Изобретения 20 21 века. Важнейшие технические изобретения XIX века. Создание научно-технических обществ

XX век - век научных открытий и достижений. Трудно представить, что ещё в начале XX века люди не знали, что такое телевизор, автомобиль или компьютер. Ряд важнейших открытий положил начало новой эры, более технологичной.

1. Научный XX век начался с революции. Причем устроил ее один-единственный человек - по имени… нет, не Карл Маркс. А Макс Планк. В конце XIX века Планка пригласили на должность профессора Берлинского университета, однако вместо того, чтобы в свободное от лекций время играть в бридж или хотя бы в дурака, профессор взялся объяснить неразумному человечеству, как распределяется энергия в спектре абсолютно черного тела. Надо думать, с абсолютно белым телом все было к тому времени ясно. Самое удивительное, что в 1900 году упрямый Планк вывел-таки формулу, которая очень хорошо описывала поведение энергии в пресловутом спектре упомянутого абсолютно черного тела.
Правда, выводы из этой формулы следовали фантастические. Получалось, что энергия излучается не равномерно, как от нее, собственно, и ждали, а кусочками - квантами. Сначала Планк и сам усомнился в собственных выводах, но 14 декабря 1900 года все же доложил о них Немецкому физическому обществу. Так, на всякий случай.
Планку не просто поверили на слово. На основе его выводов в 1905 году Альберт Эйнштейн создал квантовую теорию фотоэффекта, а вскоре Нильс Бор построил первую модель атома, состоящую из ядра и электронов, летающих по определенным орбитам. И по всей планете понеслось! Переоценить последствия открытия, которое сделал Макс Планк, практически невозможно. Выбирайте любые слова - гениально, невероятно, обалдеть, вот это да и даже ух ты! - все будет мало.
Благодаря Планку развилась атомная энергетика, электроника, генная инженерия, получили мощнейший толчок химия, физика, астрономия. Потому что именно Планк четко определил границу, где кончается ньютоновский макромир (в котором вещество, как известно, меряют килограммами) и начинается микромир, в котором нельзя не учитывать влияния друг на друга отдельных атомов. А еще благодаря Планку мы знаем, на каких энергетических уровнях живут электроны и насколько им там удобно.

2. Второе десятилетие XX века принесло миру еще одно открытие, которое перевернуло умы практически всех ученых - хотя умы у порядочных ученых и так набекрень. В 1916 году Альберт Эйнштейн завершил работу над общей теорией относительности (ОТО). Кстати, ее еще называют теорией гравитации. Согласно этой теории, гравитация - это не результат взаимодействия тел и полей в пространстве, а следствие искривления четырехмерного пространства времени. Как только он это доказал, все стало вокруг голубым и зеленым. В смысле - все поняли суть вещей и обрадовались.
Большинство парадоксальных и противоречащих «здравому смыслу» эффектов, которые возникают при околосветовых скоростях, предсказаны именно ОТО. Самый известный - эффект замедления времени, при котором движущиеся относительно наблюдателя часы идут для него медленнее, чем точно такие же часы у него на руке. При этом длина движущегося объекта вдоль оси движения сжимается. Теперь общая теория относительности применяется уже ко всем системам отсчета (а не только к движущимся с постоянной скоростью друг относительно друга).
Однако сложность вычислений привела к тому, что на работу потребовалось 11 лет. Первое подтверждение теория получила, когда с ее помощью удалось описать довольно кривую орбиту Меркурия - и все от облегчения перевели дух. Затем ОТО объяснила искривление лучей от звезд при прохождении их рядом с Солнцем, красное смещение наблюдаемых в телескопы звезд и галактик. Но самым важным подтверждением ОТО стали черные дыры. Расчеты показали, что если Солнце сжать до радиуса трех метров, сила его притяжения станет такой, что свет не сможет покинуть звезду. И в последние годы ученые нашли целые горы таких звезд!

3. Когда Бор и Резерфорд в 1911 году предположили, что атом устроен по образу и подобию Солнечной системы, физики возликовали. На основе планетарной модели, дополненной представлениями Планка и Эйнштейна о природе света, удалось рассчитать спектр атома водорода. Трудности начались, когда приступили к следующему элементу -гелию. Все расчеты показывали результат, прямо противоположный экспериментам. К началу 1920-х теория Бора померкла. Молодой немецкий физик Гейзенберг вычеркнул из теории Бора все предположения, оставив лишь то, что можно было измерить при помощи напольных весов.
В конце концов он установил, что скорость и местонахождение электронов нельзя измерить одновременно. Соотношение получило название «принцип неопределенности Гейзенберга», а электроны приобрели репутацию ветреных красоток. Которые сегодня в кондитерской, а завтра - блондинки. Однако на этом странности с элементарными частицами не закончились. К двадцатым годам физики уже притерпелись к тому, что свет может проявлять свойства волны и частицы, каким бы это ни казалось парадоксальным. А в 1923 году француз де Бройль предположил, что свойства волны могут проявлять и «обычные» частицы наглядно показав волновые свойства электрона.
Эксперименты де Бройля подтвердились сразу в не- скольких странах. В 1926 году, соединив математическое описание волны и аналог уравнений Максвелла для света, австрийский физик Шредингер описал материальные волны де Бройля. А сотрудник Кембриджского университета Дирак вывел общую теорию, частными случаями которой стали теории Шредингера и Гейзенберга. Хотя в двадцатые годы о многих элементарных частицах, известных сейчас любому школьнику, физики даже не подозревали, их теория квантовой механики прекрасно описывает движение в микромире. И за последние 90 лет ее основы не претерпели изменений. Квантовая механика сейчас применяется во всех естественных науках, когда они выходят на атомарный уровень - от медицины и биологии до химии и минералогии, а также во всех инженерных науках. С ее помощью, в частности, рассчитаны молекулярные орбитали (а что - исключительно полезная в хозяйстве вещь). Следствием стало изобретение, например, лазеров, транзисторов, сверхпроводимости, а заодно и компьютеров. А еще разработана физика твердого тела, благодаря которой: а) каждый год появляются все новые материалы, б) возникла возможность четко видеть структуру вещества. Еще бы приладить физику твердого тела к сексуальной жизни - и тогда каждый мужчина будет с благодарностью выговаривать фамилию Гейзенберг.

4. Тридцатые годы смело можно называть радиоактивными. Во всех смыслах этого слова. Правда, еще в 1920 году Эрнест Резерфорд на заседании Британской ассоциации содействия развитию наук высказал довольно странную (по тем, разумеется, временам) гипотезу. В попытке объяснить, почему положительно заряженные протоны не убегают в панике друг от друга, он заявил: помимо положительно заряженных частиц в ядре атома есть и некие нейтральные частицы, равные по массе протону. По аналогии с протонами и электронами он предложил называть их нейтронами. Ассоциация поморщилась и предпочла забыть экстравагантную выходку Резерфорда. И только через десять лет, в 1930 году, немцы Боте и Беккер приметили, что при облучении бериллия или бора альфа-частицами возникает необычное излучение. В отличие от альфа-частиц неведомые штуковины, вылетающие из реактора, обладали намного большей проникающей способностью. И вообще параметры у этих частиц были другие. Через два года, 18 января 1932 года, Ирен и Фредерик Жолио-Кюри, предаваясь милым супружеским забавам, направили излучение Боте-Беккера на более тяжелые атомы. И выяснили, что под воздействием лучей Боте-Беккера те становятся радиоактивными. Так была открыта искусственная радиоактивность. А 27 февраля того же года Джеймс Чедвик проверил опыт Жолио-Кюри. И не просто подтвердил, а выяснил, что виноваты в выбивании ядер из атомов новые, незаряженные частицы с массой чуть больше, чем у протона. Именно их нейтральность позволяла беспрепятственно вламываться в ядро и дестабилизировать его. Так Чедвик окончательно открыл нейтрон. Открытие это принесло человечеству много тягот и перемен. К концу 1930-х годов физики доказали, что под воздействием нейтронов ядра атомов делятся. И что при этом выделяется еще больше нейтронов. Это привело, с одной стороны, к бомбардировке Хиросимы и Нагасаки, к десятилетиям холодной войны, с другой, к развитию атомной энергетики, а с третьей - к широкому использованию радиоизотопов в самых разнообразных несекретных научных сферах.

5. Развитие квантовой теории не просто позволило ученым понимать, что происходит внутри вещества. Следующим шагом стала попытка повлиять на эти процессы. К чему это привело в случае с нейтроном, описано выше. А 16 декабря 1947 года сотрудники американской компании АТ&Т Веll Laboratories Джон Бардин, Уолтер Браттейн и Уильям Шокли научились при помощи малых токов управлять большими токами, протекающими через полупроводники (Нобелевская премия 1966 года). Так был изобретен транзистор - прибор, состоящий из двух p-n переходов, направленных навстречу друг другу. Ток по такому переходу может идти только в одном направлении.
А если на переходе поменять полярность, то ток перестает течь. Два же перехода, направленные друг к другу, дали просто уникальные возможности для игр с электричеством. Транзистор стал основой для развития всех наук, включая ветеринарию. Он вышиб из электроники лампы, чем резко сократил вес и объем всей аппаратуры (и количество пыли в наших домах). Открыл дорогу для появления логических микросхем, что привело в итоге к появлению в 1971 году микропроцессора и созданию современных компьютеров. Да что там компьютеры - сейчас в мире нет ни одного прибора, ни одного автомобиля, ни одной квартиры, в которых не используются транзисторы.

6. Немец Карл Вольдемар Циглер был химиком. Не, реально, это безумно увлекательная история. Значит, был этот самый Карл Вольдемар немцем и химиком. И находился под большим впечатлением от реакции Гриньяра, в которой ученые сильно упростили синтез органических веществ. И наш Карл пытался понять: а можно ли сделать то же самое с другими металлами? Кстати, вопрос был не праздный, ведь работал Циглер в Кайзеровском институте по изучению угля. А поскольку побочный продукт угольной индустрии - этилен, его утилизация стала проблемой. В 1952 году он изучал распад одного из реагентов - литийалкила на гидрид лития и олефин. И получил ПНД - полиэтилен низкого давления. Но полностью заполимеризовать этилен не получалось. Через пару месяцев в лаборатории Циглера произошел казус. По окончании реакции из колбы неожиданно выпал не полимер, а димер (соединение двух молекул этилена) - альфа-бутен. Оказалось, что нерадивый студент просто плохо отмыл реактор от солей никеля. И хотя эти самые соли остались на стенках в микроскопических количествах, этого хватило, чтобы напрочь зарубить основную реакцию. Но вот что любопытно - анализ смеси показал, что соли никеля во время реакции не изменились.
То есть они выступили катализатором димеризации. Этот вывод сулил огромные прибыли - ведь прежде для получения полиэтилена приходилось добавлять к этилену намного больше алюмоорганики. Опять же, проблем синтезу добавляли и высокое давление, и большая температура. Плюнув на алюминий, Циглер начал перебирать переходные металлы в поисках идеального катализатора. И нашел в 1953 году сразу несколько. Самыми мощными оказались комплексы на основе хлоридов титана. Циглер рассказал о своем открытии в итальянской компании «Монтекатини», и там его катализаторы использовали на другом мономере - пропилене. Побочный продукт переработки нефти, пропилен стоил в десять раз дешевле этилена, да и давал возможность поиграть со структурой полимера. Игры привели к небольшой модификации катализатора, из-за чего Натта получил стереорегулярный полипропилен. В нем все молекулы пропилена располагались одинаково. Катализаторы Циглера-Наттадали химикам ничем не сравнимый контроль над полимеризацией. С их помощью, например, химики создали искусственный аналог каучука. Металлоорганические катализаторы, которые сделали большинство синтезов проще и дешевле, используются практически на всех химических заводах мира. Но главное место по-прежнему занимает полимеризация этилена и пропилена. Сам Циглер, несмотря на промышленное применение его работы, всегда считал себя ученым-теоретиком. А студента, который плохо вымыл реактор, понизили в статусе до лабораторной мыши.

7. 12 апреля 1961 года в 9 часов 7 минут утра произошло событие, которое, без сомнения, всколыхнуло весь мир. Со словами «Поехали!» со «второй площадки» отправился в космос первый человек. Конечно, это была не первая ракета, облетевшая вокруг Земли,- первый искусственный спутник стартовал 4 октября 1957 года. Но именно Юрий Гагарин стал реальным воплощением мечты человечества о звездах. Запуск человека в космос буквально катализировал научно-техническую революцию. Было установлено, что в невесомости могут спокойно жить не только бактерии, растения и Белка со Стрелкой, но и человек. А главное, выяснилось, что пространство между планетами преодолимо. Человек уже побывал на Луне. Сейчас готовится экспедиция к Марсу. Аппараты всевозможных космических агентств буквально наводнили Солнечную систему. Они крутятся вокруг Юпитера, Сатурна, бродят по поясу Койпера, катаются по марсианским пустыням. А число спутников вокруг Земли перевалило за несколько тысяч. Это и метеорологические приборы, и научные (в том числе знаменитые орбитальные телескопы), и коммерческие спутники связи. Благодаря последним, кстати, можно спокойно позвонить в любую точку мира. Сидя в Москве, поболтать в чате с людьми из Сиднея, Кейптауна и Нью-Йорка. Пробежаться по нескольким тысячам телевизионных каналов со всего света. Или отправить письмо по электронной почте в Антарктиду - тем более, все равно никто не ответит.

8. 26 июля 1978 года в семье Лесли и Гилберта Браунов родилась дочь Луиза. Наблюдавшие за кесаревым сечением гинеколог Патрик Стэптоу и эмбриолог Боб Эдвардс чуть не лопались от гордости, ведь это они сделали то, ради чего весь мир занимается сексом - зачали Луизу. М-м-м… не надо думать о неприличном. На самом деле ничего порнографического не произошло. Просто мадам Лесли Браун, мамаша Луизы, страдала от непроходимости маточных труб и, как и многие миллионы женщин на Земле, не могла зачать сама. Пыталась она, кстати, больше девяти лет - но увы. Все входило, но ничего не выходило. Чтобы решить проблему, Стэптоу и Эдвардc сделали сразу несколько научных открытий. Они придумали, как извлечь из женщины яйцеклетку, не повредив ее, как создать этой самой яйцеклетке условия для нормальной жизни в пробирке, как нужно ее оплодотворять и в какой момент вернуть обратно. Опять же, не повредив. И родители, и ученые вскоре убедились, что девочка совершенно нормальна. Вскоре у нее таким же способом появилась сестра, а к 2007 году благодаря методике экстракорпорального оплодотворения (ЭКО) по всему миру родились почти два миллиона детей. Которых бы никогда не было, если бы не опыты Стэптоу и Эдвардса. Да вообще сейчас страшно сказать, что творится. Взрослые дамы сами рожают себе внучек, если их дочери неспособны выносить дитя, а жены рожают от погибших мужей. Многочисленные опыты подтвердили, что «дети из пробирки» ничем не отличаются от зачатых естественным путем, так что с каждым годом методика ЭКО завоевывает все большую популярность. Гм. Хотя по старинке все-таки намного приятнее.

9. В1985 году Роберт Керл, Гарольд Крото, Ричард Смолли и Хит О"Брайен изучали масс-спектры паров графита, которые образовывались под воздействием лазера на твердый образец. И обнаружили странные пики, которые соответствовали атомным массам 720 и 840 единиц. Вскоре стало понятно, что ученые открыли новую разновидность углерода, которая получила название «фуллерен» - по имени инженера Р. Бакминстера Фуллера, чьи конструкции очень походили на открытые молекулы. Первая углеродная разновидность известна под названием «футболен», а вторая - «регбен», поскольку они действительно похожи на мячи для футбола и регби. Сейчас фуллерены из-за своих уникальных физических свойств активно используются в самых разных приборах. Однако главное не это - на основе методики 1985 года ученые придумали, как сделать углеродные нанотрубки, скрученные и сшитые слои графита. На данный момент известны нанотрубки диаметром 5–7 нанометров и длиной до 1 см (!). Несмотря на то что сделаны они только из углерода, такие нанотрубки проявляют самые различные физические свойства - от металлических до полупроводниковых.
На их основе разрабатываются новые материалы для оптоволоконной связи, светодиоды и дисплеи. Нанотрубки используются как капсулы для доставки в нужное место организма биологически активных веществ, а также как нанопипетки. На их основе разработаны сверхчувствительные датчики химических веществ, что уже применяются для мониторинга окружающей среды, в военных, медицинских и биотехнологических целях. Из них делают транзисторы, нанопровода, топливные элементы. Самая последняя новинка в сфере нанотрубок - искусственные мышцы. Работа ученых из Ренселлеровского политехнического института, опубликованная в июле 2007 года, показала, что можно создать пучок нанотрубок, который ведет себя как мышечная ткань. Он обладает такой же проводимостью электрического тока, как мышцы, и не изнашивается со временем - искусственная мышца выдержала 500 тысяч сжатий на 15% от первоначальной длины, и ее первоначальная форма, механические и проводящие свойства не изменились. Это открытие, возможно, приведет к тому, что вскоре все инвалиды получат новые руки и ноги, которыми можно будет управлять силой мысли (ведь мысль для мышц выглядит, как электрический сигнал «сжиматься-разжиматься»). Жаль, правда, что некоторым людям нельзя приделать новую башку. Но это наверняка дело ближайшего будущего.

10. 5 июля 1996 года родилась новая эра биотехнологий. Лицом и достойным представителем этой эры стала обыкновенная овца. Вернее, обыкновенной овца была только с виду - на самом деле ради ее появления сотрудники института Рослина (Великобритания) несколько лет работали не разгибаясь. Яйцеклетку, из которой позже появилась овечка Долли, выпотрошили, а затем вставили в нее клеточное ядро взрослой овцы. Затем развившийся эмбрион подсадили овце обратно в матку и стали ждать, что получится. Надо сказать, что Долли была не единственным кандидатом на вакансию «первый клон крупного животного в мире» - у нее было 296 конкурентов. Но они все погибли на разных стадиях эксперимента. А Долли выжила! Правда, дальнейшая судьба бедняжки оказалась незавидной. Концевые участки ДНК -теломеры, которые служат биологическими часами организма, уже отмерили 6 лет, которые они прожили в теле матери Долли. Поэтому спустя еще 6 лет, 14 февраля 2003 года, клонированная овца умерла от навалившихся на нее «старых» заболеваний - артрита, специфического воспаления легких и множества других недугов. Однако появление Долли на обложке Nature в феврале 1997 года произвело настоящий взрыв - она стала символом могущества науки и власти человека над природой. За прошедшие с рождения Долли одиннадцать лет удалось клонировать самых разных животных - поросят, собак, породистых быков. Получены даже клоны второго поколения -клоны от клонов. Правда, пока не удалось до конца решить проблему с теломерами, клонирование человека по всему миру запрещено. Однако исследования продолжаются.

Как известно, для того, что бы смотреть в будущее, необходимо знать прошлое. Поэтому сегодня речь пойдет именно о XX веке, веке открытий, который изменил образ жизни и окружающий нас мир. Стоит сразу отметить, что это не будет список лучших открытий века или какой-либо иной топ, это будет краткий осмотр части тех открытий, которые изменяли, а возможно и изменяют мир.


1. Квантовая теория Планка. Он вывел формулу, определяющую форму спектральной кривой излучения и универсальную постоянную. Открыл мельчайшие частицы – кванты и фотоны, с помощью которых Эйнштейн объяснил природу света. В 20-х годах Квантовая теория переросла в квантовую механику.

2. Открытие рентгеновского излучения – электромагнитное излучение с широким диапазоном длин волн. Открытие Х-лучей Вильгельмом Рёнтгеном сильно повлияло на жизнь человека и сегодня без них невозможно представить современную медицину.

3.Теория относительности Эйнштейна. В 1915 году Эйнштейн ввел понятие относительности и вывел важную формулу, связавшую энергию и массу. Теория относительности объяснила суть гравитации – она возникает вследствие искривления четырехмерного пространства, а не результате взаимодействия тел в пространстве.

4. Открытие пенициллина. Плесневый гриб Penicillium notatum, попадая к культуре бактерий, вызывает полную их гибель – это было доказано Александром Флеммингом. В 40-х годах был разработана производственная технология пенициллина, который в дальнейшем стал выпускаться в промышленном масштабе.


5 Волны де Бройля. В 1924 году было выяснено, что корпускулярно-волновой дуализм присущ всем частицам, а не только фотонам. Бройль представил их волновые свойства в математическом виде. Теория позволила развить концепцию квантовой механики, объяснила дифракцию электронов и нейтронов.

6 Открытие структуры новой спирали ДНК. 1953 году была получена новая модель строения молекулы, путем объединения сведений рентгеноструктурного анализа ДНК Розалин Франклин и Мориса Уилкинса и теоретических разработок Чаргаффа. Ее вывели Френсис Крик и Джеймс Уотсон.


7 Планетарная модель атома Резерфорда. Он вывел гипотезу о строении атома и извлек энергию из атомных ядер. Модель объясняет основы закономерности заряженных частиц.

8 Катализаторы Циглера-Ната. В 1953 году они осуществили поляризацию этилена и пропилена.

9 Открытие транзисторов. Прибор, состоящий из 2-х p-n переходов, которые направлены навстречу друг другу. Благодаря его изобретению Юлием Лилиенфельдом, техника начала уменьшаться в размерах. Первый действующий биполярный транзистор в 1947 представили Джон Бардин, Уильям Шокли и Уолтер Браттейн.

10 Создание радиотелеграфа. Изобретение Александра Попова с помощью азбуки Морзе и радиосигналов впервые спасло корабль на рубеже 19 и 20 веков. Но первым запатентовал аналогичное изобретение Гулиельмо Марконе.


11 Открытие нейтронов. Эти незаряженные частицы с массой, немного большей, чем у протонов позволили без препятствий проникать в ядро и дестабилизировать его. Позже было доказано, что под воздействием этих частиц ядра делятся, но возникает еще больше нейтронов. Так была открыта искусственная радиоактивность.

12 Методика экстракорпорального оплодотворения (ЭКО). Эдварс и Стептоу придумали, как извлечь из женщины неповрежденную яйцеклетку, создали в пробирке оптимальные для ее жизни и роста условия, придумали, как ее оплодотворить и в какое время вернуть обратно в тело матери.

13 Первый полет человека в космос. В 1961 году именно Юрий Гагарин первым осуществил этот знаменательный полет, ставший реальным воплощением мечты о звездах. Человечество узнало, что пространство между планетами преодолимо, и в космосе могут спокойно находиться бактерии, животные и даже человек.



14 Открытие фуллерена. В 1985 году учеными была открыта новая разновидность углерода – фуллерен. Сейчас из-за своих уникальных свойств он используется во многих приборах. На основе этой методики, были созданы нанотрубки из углерода – скрученные и сшитые слои графита. Они показывают самые разнообразные свойства: от металлических до полупроводниковых.

15 Клонирование. В 1996 ученым удалось получить первый клон овцы, названной Долли. Яйцеклетку выпотрошили, вставили в нее ядро взрослой овцы и подсадили в матку. Долли стала первым животным, которому удалось выжить, остальные эмбрионы разных животных погибли.

16 Открытие черных дыр. В 1915 году Карлом Шварцшильдом была выдвинута гипотеза о существовании области во времени и пространстве, гравитация которой настолько велика, что ее не могут покинуть даже объекты, движущиеся со скоростью света - черных дыр.


17 Теория Большого взрыва. Это космологическая общепринятая модель, в которой описано ранее развитие Вселенной, находившейся в сингулярном состоянии, характеризующемся бесконечной температурой и плотностью вещества. Начало модели было положено Эйнштейном в 1916 году.

18 Открытие реликтового излучения. Это космическое микроволновое фоновое излучение, сохранившееся с начала образования Вселенной и равномерно ее заполняющее. В 1965 году его существование было экспериментально подтверждено, и оно служит одним из основных подтверждений теории Большого взрыва.

19 Приближение к созданию искусственного интеллекта. Это технология создания интеллектуальных машин, впервые получившая определение в 1956 году Джоном Маккарти. Согласно ему, исследователи для решения конкретных задач могут использовать методы понимания человека, которые биологически могут не наблюдаются у людей.

20 Изобретение голография. Этот особый фотографический метод предложен в 1947 году Дэннисом Габором, в котором при помощи лазера регистрируются и восстанавливаются трехмерные изображения объектов, близкие к реальным.

21 Открытие инсулина. В 1922 году Фредериком Бантингом был получен гормон поджелудочной железы, и сахарный диабет перестал быть фатальным заболеванием.


22 Группы крови. Это открытие в 1900–1901 разделило кровь на 4 группы: О, А, В и АВ. Стало возможным правильное переливание крови человеку, которое не заканчивалось бы трагически.

23 Математическая теория информации. Теория Клода Шеннона дала возможность определения емкости коммуникационного канала.

24 Изобретение Нейлона. Химик Уоллес Карозерс в 1935 году открыл способ получения этого полимерного материала. Он открыл некоторые его разновидности с высокой вязкостью даже при больших температурах.

25 Открытие стволовых клеток. Они являются прародительницами всех имеющихся клеток в организме человека и имеют способность самообновляться. Их возможности велики и еще только начинают исследоваться наукой.


Несомненно, что все эти открытия - лишь малая часть того, что XX век показал обществу и нельзя сказать, что лишь эти открытия были значимыми, а все остальные стали лишь фоном, это совсем не так.

Именно прошлый век показал нам новые границы Вселенной, увидела свет Теория относительности Эйнштейна, были открыты квазары (сверхмощные источники излучения в нашей Галактике), открыты и созданы первые углеродные нанотрубки, обладающие уникальной сверхпроводимостью и прочностью.

Все эти открытия, так или иначе - лишь вершина айсберга, который включает в себя более чем сотню значимых открытий за прошедшее столетие. Естественно, что все они стали катализатором изменений в мире, в котором мы с вами сейчас живем и несомненным остается тот факт, что на этом изменения не заканчиваются.

20й век можно смело назвать если не «золотым», то уж точно «серебряным» веком открытий, однако оглядываясь назад и сравнивая новые достижения с прошлыми, думается, что в будущем нас ждет еще не мало интереснейших великих открытий, собственно, преемник прошлого века, нынешний XXI лишь подтверждает эти взгляды.

Введение…………………………………………………………………………...2

1. Научно-технические изобретения конца 19-начала 20 вв…………………...3

2. Структурные изменения в промышленности………………………………...7

3. Влияние научно-технического прогресса на мировую экономику…………9

Заключение……………………………………………………………………….11

Список использованной литературы…………………………………………...12

Введение

В конце 19- начале 20 века стремительными темпами происходило развитие производительных сил. В связи с этим в существенной мере увеличился объем мирового промышленного производства. Эти изменения сопровождались стремительным развитием техники, нововведения которой охватывали различные сферы производства, транспорта и быта. Также существенные изменения произошли в технологии организации промышленного производства. В этот период возникло много совершенно новых отраслей, которые не существовали ранее. Также произошли значительные сдвиги в размещении производительных сил, как на международном уровне, так и внутри отдельных государств.

Такое стремительное развитие мировой промышленности было связано с научно-технической революцией конца 19-начала 20 века. Посредством внедрения достижений научно-технического прогресса развитие промышленности в19-20 ст. привело к существенным изменениям условия и образа жизни всего человечества.

Целью написания данной работы является анализ научно-технических достижений конца 19-начала 20 века, а также определение их влияния на мировое экономическое развитие.

При написании данной работы необходимо решить следующие задачи: характеристика научно-технических изобретений конца 19-начала 20 вв.; анализ структурных изменений промышленности конца 19-начала 20 вв.; определение влияния технологического развития на мировую экономику.

Научно-технические изобретения конца 19-начала 20 вв.

В конце 19 века наступила так называемая «Эпоха электричества». Так, если первые машины были созданы мастерами-самоучками, то в этот период все технологические внедрения были тесно взаимосвязаны с наукой. На основе развития электричества была разработана новая энергетическая основа промышленности и транспорта. Так, в 1867г. В. Сименсом было изобретено электромагнитный генератор, с помощью которого путем вращения проводника в магнитном поле можно было получать и вырабатывать электрический ток. В 70гг. 19 века было изобретено динамо-машину, которая использовалась не только как генератор электроэнергии, но и как двигатель, который превращал электрическую энергию в динамическую. В 1883 г. было изобретено Т. Эдисоном первый современный генератор, а в 1891г. он изобрел трансформатор. Благодаря данным изобретениям промышленные предприятия теперь могли размещаться вдали от энергетических баз, а производство электроэнергии было организовано на особых предприятиях – электростанциях. Оборудование машин электродвигателями в значительной мере увеличило скорость станков, что привело к повышению производительности труда и создало предпосылки для последующей автоматизации производственного процесса.


В связи с тем, что потребность в электроэнергии постоянно росла, то возникла необходимость в разработке более мощных, компактных и экономичных двигателях. Так, английским инженером Ч. Парсонсом в 1884 г. было изобретено многоступенчатую паровую турбину, с помощью которой можно было в несколько раз повысить скорость вращения.

Широко использовались двигатели внутреннего сгорания, которые были разработаны немецкими инженерами Даймлером и Бенцом в средине 80 гг.

В 1896г. немецким инженером Р.Дизелем было разработано двигатель внутреннего сгорания с большим коэффициентом полезного действия. Немного позже этот двигатель приспособили к работе на тяжелом жидком топливе, в связи с чем его стали широко применять во всех отраслях промышленности и транспорта. В 1906 г. в США появились тракторы с двигателями внутреннего сгорания. Массовое производство таких тракторов было освоено в период Первой мировой войны.

В этот период одной из основных отраслей являлась электротехника. Так, широкое распространение получило электрическое освещение, что было связано со строительством крупных промышленных предприятий, развитием городов и существенным увеличением производства электроэнергии.

Также широкое развитие получила и такая отрасль электротехники, как техника средств связи. В конце 19 века было усовершенствовано аппаратуру проволочного телеграфа, а к началу 80 гг. 19 века были выполнены работы по конструированию и практическому применению телефонной аппаратуры. Телефонная связь стала быстро распространяться во всех странах мира. Первая телефонная станция была построена в США в 1877 г. , в 1879г. была построенная телефонная станция в Париже, а в 1881 году – в Берлине, Петербурге, Москве, Одессе, Риге и Варшаве.

Одним из основных достижений научно-технической революции было изобретение радио – беспроволочной электросвязи, которая основана на использовании электромагнитных волн. Впервые данные волны были обнаружены немецким физиком Г.Герцем. На практике данную связь применил выдающийся русский ученый А.С. Попов, который 7 мая 1885г. продемонстрировал первый в мире радиоприемник.

В начале 20 века было изобретена еще одна отрасль электротехники – электроника. Так, в 1904г. английский ученый Дж. А. Флеминг изобрел двухэлектродную лампу (диод), которая могла использоваться для преобразования частот электрических колебаний. В 1907г. американским конструктором Ли де Форестом было изобретено трехэлектродную лампу (триод) с помощью которой можно было не только преобразовывать частоту электрических колебаний, но и усиливать слабые колебания.

Так, промышленное применение электрической энергии, строительство электростанций, расширение электрического освещения городов, развитие телефонной связи обусловили быстрое развитие электротехнической промышленности.

Стремительное развитие машиностроения, судостроения, военного производства и железнодорожного транспорта предъявляло спрос на черные металлы. В металлургии начали применятся технические нововведения, а техника металлургии достигла больших успехов. Существенно изменились конструкции и увеличились объемы доменных печей. Были введены новые способы производства стали за счет передела чугуна в конверторе под сильным дутьем.

В 80 гг. 19 века был внедрен электролитический способ получения алюминия, который привел к развитию цветной металлургии. Электролитический метод также использовали для получения меди.

Еще одним из основных направлений научно-технологического прогресса являлся транспорт. Так, в связи с техническим развитием появились новые виды транспорта. Рост объема и скорости перевозок способствовали совершенствованию железнодорожной техники. Было усовершенствовано подвижный состав на железных дорогах: возросла мощность, сила тяги, быстроходность, вес и размеры паровозов и грузоподъемность вагонов. С 1872 г. на железнодорожном транспорте были введены автоматические тормоза, а 1876г. разработана конструкция автоматической сцепки.

В конце 19 века в Германии, России и США проводились эксперименты по введению на железных дорогах электрической тяги. Первая линия электрического городского трамвая открылась в Германии в 1881г. В России строительство трамвайных линий началось с 1892г.

В период научно-технического прогресса конца 19-начала 20 вв. был изобретен новый вид транспорта – автомобильный. Первые автомобили были сконструированы немецкими инженерами К. Бенцем и Г. Даймлером. Промышленное производство автомобилей началось с 90 гг. 19 века. Высокие темпы развития автомобилестроения способствовали строительству шоссейных дорог.

Еще одним новым видом транспорта был воздушный транспорт, решающую роль в развитии которого сыграли самолеты. Первые попытки конструирования самолетов с паровыми двигателями были осуществлены А. Ф. Можайским, К. Адером, Х. Максимом. Широкое распространение авиация получила после установления легких и компактных бензиновых двигателей. Сначала самолеты имели спортивное значение, затем их стали использовать в военном деле, а потом – для перевозки автомобилей.

В этот период также было организовано химические методы обработки сырья практически во всех отраслях производства. В таких отраслях, как машиностроение, электротехническое производство, текстильная промышленность стали широко использовать химию синтетических волокон.

Научно-технический прогресс конца 19-начала 20 вв. способствовал внедрению многих нововведений для усовершенствования технической сферы легкой, полиграфической и других отраслей промышленности.

Утилитарны каждый, кто интересуется историей развития науки техники хоть раз в своей существования задумывался над тем, каким путем могло бы пойти развитие человека без познания математики или, например, не будь у нас такого необходимого предмета как колесо, сделавшегося чуть ли не основой развития человечества. Однако зачастую рассматриваются и удостаиваются внимания лишь ключевые открытия, в то пора как открытия менее известные и распространенные порой попросту не упоминаются, что, впрочем, не мастерит их незначительными, ведь каждое новое знание дает человечеству возможность забраться на ступеньку рослее в своем развитии.

XX век и его научные открытия превратился в настоящий Рубикон, перебежав который, прогресс ускорил свой шаг в несколько раз, отождествляя себя со спортивным болидом за каким невозможно угнаться. Для того, что бы сейчас удержаться на гребне научной и технологической валы, необходимы не дюжие навыки. Конечно, можно читать научные журналы, различного рода статьи и труды ученых, которые бьются над решением той или иной задачи, однако даже в этом случае угнаться за прогрессом не выйдет, а стало быть остается наверстывать упущенное и наблюдать.

Как популярно, для того, что бы смотреть в будущее, необходимо знать прошлое. Потому сегодня речь пойдет именно о XX веке, веке открытий, какой изменил образ жизни и окружающий нас мир. Стоит сразу отметить, что это не будет список лучших открытий столетия или какой-либо иной топ, это будет краткий осмотр части тех открытий, какие изменяли, а возможно и изменяют мир.

Для того, что бы говорить об открытиях, вытекает охарактеризовать само понятие. За основу возьмем следующее дефиниция:

Открытие - новое достижение, совершаемое в процессе научного познания натуры и общества; установление неизвестных ранее, объективно существующих закономерностей, свойств и явлений физического мира.

Топ 25 великих научных открытий XX века

  1. Квантовая теория Планка. Он вывел формулу, определяющую конфигурацию спектральной кривой излучения и универсальную постоянную. Открыл тончайшие частицы – кванты и фотоны, с помощью которых Эйнштейн разъяснил природу света. В 20-х годах Квантовая теория переросла в квантовую механику.
  2. Открытие рентгеновского излучения – электромагнитное излучение с размашистым диапазоном длин волн. Открытие Х-лучей Вильгельмом Рёнтгеном мощно повлияло на жизнь человека и сегодня без них невозможно представить нынешнюю медицину.
  3. Теория относительности Эйнштейна. В 1915 году Эйнштейн ввел понятие относительности и вывел значительную формулу, связавшую энергию и массу. Теория относительности разъяснила суть гравитации – она возникает вследствие искривления четырехмерного пространства, а не итоге взаимодействия тел в пространстве.
  4. Открытие пенициллина. Плесневый гриб Penicillium notatum, попадая к цивилизации бактерий, вызывает полную их гибель – это было доказано Александром Флеммингом. В 40-х годах был разработана производственная технология пенициллина, какой в дальнейшем стал выпускаться в промышленном масштабе.
  5. Волны де Бройля. В 1924 году было выяснено, что корпускулярно-волновой дуализм присущ всем крупицам, а не только фотонам. Бройль представил их волновые свойства в математическом облике. Теория позволила развить концепцию квантовой механики, разъяснила дифракцию электронов и нейтронов.
  6. Открытие структуры новой спирали ДНК. 1953 году была получена новоиспеченная модель строения молекулы, путем объединения сведений рентгеноструктурного разбора ДНК Розалин Франклин и Мориса Уилкинса и теоретических разработок Чаргаффа. Ее вывели Френсис Вопль и Джеймс Уотсон.
  7. Планетарная модель атома Резерфорда. Он вывел гипотезу о постройке атома и извлек энергию из атомных ядер. Модель объясняет основы закономерности заряженных крупиц.
  8. Катализаторы Циглера-Ната. В 1953 году они осуществили поляризацию этилена и пропилена.
  9. Открытие транзисторов. Прибор, заключающийся из 2-х p-n переходов, которые направлены навстречу друг другу. Благодаря его изобретению Юлием Лилиенфельдом, техника основы уменьшаться в размерах. Первый действующий биполярный транзистор в 1947 представили Джон Бардин, Уильям Шокли и Уолтер Браттейн.
  10. Создание радиотелеграфа. Изобретение Александра Попова с поддержкой азбуки Морзе и радиосигналов впервые спасло корабль на рубеже 19 и 20 столетий. Но первым запатентовал аналогичное изобретение Гулиельмо Марконе.
  11. Открытие нейтронов. Эти незаряженные крупицы с массой, немного большей, чем у протонов позволили без препятствий проходить в ядро и дестабилизировать его. Позже было доказано, что под воздействием этих крупиц ядра делятся, но возникает еще больше нейтронов. Так была отворена искусственная радиоактивность.
  12. Методика экстракорпорального оплодотворения (ЭКО). Эдварс и Стептоу придумали, как извлечь из дамы неповрежденную яйцеклетку, создали в пробирке оптимальные для ее жизни и роста обстоятельства, придумали, как ее оплодотворить и в какое время вернуть обратно в тело маме.
  13. Первый полет человека в космос. В 1961 году собственно Юрий Гагарин первым осуществил этот знаменательный полет, сделавшийся реальным воплощением мечты о звездах. Человечество узнало, что пространство между планетами преодолимо, и в космосе могут покойно находиться бактерии, животные и даже человек.
  14. Открытие фуллерена. В 1985 году учеными была отворена новая разновидность углерода – фуллерен. Сейчас из-за своих уникальных свойств он используется во немало приборах. На основе этой методики, были созданы нанотрубки из углерода – скрученные и сшитые пласты графита. Они показывают самые разнообразные свойства: от металлических до полупроводниковых.
  15. Клонирование. В 1996 ученым удалось получить первоначальный клон овцы, названной Долли. Яйцеклетку выпотрошили, вделали в нее ядро взрослой овцы и подсадили в матку. Долли сделалась первым животным, которому удалось выжить, остальные эмбрионы различных животных погибли.
  16. Открытие черных дыр. В 1915 году Карлом Шварцшильдом была выдвинута гипотеза о существовании районы во времени и пространстве, гравитация которой настолько велика, что ее не могут покинуть даже объекты, подвигающиеся со скоростью света - черных дыр.
  17. Теория Большого взрыва. Это космологическая общепринятая модель, в какой описано ранее развитие Вселенной, находившейся в сингулярном состоянии, характеризующемся нескончаемой температурой и плотностью вещества. Начало модели было возложено Эйнштейном в 1916 году.
  18. Открытие реликтового излучения. Это космическое микроволновое фоновое излучение, сохранившееся с основы образования Вселенной и равномерно ее заполняющее. В 1965 году его существование было экспериментально подтверждено, и оно служит одним из основных подтверждений теории Большенного взрыва.
  19. Приближение к созданию искусственного интеллекта. Это технология создания интеллектуальных машин, впервые получившая дефиниция в 1956 году Джоном Маккарти. Согласно ему, исследователи для решения конкретных задач могут использовать методы понимания человека, какие биологически могут не наблюдаются у людей.
  20. Изобретение голография. Этот особый фотографический метод предложен в 1947 году Дэннисом Габором, в каком при помощи лазера регистрируются и восстанавливаются трехмерные изображения объектов, ближние к реальным.
  21. Открытие инсулина. В 1992 году Фредериком Бантингом был получен гормон поджелудочной железы, и сахарный диабет перестал быть фатальным заболеванием.
  22. Группы крови. Это открытие в 1900-1901 поделило кровь на 4 группы: О, А, В и АВ. Стало возможным правильное переливание крови человеку, какое не заканчивалось бы трагически.
  23. Математическая теория информации. Теория Клода Шеннона дала возможность дефиниции емкости коммуникационного канала.
  24. Изобретение Нейлона. Химик Уоллес Карозерс в 1935 году отворил способ получения этого полимерного материала. Он открыл отдельный его разновидности с высокой вязкостью даже при больших температурах.
  25. Открытие стволовых клеток. Они являются прародительницами всех имеющихся клеток в организме человека и имеют способность самообновляться. Их возможности велики и еще лишь начинают исследоваться наукой.

Несомненно, что все эти открытия - лишь небольшая часть того, что XX век показал обществу и нельзя сказать, что лишь эти открытия были значимыми, а все остальные стали лишь фоном, это совсем не так.

Собственно прошлый век показал нам новые границы Вселенной, увидела свет Теория относительности Эйнштейна, были открыты квазары (сверхмощные источники излучения в нашей Галактике), отворены и созданы первые углеродные нанотрубки, обладающие уникальной сверхпроводимостью и прочностью.

Все эти открытия, так или по-иному - лишь вершина айсберга, который включает в себя немало чем сотню значимых открытий за прошедшее столетие. Естественно, что все они сделались катализатором изменений в мире, в котором мы с вами сейчас живем и бесспорным остается тот факт, что на этом изменения не заканчиваются.

20й век можно храбро назвать если не «золотым», то уж точно «серебряным» веком открытий, однако оглядываясь назад и сравнивая новоиспеченные достижения с прошлыми, думается, что в будущем нас ждет еще не мало увлекательнейших великих открытий, собственно, преемник прошлого века, нынешний XXI лишь подтверждает эти воззрения.

Посетите магазины партнеров:

Научную элиту в России представляли:

Математики (Н. И. Лобачевский, М. В. Остроградский и др.);
- физики (А. С. Попов, А. Г. Столетов);
- химики (Д. И. Менделеев, А. М. Бутлеров, Н. Н. Зинин и др.);
- врачи (С. П. Боткин, Н. И. Пирогов);
- историки (Н. М. Карамзин, В. О. Ключевский).

Начало двадцатого столетия

Этот период охарактеризовался превращением аграрной России в мощное индустриальное государство. Те реформы, которые проводило правительство, привлекли в страну капитал. В России начали усиленно развиваться различные сферы промышленности, а также железнодорожная отрасль.

Уже с конца девятнадцатого столетия начался подъем культуры, архитектуры, литературы и т.д. Наука в начале 20 века также достигла своего значительного расцвета. В этот период произошла настоящая революция естествознания, имевшая огромное значение в развитии общества. Крупные научные открытия 20 века, сделанные в этот период, стали причиной пересмотра уже существующих представлений об окружающем человека мире.

Создание научно-технических обществ

Научные открытия 20 века в дореволюционной России были сделаны благодаря работе различных кружков. Последние представляли собой небольшие сообщества, в состав которых входили не только исследователи-практики, но и энтузиасты-любители. Существовали такие кружки за счет взносов своих членов и частных пожертвований. Некоторым обществам правительство выделяло крупные субсидии.

Помимо медицинских и сельскохозяйственных, металлургических и ботанических, географических и физико-химических существовали и тайные научные кружки. Примером тому может послужить Общество космонавтики. Его членами были будущие великие деятели науки 20 века - Циолковский, Королев и др.

Все эти кружки были центрами проведения исследовательских работ и пропаганды научных знаний среди населения. Однако основной вклад в образование страны все же принадлежал лицеям и университетам, из которых и выходили перечисленные выше общества.

Развитие медицины, генетики и биологии

Каковы достижения русской науки начала 20 века в этой области? К ним можно отнести классический труд академика И. П. Павлова. Русским ученым были проведены исследования физиологии органов пищеварения и сердечно-сосудистой системы. За свой труд в 1904 г. Павлов был удостоен Нобелевской премии. Эта же награда в 1908 г. была присуждена И. И. Мечникову. Ее ученый получил за труды по инфекционным заболеваниям и иммунологии. Также Мечниковым было изучено влияние высшей нервной деятельности на течение физиологических процессов. На основе полученных знаний ученым была выдвинута теория условных рефлексов.

Открытия 20 века в области биологии стали мощным импульсом для развития медицины. Начало столетия ознаменовалось разработкой прививок против бешенства, куриной холеры и сибирской язвы. Все это явилось результатом исследований бактериолога парижского института Л. Пастера. На основе данных трудов ученые многих стран мира, в том числе и России, вели разработку мер, направленных на профилактику и предупреждение различных эпидемий.

Большой вклад в развитие генетики внес ученый И.В. Мичурин. Этот основатель науки о селекции плодовых растений работал в Тамбовской губернии, в своем родном городе Козлове. Целью ученого было обогащение садов России новыми культурами. Несмотря на стоящие перед ним преграды, ученый выполнил свою задачу.

Он разработал практическую методику и сделал теоретические выводы получения разнообразных гибридов, обладающих необычными и полезными свойствами для человека.

Совершенствование боевой техники

Развитию этой области способствовала агрессивность ведущих государств мира и все возрастающие технические возможности. Уже в 1911-1915 годах российские инженеры А.А. Пороховщиков, В.Л. Менделеев и А.А. Васильев создали первый проект бронированной машины, которую впоследствии назвали танком.

Изобретения и открытия 20 века относятся и к области авиации. Так, первые военные самолеты участвовали в маневрах, проводимых в 1911 году Варшавским, Петербургским и Киевским округами. В боевых действиях эта техника применялась в период Балканских войн 1912-1913 гг. В 1914 г. на вооружение российских войск был принят первый бомбардировщик, который назвали «Илья Муромец».

Не отставал от авиации и военно-морской флот. Здесь первенство принадлежало броненосным паровым кораблям. Одним из первых среди них был «Петр Великий».

Изобретение автомата

Наука и техника 20 века в России нередко ставили своей задачей укрепление военного потенциала страны. На этом поприще удалось добиться значительных успехов. Так, в 1916 г. конструктором-оружейником Федоровым был изобретен первый в мире автомат. Для этого пришлось укоротить ствол винтовки образца 1913 г. и снабдить ее коробчатым магазином, а также рукояткой для удобной стрельбы. В итоге получилось огневое средство, которое на сегодняшний день является основой вооружения пехоты любой армии мира.

Развитие химии и физики

Многие научные открытия 20 века в этой области были сделаны в странах Западной Европы. Благодаря им человечество с паровых двигателей стало переходить на двигатели внутреннего сгорания. Однако новые способы добычи главного сырья для таких механизмов (нефти) были предложены именно русскими учеными.

Появление двигателей большей мощности натолкнуло исследователей на идею создания летательных аппаратов. Первые попытки прорыва в области воздухоплавания были осуществлены еще в 19 веке. Именно тогда свет увидели дирижабли и аэростаты.

Каковы достижения русской науки начала 20 века в этой области? В нашей стране были созданы двух-, а также четырехмоторные самолеты, поразившие современников своими внушительными размерами. Над их созданием трудились такие инженеры, как И. И. Сикорский и В. Г. Луцкой.

Открытия 20 века в области авиации на этом не заканчиваются. Выдающийся русский ученый Б. Н. Юрьев в 1911 году изобрел основной узел, используемый при сборке современных вертолетов. Данное устройство позволило создавать технику с высокими характеристиками устойчивости. Такие вертолеты могут безопасно управляться рядовыми летчиками. Развитие науки в 20 веке в области вертолетостроения было заложено именно Юрьевым.

В этот же период зарождались истоки современной космонавтики. Основные открытия 20 века в этой области были сделаны учителем калужской гимназии, самородком К.Э. Циолковским. В 1903 г. им были опубликованы блестящие труды, в которых обосновывались возможности космических полетов.

Каковы достижения русской науки начала 20 века в области физики? Это открытие общих закономерностей, присущих волновым процессам (электромагнитным, звуковым и т.д.). Они были установлены выдающимся физиком П. Н. Лебедевым.

Величайшие открытия в науке 20 века были сделаны В. И. Вернадским. Этот ученый стал известен во всем мире после опубликования своих энциклопедических трудов, которые выступили основой для развития новейших направлений в радиологии, геохимии и биохимии. Работы Вернадского о ноосфере и биосфере являются истоками современной экологии.

Изобретение ранцевого парашюта

В 1910 г. Г. Е. Котельников посетил всероссийский праздник, посвященный воздухоплаванию. На нем он стал одним из свидетелей трагической гибели летчика Л. Мациевича. Котельников был не конструктором, а актером. Однако смерть пилота настолько потрясла его, что уже через год он изобрел парашют РК-1, принципиально отличавшийся от предыдущих разработок.

Купола как средство спасения и ранее использовались воздухоплавателями. Однако РК-1 был более компактным. К тому же парашют стал представлять собой устройство экстренного реагирования, постоянно находящееся под рукой. Стропы и купол РК-1 укладывались поначалу в деревянный ранец, который несколько позже был заменен на алюминиевый. На дне ящика Котельников расположил пружины. В нужный момент парашютист дергал за кольцо. В этот момент пружины открывали крышку ящика и выбрасывали купол наружу. В настоящее время этим изобретением пользуются парашютисты всего мира.

Появление телевизора

Российская наука в 20 веке преподнесла миру изобретение, которое стало открытием эпохи. В 1907 г. профессором технологического института, находящегося в Санкт-Петербурге, Б. Л. Розингом была подана патентная заявка на «способ электрической передачи различных изображений и их прием с помощью электронно-лучевой трубки».

Осенью 1910 г. ученый сделал публичный доклад на заседании Русского технического общества, в котором рассказал о решении вопросов, стоящих на пути развития телевидения. Розинг уверял, что при применении таких приборов необходимо использовать электронный пучок. Самое удивительное в том, что данный вывод был сделан в тот период, когда электроника как отрасль находилась еще в зачаточном состоянии. На созданную им телевизионную систему Розинг получил вначале российский патент, а после - германский, английский и американский.

Открытия в области географии

Каковы достижения русской науки начала 20 века в сфере изучения устройства мира? В этот период совершались путешествия в страны Океании и на север Африки, в Восточную и Среднюю Азию. Каждое из них ознаменовалось глобальными открытиями. Стоит сказать о том, что географическая наука в начале 20 века опиралась именно на достижения, полученные русскими исследователями.

Становление СССР

Наука в России при советской власти подарила всему миру множество великих открытий и достижений в различных сферах человеческой деятельности. Даже их беглое перечисление указывает на тот прорыв, который был совершен учеными.

Достижения советской науки сыграли огромную роль в развитии народного хозяйства страны. При этом на их основе создавались такие новейшие для того времени отрасли промышленности, как тракторная и авиационная, автомобильная и металлургическая. Результаты проводимых научных исследований позволили развить производство синтетического каучука, моторного топлива и т.д.

Достижения, полученные учеными-биологами, позволяли решать задачи пищевой и легкой промышленности, а также сельского хозяйства. Кроме того, результаты многочисленных исследований привели к прогрессу здравоохранения и медицинской сферы.

В Советском Союзе были развернуты грандиозные исследовательские программы. Открывались и новые НИИ. Так, в 1934 г. Вавиловым был основан Физический институт Академии Наук, в тот же период начал свою работу Институт органической химии. 1937-й - год основания Института геофизики. Свою работу продолжили физиолог Павлов и селекционер Мичурин. В результате исследований, проведенных учеными, были сделаны многочисленные открытия по различным дисциплинам. Однако в годы репрессий интеллектуальному потенциалу государства был нанесен тяжелый урон.

Послевоенный период

Возрождение советской науки произошло в 1950 г. Исследовательской деятельностью в эти годы руководила АН. Академии Наук были восстановлены и во всех республиках страны. Это дало возможность принимать патенты на изобретения и осуществлять контроль над расходованием выделяемых государством финансов для этой сферы.

Уже в середине пятидесятых возрастает интерес к космонавтике. В этой сфере растет число ученых. Появляются специальные учебники и факультеты в вузах. Все это делается целенаправленно для воспитания молодых ученых.

1957 г. принес настоящий фурор в мире науки. Это был год запуска первого искусственного спутника Земли. Страна, сравнительно недавно пострадавшая в страшной войне, не только восстановила свой научный потенциал, но и стала лидером в научном прогрессе. Это событие открыло новую эру человечества и одновременно стало началом «космической гонки» с Америкой, которая не желала терять свой мировой авторитет.

В 1959 г. советский спутник достиг Луны. Это вновь повысило авторитет России в мирового сообществе. Уже в начале шестидесятых Советский Союз стал второй после США супердержавой в мире. Америка обгоняла нашу страну только по экономическому потенциалу.

12 апреля 1961 года произошло еще одно невероятное событие, которое ранее описывали в своих произведениях фантасты. В этот день человек впервые в истории полетел в космос и вернулся на землю.

В 80-х годах в нашей стране начали разработку и производство современных электронно-вычислительных машин - компьютеров. Данная техника была компактна и не занимала целые здания и комнаты. Это были годы, когда Советский Союз тратил на научную сферу огромные ресурсы, составлявшие десятую часть бюджета государства. Такого не могла себе позволить ни одна страна в мире.

Среди огромного количества научных исследований, проведенных в России, есть немало таких, которые оказали и продолжают до сих пор оказывать значительное влияние на научно-технический прогресс всего мирового сообщества. Речь идет о многочисленных открытиях в области химических, биологических и физико-технических наук. К ним можно отнести открытие явления парамагнитного резонанса Е. К. Завойским. Немаловажную роль российские ученые сыграли и в решении вопросов получения атомной энергии.