиливают с помощью радиотехнических усилителей. В приборах методов с наложением постороннего потенциала важной частью являются устройства для подачи на ячейку соответствующего потенциала стабилизированного постоянного или переменного тока (зависит от типа метода). Блок электропитания приборов электрохимического анализа включает обычно выпрямитель и стабилизатор напряжения, который обеспечивает постоянство работы прибора.

Потенциометрия объединяет методы, основанные на измерении эдс обратимых электрохимических цепей, когда потенциал рабочего электрода близок к равновесному значению.

Вольтамперометрия основана на исследовании зависимости тока поляризации от напряжения, прикладываемого к электрохимической ячейке, когда потенциал рабочего электрода значительно отличается от равновесного значения. Широко используется для определения веществ в растворах и расплавах (например, полярография, амперометрия).

Кулонометрия объединяет методы анализа, основанные на измерении количества вещества, выделяющегося на электроде в процессе электрохимической реакции в соответствии с законами Фарадея . При кулонометрии потенциал рабочего электрода отличается от равновесного значения.

Кондуктометрический анализ основан на изменении концентрации вещества или химического состава среды в межэлектродном пространстве; он не связан с потенциалом электрода, который обычно близок к равновесному значению.

Диэлектрометрия объединяет методы анализа, основанные на измерении диэлектрической проницаемости вещества, обусловленной ориентацией в электрическом поле частиц (молекул, ионов), обладающих дипольным моментом. Диэлектрометрическое титрование используют для анализа растворов.

Электрохимические методы анализа - это совокупность методов качественного и количественного анализа, основанных на электрохимических явлениях, происходящих в исследуемой среде или на границе раздела фаз и связанных с изменением структуры, химического состава или концентрации анализируемого вещества.

Электpохимические методы анализа (ЭХМА) основаны на процессах, пpотекающих на электpодах или межэлектpодном пpостpанстве. Их достоинством является высокая точность и сpавнительная пpостота как обоpудования, так и методик анализа. Высокая точность опpеделяется весьма точными закономеpностями используемыми в ЭХМА. Большим удобством является то, что в этом методе используют электpические воздействия, и то, что pезультат этого воздействия (отклик) тоже получается в виде электрического сигнала. Это обеспечивает высокую скоpость и точность отсчета, откpывает шиpокие возможности для автоматизации. ЭХМА отличаются хорошей чувствительностью и селективностью, в pяде случаев их можно отнести к микpоанализу, так как для анализа иногда достаточно менее 1 мл pаствоpа.

По разновидностям аналитического сигнала подразделяют на:

1) кондуктометрию - измерение электропроводности исследуемого раствора;

2) потенциометрию - измерение бестокового равновесного потенциала индикаторного электрода, для которого исследуемое вещество является потенциоопределяющим;

3) кулонометрию - измерение количества электричества, необходимого для полного превращения (окисления или восстановления) исследуемого вещества;

4) вольтамперометрию - измерение стационарных или нестационарных поляризационных характеристик электродов в реакциях с участием исследуемого вещества;

5) электрогравиметрию - измерение массы вещества, выделенного из раствора при электролизе.

27. Потенциометрический метод.

потенциометрию - измерение бестокового равновесного потенциала индикаторного электрода, для которого исследуемое вещество является потенциоопределяющим.

А) стандартная(электрод сравнения) – имеет постоянный потенциал, не зависящий от внеш. Условий

Б) индивидуальный электрод – его потенциал зависит от концентрации вещества.

Потенциал зависит от концентрации: Е = f(c)

Уравнение Нериста Е= Е° + lna kat

E ° - стандарт. Электрон. Потенциал (const )

R – универ. Газовая постоянная const )

Т – абсолютная темп (t )- +273 °

.п – число электронов участвующ. В окис./восст. Реакции

. а – активная концентрация

Метод потенциометрии

Ионометрия потенциометрирование (к исслед. Р-ру небольш. Порциями добавляется стандарт.р-р(титран), после каждого прибавления измеряют потенциал.- Е)

Точка эквивалентности

Е

Сх Vх = l т *Vт

28. Кондуктометрический метод.

кондуктометрия- измерение электропроводности исследуемого раствора.

Кондуктометрическое титрование

Кондуктометр (прибор)

Кондуктометрический анализ (кондуктометрия) основан на использовании зависимости между электропроводностью (электрической проводимостью) растворов электролитов и их концентрацией.

Об электропроводности растворов электролитов - проводников второго рода - судят на основании измерения их электрического сопротивления в электрохимической ячейке, которая представляет собой стеклянный сосуд (стакан) с двумя впаянными в него электродами, между которыми и находится испытуемый раствор электролита. Через ячейку пропускают переменный электрический ток. Электроды чаще всего изготовляют из металлической платины, которую для увеличения поверхности электродов покрывают слоем губчатой платины путем электрохимического осаждения из растворов платиновых соединений (электроды из платинированной платины).

29.Полярография.

Полярография - метод качественного и количественного химического анализа, основанный на получении кривых зависимости величины тока от напряжения в цепи состоящей из исследуемого раствора и погруженных в него электродов, один из которых сильно поляризующийся, а другой практически неполяризующийся. Получение таких кривых - полярограмм - производят при помощи полярографов.

Полярографический метод характеризуется большой чувствительностью. Для выполнения анализа обычно достаточно 3-5 мл исследуемого раствора. Анализ при помощи авторегистрирующего полярографа длится всего около 10 минут. Полярографию используют для определения в объектах биологического происхождения содержания ядовитых веществ (например, соединений ртути, свинца, таллия и др.), для определения степени насыщения крови кислородом, исследования состава выдыхаемого воздуха, вредных веществ в воздухе промышленных предприятий.Полярографический метод анализа обладает большой чувствительностью и дает возможность определять вещества при очень незначительной (до 0,0001%) концентрации их в растворе.

30.Классификация спектральных методов анализа. Понятие спектра.

Спектральный анализ – это совокупность методов определения кач.и колич. Состава, а так же структуры вещества (основанных на взаимодействии исслед.объекта с различными типами излучения.)

Все спектроскопические методы основаны на взаимодействии атомов, молекул или ионов, входящих в состав анализируемого вещества, с электромагнитным излучением. Это взаимодействие проявляется в поглощении или испускании фотонов (квантов). В зависимости от характера взаимодействия пробы с электромагнитным излучением выделяют две группы методов –

Эмиссионные и абсорбционные. В зависимости от того, какие частицы формируют аналитический сигнал, различают методы атомной спектроскопии и методы молекулярной спектроскопии

Эмиссионная

В эмиссионных методах анализируемая проба в результате ее возбуждения излучает фотоны.

абсорбционная

В абсорбционных методах излучение постороннего источника пропускают через пробу, при этом часть квантов избирательно поглощается атомами или молекулами

Спектр - распределение значений физической величины (обычно энергии, частоты или массы). Графическое представление такого распределения называется спектральной диаграммой. Обычно под спектром подразумевается электромагнитный спектр - спектр частот (или то же самое, что энергий квантов) электромагнитного излучения.

1.отражение света

2.поворот пучка света(дефракция)

3.рассеивание света: нефелометрия,турбидиметрия

4.поглощение света

5переизлучение

А)фосфоресценция (длится долго)

Б)флуоресценция(очень короткая)

По характеру распределения значений физической величины спектры могут быть дискретными (линейчатыми), непрерывными (сплошными), а также представлять комбинацию (наложение) дискретных и непрерывных спектров.

Примерами линейчатых спектров могут служить масс-спектры и спектры связанно-связанных электронных переходов атома; примерами непрерывных спектров - спектр электромагнитного излучения нагретого твердого тела и спектр свободно-свободных электронных переходов атома; примерами комбинированных спектров - спектры излучения звёзд, где на сплошной спектр фотосферы накладываются хромосферные линии поглощения или большинство звуковых спектров.

31.Фотометрия: принцип метода, применение в суд.исследованиях.

Фотометрия – спектральный метод основан на поглощении электромагнитного излучения видимого и ближнего ультрафиолетового диапазона (метод основан на поглощении света)

Молекулярная Атомная

Спектроскопия спектроскопия(В электрон.Анализе)

Кювета – через нее пропускают свет

l

I (интенсивность выход.света)

I° – интенсивность падающего света.

Фотометрия – раздел физической оптики и измерительной техники, посвященный методам исследования энергетических характеристик оптического излучения в процессе его испускания, распространения в различных средах и взаимодействия с телами. Фотометрию проводят в диапазонах инфракрасного (длины волн – 10 –3…7 10 –7 м), видимого (7 10 –7…4 10 –7 м) и ультрафиолетового (4 10 –7…10 –8 м) оптических излучений. При распространении электромагнитного излучения оптического диапазона в биологической среде наблюдаются ряд основных эффектов: поглощение и рассеивание излучения атомами и молекулами среды, рассеивание на частицах неоднородностей среды, деполяризация излучения. Регистрируя данные взаимодействия оптического излучения со средой, можно определить количественные параметры, связанные с медико-биологическими характеристиками исследуемого объекта. Для измерения фотометрических величин применяют приборы – фотометры. С точки зрения фотометрии, свет – это излучение, способное вызывать ощущение яркости при воздействии на человеческий глаз. В основе фотометрии как науки лежит разработанная А. Гершуном теория светового поля.

Существуют два общих метода фотометрии: 1) визуальная фотометрия, в которой при выравнивании механическими или оптическими средствами яркости двух полей сравнения используется способность человеческого глаза ощущать различия в яркости; 2) физическая фотометрия, в которой для сравнения двух источников света используются различные приемники света иного рода – вакуумные фотоэлементы, полупроводниковые фотодиоды и т.д.

32.Закон Бугера-Ламберта-Бера, его использование в количественном анализе.

Физический закон, определяющий ослабление параллельного монохроматического пучка света при распространении его в поглощающей среде.

Закон выражается следующей формулой:

,

где -интенсивность входящего пучка, - толщина слоя вещества, через которое проходит свет,-показатель поглощения (не путать с безразмерным показателем поглощения , который связан сформулой, где- длина волны).

Показатель поглощения характеризует свойства вещества и зависит от длины волны λ поглощаемого света. Эта зависимость называется спектром поглощения вещества.

Для растворов поглощающих веществ в непоглощающих свет растворителях показатель поглощения может быть записан как

где - коэффициент, характеризующий взаимодействиемолекулы поглощающего растворённого вещества со светом с длиной волны λ, -концентрациярастворённого вещества, моль/л.

Утверждение, что не зависит от, называется законом Бера (не путать сзаконом Бэра). Этот закон предполагает, что на способность молекулы поглощать свет не влияют другие окружающие её молекулы этого же вещества в растворе. Однако, наблюдаются многочисленные отклонения от этого закона, особенно при больших .

Если через некоторый слой раствора или газа толщиной (проходит световой поток интенсивностью I, то по закону Ламберта - Бера количество поглощенного света будет пропорционально интенсивности /, концентрации с вещества, поглощающего свет, и толщине СЛОЯ) закон БМБ, который связывает интенсивности света, падающего на вещество и прошедшего его, с концентрацией вещества и толщиной поглощающего слоя Ну это так же, как преломление, только затухание в веществе. Которое свет поглощает под определенным процентом. То есть остаток от выхода света есть

33.ИК-спектроскопия.

Этот метод анализа основан на записи инфракрасных спектров поглощения вещества. Поглощение веществом в области инфракрасного излучения происходят за счёт так колебаний атомов в молекулах. Колебания подразделяются на валентные (когда в ходе колебания изменяются расстояния между атомами) и колебательные (когда в ходе колебания изменяются углы между связями). Переходы между различными колебательными состояниями в молекулах квантованы, благодаря чему поглощение в ИК-области имеет форму спектра, где каждому колебанию соответствует своя длина волны. Понятно что длина волны для каждого колебания зависит от того какие атомы в нём участвуют, и кроме того она мало зависит от их окружения.

метод ИК-спектроскопии не являете разделяющим методом, то есть при исследовании какого-либо вещества может оказаться что исследовалась на самом деле смесь нескольких веществ, что конечно сильно исказит результаты расшифровки спектра. Ну и всё ж говорить об однозначной идентификации вещества с помощью метода ИК-спектроскопии не вполне правильно, так как метод скорее позволяет выявить определённые функциональные группы, а не их количество в соединении и их способ связи друг с другом.

метод ИК-спектроскопии используется при проведении исследований полимерных материалов, волокон, лакокрасочных покрытий, наркотических средств (при идентификации наполнителя в качестве которого часто выступают углеводы в том числе полисахариды). Особенно метод незаменим при исследовании смазочных материалов, тем что даёт возможность одновременного определения природы как основы смазочного материала, так и возможных добавок (присадок) к этой основе.

34. Рентгенофлуоресцентный анализ.

(РФА) - один из современных спектроскопических методов исследования вещества с целью получения его элементного состава, то есть его элементного анализа. С помощью него могут анализироваться различные элементы от бериллия (Be) до урана (U). Метод РФА основан на сборе и последующем анализе спектра, полученного путём воздействия на исследуемый материал рентгеновским излучением. При облучении атом переходит в возбуждённое состояние, заключающееся в переходе электронов на более высокие энергетические уровни. В возбуждённом состоянии атом пребывает крайне малое время, порядка одной микросекунды, после чего возвращается в спокойное положение (основное состояние). При этом электроны с внешних оболочек либо заполняют образовавшиеся вакантные места, а излишек энергии испускается в виде фотона, либо энергия передается другому электрону из внешних оболочек (оже-электрон)

Экология и охрана окружающей среды: определение тяжёлых металлов в почвах, осадках, воде, аэрозолях и др.

Геология и минералогия: качественный и количественный анализ почв, минералов, горных пород и др.

Металлургия и химическая индустрия: контроль качества сырья, производственного процесса и готовой продукции

Лакокрасочная промышленность: анализ свинцовых красок

35. Атомно-эмиссионная спектроскопия.

Атомно-эмиссионный спектральный анализ - это совокупность методов элементного анализа, основанных на изучении спектров испускания свободных атомов и ионов в газовой фазе. Обычно эмиссионные спектры регистрируют в наиболее удобной оптической области длин волн от 200 до 1000 нм.

АЭС (атомно-эмиссионная спектрометрия) – способ определения элементного состава вещества по оптическим спектрам излучения атомов и ионов анализируемой пробы, возбуждаемым в источниках света. В качестве источников света для атомно-эмиссионного анализа используют пламя горелки или различные виды плазмы, включая плазму электрической искры или дуги, плазму лазерной искры, индуктивно-связанную плазму, тлеющий разряд и др. АЭС – самый распространённый экспрессный высокочувствительный метод идентификации и количественного определения элементов примесей в газообразных, жидких и твердых веществах, в том числе и в высокочистых.

Области применения:

Металлургия: анализ состава металлов и сплавов,

Горнодобывающая промышленность: исследование геологических образцов и минерального сырья,

Экология: анализ воды и почвы,

Техника: анализ моторных масел и др. технических жидкостей на примеси металлов,

Биологические и медицинские исследования.

Принцип действия.

Принцип действия атомно-эмиссионного спектрометра достаточно прост. Он основан на том, что атомы каждого элемента могут испускать свет определенных длин волн - спектральные линии, причем эти длины волн разные для разных элементов. Для того чтобы атомы начали испускать свет, их необходимо возбудить – нагреванием, электрическим разрядом, лазером или каким-либо иным способом. Чем больше атомов данного элемента присутствует в анализируемом образце, тем ярче будет излучение соответствующей длины волны.

Интенсивность спектральной линии анализируемого элемента, помимо концентрации анализируемого элемента, зависит от большого числа различных факторов. По этой причине рассчитать теоретически связь между интенсивностью линии и концентрацией соответствующего элемента невозможно. Вот почему для проведения анализа необходимы стандартные образцы, близкие по составу к анализируемой пробе. Предварительно эти стандартные образцы экспонируются (прожигаются) на приборе. По результатам этих прожигов для каждого анализируемого элемента строится градуировочный график, т.е. зависимость интенсивности спектральной линии элемента от его концентрации. Впоследствии, при проведении анализа проб, по этим градуировочным графикам и производится пересчет измеренных интенсивностей в концентрации.

Подготовка проб для анализа.

Следует иметь виду, что реально анализу подвергается несколько миллиграммов пробы с ее поверхности. Поэтому для получения правильных результатов проба должна быть однородна по составу и структуре, при этом состав пробы должен быть идентичным составу анализируемого металла. При анализе металла в литейном или плавильном производстве для отливки проб рекомендуется использовать специальные кокили. При этом форма пробы может быть произвольной. Необходимо лишь, чтобы анализируемый образец имел достаточную поверхность и мог быть зажат в штативе. Для анализа мелких образцов, например прутков или проволоки, могут быть использованы специальные адаптеры.

Преимущества метода:

Бесконтактность,

Возможность одновременного количественного определения большого числа элементов,

Высокая точность,

Низкие пределы обнаружения,

Простота пробоподготовки,

Низкая себестоимость.

36. Атомно-абсорбционная спектроскопия.

метод количеств.определения элементного состава исследуемого вещества по атомным спектрам поглощения, основанныйна способности атомов избирательно поглощать электромагнитное излучение в разл. участках спектра. A.-a.a. проводят на спец. приборах - абсорбц. спектрофотометрах. Пробу анализируемого материала растворяют(обычно c образованием солей); раствор в виде аэрозоля подают в пламя горелки. Под действием пламени(3000°C) молекулы солей диссоциируют на атомы, к-рые могут поглощать свет. Затем через пламя горелкипропускают пучок света, в спектре к-рого есть соответствующие тому или иному элементу спектральныелинии. Из общего излучения исследуемые спектральные линии выделяют монохроматором, a ихинтенсивность фиксируют блоком регистрации. Mатем. обработка проводится по формуле: J = J0 * e-kvI,

где J и J0, - интенсивности прошедшего и падающего света; kv – коэфф. поглощения, зависящий от егочастоты; I - толщина поглощающего слоя

более чувствительный чем АЭС

37. Нефелометрия и турбидиметрия.

S = lg (I°/I) интенсивность падающ. В р-р(I°) делим на интенсивность выходщ из р-ра(I) =

k-const мутности

b – длина пути пучка света

N-число частиц в ед. р-ра

В нефелометрическом и турбидиметрическом анализе используется явление рассеяния света твердыми частицами, находящимися в растворе во взвешенном состоянии.

Нефелометрия - метод определения дисперс­ности и концентрации коллоидных систем по интен­сивности рассеянного ими света. Нефелометрия, из­мерения производятся в специальном приборе нефелометре, действие которого основано на срав­нении интенсивности рассеянного исследуемой сре­дой света с интенсивностью света, рассеянного дру­гой средой, служащей стандартом. Теория рассеяния света коллоидными системами, в которых размеры частиц не превышают длины полуволны падающего света, была разработана английским физиком Дж. Рэлеем в 1871. По закону Рэлея, ин­тенсивность света I, рассеянного в направлении, перпендикулярном к падающему лучу, выражается формулой I=QNvlk -где q- интенсивность падающе­го света, N - общее число частиц в единице объёма, или частичная концентрация, v - объём одной части­цы, \ - длина волны падающего света, k - кон­станта, зависящая от показателей преломления кол­лоидных частиц и окружающей их дисперсионной среды, расстояния от источника света, а также от принятых единиц измерения

Турбидиметрия - метод анализа мутных сред, основанный на измерении интенсивности по­глощенного ими света. Турбидиметрические измерения производят в проходящем свете с помощью турбидиметров визуальных или фотоэлектрических колориметров. Методика измерений аналогична колоримет­рической и основывается на применимости к мут­ным средам Бугера -Ламберта - закона Бэра, который в случае суспензий справедлив лишь для очень тонких слоев или при значительных разбавлениях. При турбидиметрии требуется тщательное соблюдение условий образования дисперсной фазы, аналогичных услови­ям, соблюдаемым при нефелометрии. Значи­тельное усовершенствование турбидиметрии заключается в при­менении турбидиметрического титрования по максимуму помутнения с помощью фотоэлектрических колоримет­ров. Турбидиметрия с успехом используются для аналитического опреде­ления сульфатов, фосфатов, хлоридов, цианидов, свинца, цинка и др.

Основным достоинством нефелометрических и турбидиметрических методов является их высокая чувствительность, что особенно ценно по отношению к элементам или ионам, для которых отсутствуют цветные реакции. В практике широко применяется, например, нефелометрическое определение хлорида и сульфата в природных водах и аналогичных объектах. По точности турбидиметрия и нефелометрия уступают фотометрическим методам, что связано, главным образом, с трудностями получения суспензий, обладающих одинаковыми размерами частиц, стабильностью во времени и т. д. К обычным сравнительно небольшим погрешностям фотометрического определения добавляются ошибки, связанные с недостаточной воспроизводимостью химико-аналитических свойств суспензий.

Нефелометрию и турбидиметрию применяют, напр., для определения SO4 в виде взвеси BaSO4, Сl- в виде взвеси AgCl, S2- в виде взвеси CuS с ниж. границами определяемых содержаний ~ 0,1 мкг/мл. Для стандартизации условий анализа в экспериментах необходимо строго контролировать т-ру, объем взвеси, концентрации реагентов, скорость перемешивания, время проведения измерений. Осаждение должно протекать быстро, а осаждающиеся частицы должны иметь малые размеры и низкую р-римость. Для предотвращения коагуляции крупных частиц в р-р часто добавляют стабилизатор, напр. желатин, глицерин.

38. Хроматография: история возникновения, принцип метода, применение в суд. Исследованиях.

Хроматогра́фия- динамический сорбционный метод разделения и анализа смесей веществ, а также изучения физико-химических свойств веществ. Основан на распределении веществ между двумя фазами - неподвижной (твердая фаза или жидкость, связанная на инертном носителе) и подвижной (газовая или жидкая фаза, элюент). Название метода связано с первыми экспериментами по хроматографии, в ходе которых разработчик метода Михаил Цвет разделял ярко окрашенные растительные пигменты.

Метод хроматографии был впервые применён русским учёным-ботаником Михаилом Семеновичем Цветом в 1900 году. Он использовал колонку, заполненнуюкарбонатом кальция, для разделения пигментов растительного происхождения. Первое сообщение о разработке метода хроматографии было сделано Цветом 30 декабря 1901 года на XI Съезде естествоиспытателей и врачей в С.-Петербурге. Первая печатная работа по хроматографии была опубликована в 1903 году, в журнале Труды Варшавского общества естествоиспытателей . Впервые термин хроматография появился в двух печатных работах Цвета в 1906 году, опубликованных в немецком журнале Berichte der Deutschen Botanischen Gesellschaft . В 1907 году Цвет демонстрирует свой метод Немецкому Ботаническому обществу .

В 1910-1930 годы метод был незаслуженно забыт и практически не развивался.

В 1931 году Р. Кун, А. Винтерштейн и Е. Ледерер при помощи хроматографии выделили из сырого каротина α и β фракции в кристаллическом виде, чем продемонстрировали препаративную ценность метода.

В 1941 году А. Дж. П. Мартин и Р. Л. М. Синг разработали новую разновидность хроматографии, в основу которой легло различие в коэффициентах распределения разделяемых веществ между двумя несмешивающимися жидкостями. Метод получил название «распределительная хроматография ».

В 1947 году Т. Б. Гапон, Е. Н. Гапон и Ф. М. Шемякин разработали метод «ионообменной хроматографии».

В 1952 году Дж. Мартину и Р. Сингу была присуждена Нобелевская премия в области химии за создание метода распределительной хроматографии.

С середины XX века и до наших дней хроматография интенсивно развивалась и стала одним из наиболее широко применяемых аналитических методов.

Классификация: Газовая, Жидкостная

Основы хроматографич. процесса. Для проведения хроматографич. разделения в-в или определения их физ.-хим. характеристик обычно используют спец. приборы - хроматографы. Осн. узлы хроматографа - хроматографич. колонка, детектор, а также устройство для ввода пробы. Колонка, содержащая сорбент, выполняет ф-цию разделения анализируемой смеси на составные компоненты, а детектор -ф-цию их количеств. определения. Детектор, расположенный на выходе из колонки, автоматически непрерывно определяет концентрацию разделяемых соед. в потоке подвижной После ввода анализируемой смеси с потоком подвижной фазы в колонку зоны всех в-в расположены в начале хроматографич. колонки (рис. 1). Под действием потока подвижной фазы компоненты смеси начинают перемещаться вдоль колонки с разл. скоростями, величины к-рых обратно пропорциональны коэффициентам распределения К хроматографируемых компонентов. Хорошо сорбируемые в-ва, значения константраспределения для к-рых велики, передвигаются вдоль слоя сорбента по колонке медленнее, чем плохо сорбируемые. Поэтому быстрее всех из колонки выходит компонент А, затем компонент Б и последним покидает колонку компонент В (К А <К Б <К В). Сигнал детектора, величина к-рого пропорциональна концентрации определяемого в-ва в потоке элюента, автоматически непрерывно записывается и регистрируется (напр., на диаграммной ленте). Полученная хроматограмма отражает расположение хроматографич. зон на слое сорбента или в потоке подвижной фазы во времени.

Рис. 1. Разделение смеси из трех компонентов (А, Б и В) на хроматографической колонке К с детектором Д: а - положение хроматографических зон разделяемых компонентов в колонке через определенные интервалы времени; б - хроматограмма (С - сигнал, t - время).

При плоскослойном хроматографич. разделении лист бумаги или пластину со слоем сорбента с нанесеннымипробами исследуемого в-ва помещают в хроматографич. камеру. После разделения компоненты определяют любым подходящим методом.

39. Классификация хроматографических методов.

Храмотография – метод разделения и анализа веществ, основанный на распределении анализир. В-ва между 2 фазами: подвижной и неподвижной

Раствор смеси веществ подлежащих разделению, пропускают через стеклянную трубку(Адсорбционную колонку) заполненную адсорбентом. В результате компоненты смеси удерживаются на различной высоте столба адсорбента в виде отдельных зон (слоев). Вещ-ва лучше адсорбир. Нах в верх части столба, а хуже адсорбируемые в ниж части столба. В-ва не способные адсорбироваться - проходят через колонку не задерживаясь и собираются в фильтре.

Классификации:

1. По агрегатному состоянию фаз.

1) Подвижная

А)газовая (инертные газы:гелий,аргон,азон)

Б)жидкостная

2. по способу проведения

1) на плоскости(планарная); бумажная тонкослойная

2) колоночная

А) насадочная(насадочная колонка наполненная сорбентом)

Б) капиллярная (тонкий стеклянный/кварцевый капиляр на внутр.поверхности которого нанесена неподвижная фаза)

Можно опр. Вещ-ва в небольш.кол-вах.

Летучие в-ва разделяются.

40. Хроматограмма. Основные параметры хроматограф.пика.

Хроматограмма - результат регистрирования зависимости концентрации компонентов на выходе из колонки от времени.

H S

Каждый пик на хроматограмме характеризуется двумя основными параметрами

1. Время удерживания (t R ) – это время от момента ввода анализируемой пробы до момента регистрации максимума хроматографического пика. Оно зависит от природы вещества и является качественной характеристикой.

2. Высота (h ) или площадь (S ) пика

S = ½ ω × h . (4)

Высота и площадь пика зависят от количества вещества и являются количественными характеристиками.

Время удерживания складывается из двух составляющих – времени пребывания веществ в подвижной фазе (t m ) и времени пребывания в неподвижной фазе (t s ):

Идентификацию пиков неизвестных компонентов анализируемой смеси проводят путем сопоставления (сравнения) относит. величин, определяемых непосредственно из хроматограммы, с соответствующими табличными данными для известных соединений. При идентификации в хроматографии достоверен только отрицат. ответ; напр., пик i не является в-вом А, если времена удерживания пика i и в-ва А не совпадают. Совпадение времен удерживания пика i и в-ва А - необходимое, но недостаточное условие для заключения, что пик i - это в-во А.

В практической работе выбор того или иного параметра для количественной расшифровки хроматограмм определяется совокупным влиянием нескольких факторов быстротой и удобством расчета, формой (широкий, узкий) и степенью асимметрии хроматографического пика, эффективностью используемой колонки, полнотой разделения компонентов смеси, наличием необходимых автоматизированных устройств (интеграторов, компьютерных систем обработки данных хроматографического аиализа). 

Определяемый параметр хроматографического пика измеряется оператором на хроматограмме вручную по окончании цикла разделения компонентов анализируемой смеси

Определяемый параметр хроматографического пика измеряется автоматически с помощью цифровых вольтметров, интеграторов или специализированных ЭВМ одновременно с разделением компонентов анализируемой смеси в колонке и записью хроматограммы

Поскольку техника расшифровки хроматограмм сводится к измерению параметров хроматографических пиков интересующего и стандартного соединений, условия хроматографирования должны обеспечивать по возможности полное их разделение все остальные составляющие исходной пробы в принятых условиях анализа могут не отделяться друг от друга или даже вообще не проявляться на хроматограмме (в этом заключается преимущество метода внутреннего стандарта перед методом внутренней нормализации)

41.Качественный хроматографич.анализ.

При достаточной длине колонки можно произвести полное разделение компонентов любой смеси. А после элюирования разделенных компонентов в отдельные фракции (элюаты) определить количество компонентов смеси (оно соответствует количеству элюатов), установить их качественный состав, определить количество каждого из них, использовав соответствующие методы количественного анализа.

Качественный хроматографический анализ, т.е. индетификация вещества по его хроматограмме, может быть выполнен сравнением хроматограических характеристик, чаще всего удерживаемого объема (т.е. объема подвижной фазы, пропущенной через колонку от начала ввода смеси до появления данного компонента на выходе из колонки), найденных при определенных условиях для компонентов анализируемой смеси и для эталона.

42.Количественный хроматограф.анализ.

Количественный хроматографический анализ проводят обычно на хроматографе. Метод основан на измерении различных параметров хроматографического пика, зависящих от концентрации хроматографируемых веществ – высоты, ширины, площади и удерживаемого объема или произведения удерживаемого объема на высоту пика.

В количественной газовой хроматографии применяют методы абсолютной градуировки и внутренней нормализации, или нормировки. Используется также метод внутреннего стандарта. При абсолютной градуировке экспериментально определяют зависимость высоты или площади пика от концентрации вещества и строят градуировочные графики или рассчитывают соответствующие коэффициенты. Далее определяют те же характеристики пиков в анализируемой смеси, и по градуировочному графику находят концентрацию анализируемого вещества. Этот простой и точный метод является основным при определении микропримесей.

При использовании метода внутренней нормализации принимают сумму каких-либо параметров пиков, например, сумму высот всех пиков или сумму их площадей, за 100%. Тогда отношение высоты отдельного пика к сумме высот или отношение площади одного пика к сумме площадей при умножении на 100 будет характеризовать массовую долю (%) компонента в смеси. При таком подходе необходимо, чтобы зависимость величины измеряемого параметра от концентрации была одинаковой для всех компонентов смеси.

43.Планарная хроматография. Использование тонкослойной хроматографии для анализа чернил.

Первой формой использования целлюлозы в тонкослойной хроматографии была бумажная хро-матография. Доступные пластинки для ТСХ и высокопроизводительной ТСХ позволяют разделять смеси полярных веществ, при этом в качестве элюента используются, по крайней мере, тройные смеси из воды, несмешивающегося с ней органического растворителя и водорастворимого рас-творителя, способствующего образованию одной фазы}