Календарно-тематичсекий план по физике в спо календарно-тематическое планирование по физике на тему. Конспект открытого урока по физике основные положения молекулярно- кинетической теории Изучение нового материала

Цель урока: Формировать умение описывать тепловые явления с помощью статического метода, основанного на молекулярно – кинетических представлениях о строении вещества, убедить учащихся в реальности микромира, возможности его познания, рассмотреть экспериментальные доказательства существования и движения молекул.

Ход урока

- Анализ контрольной работы.

- Изучение нового материала.

Историческая справка

Ещё в 5 веке до новой эры древнегреческий ученый Демокрит утверждал: «Ничто не существует, кроме атомов и пустого пространства. Всё прочее есть мнение… Атомы бесконечны в числе и бесконечно различны по форме».

В 4 веке появилось учение Аристотеля, которое позднее будет поддержано христианской церковью: «Любое тело может делиться до бесконечности».

В 1646 году француз Пьер Гассенди высказал предположение, что атомы объединяются в небольшие группы «молекулы» (от лат. «moles» – масса)

В 18 веке М. В. Ломоносов предположил, что молекула может быть однородной и разнородной и находиться в в хаотичном состоянии. В этом же веке Бернулли применил понятие о молекуле для объяснения давления газов.

В 1827 году английский ботаник Броун обнаружил движение спор плауна (болотного растения), взвешенных в воде.

В 1905 году А. Эйнштейн объяснил броуновское движение некомпенсированными ударами молекул жидкости о частицу.

В 1908 году французский физик Ж. Перрен экспериментально подтвердил теорию броуновского движения.

Формирование основных понятий статистической физики.

Макроскопические тела – это большие тела, состоящие из огромного числа молекул.

Тепловые явления – это явления, связанные с нагреванием или охлаждением тел.

Тепловое движение молекул – это беспорядочное и хаотическое движение молекул.

- Формирование основных положений МКТ и их опытное обоснование

Основные положения Экспериментальное обоснование
1. Все вещества состоят из частиц. Возможность механического дробления веществ, растворение вещества в воде, диффузия, сжатие и расширение газов.
2. Частицы хаотично движутся. Диффузия – явление проникновения молекул одного вещества между молекулами другого вещества. Броуновское движение мелких, взвешенных в жидкости частиц под действием ударов молекул
3. Частицы взаимодействуют друг с другом: одновременно проявляя силы взаимного притяжения и отталкивания. Для разрыва твердого тела необходимо некоторое усилие, в то же время твердые и жидкие тела трудно сжимаемы.

Капли жидкости, помещенные в непосредственной близости друг от друга, сливаются.

Фронтальный эксперимент .

Наблюдение броуновского движения в жидкости с помощью микроскопа. Препарат готовим из раствора акварельной краски в воде. Каплю этой смеси помещают на предметное стекло и наблюдают за поведением взвешенных в воде частиц.

Обсуждение вопроса о размерах молекул.

Знакомство с опытом Р. Влея, который помещал каплю оливкового масла на поверхность воды, налитой в большой сосуд. Влей предположил, что, когда капля перестанет растекаться, её толщина станет равной диаметру одной молекулы.

Дано: СИ: V = Sd; d= V/S S

V = 1 мм² 1·10̄̄-9 м3

S = 0.6м² d= 1·10-9/0,6 = 1,7·10-9(м) SSS

Оценка числа молекул, содержащихся в капле воды массой 1 г.

Дано: СИ: Объем V₀, занимаемый молекулой воды при плотной упаковке, равен

Вещество может находиться в трех агрегатных состояниях: твердом, жидком и газообразном. Молекулярная физика - раздел физики, в котором изучаются физические свойства тел в различных агрегатных состояниях на основе их молекулярного строения.

Тепловое движение - беспорядочное (хаотическое) движение атомов или молекул вещества.

ОСНОВЫ МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Молекулярно-кинетическая теория - теория, объясняющая тепловые явления в макроскопических телах и свойства этих тел на основе их молекулярного строения.

Основные положения молекулярно-кинетической теории:

  1. вещество состоит из частиц - молекул и атомов, разделенных промежутками,
  2. эти частицы хаотически движутся,
  3. частицы взаимодействуют друг с другом.

МАССА И РАЗМЕРЫ МОЛЕКУЛ

Массы молекул и атомов очень малы. Например, масса одной молекулы водорода равна примерно 3,34*10 -27 кг, кислорода - 5,32*10 -26 кг. Масса одного атома углерода m 0C =1,995*10 -26 кг

Относительной молекулярной (или атомной) массой вещества Mr называют отношение массы молекулы (или атома) данного вещества к 1/12 массы атома углерода:(атомная единица массы).

Количество вещества - это отношение числа молекул N в данном теле к числу атомов в 0,012 кг углерода N A:

Моль - количество вещества, содержащего столько молекул, сколько содержится атомов в 0,012 кг углерода.

Число молекул или атомов в 1 моле вещества называют постоянной Авогадро:

Молярная масса - масса 1 моля вещества:

Молярная и относительная молекулярная массы вещества связаны соотношением: М = М r *10 -3 кг/моль.

СКОРОСТЬ ДВИЖЕНИЯ МОЛЕКУЛ

Несмотря на беспорядочный характер движения молекул, их распределение по скоростям носит характер определенной закономерности, которая называется распределением Максвелла.

График, характеризующий это распределение, называют кривой распределения Максвелла. Она показывает, что в системе молекул при данной температуре есть очень быстрые и очень медленные, но большая часть молекул движется с определенной скоростью, которая называется наиболее вероятной. При повышении температуры эта наиболее вероятная скорость увеличивается.

ИДЕАЛЬНЫЙ ГАЗ В МОЛЕКУЛЯРНО-КИНЕТИЧЕСКОЙ ТЕОРИИ

Идеальный газ - это упрощенная модель газа, в которой:

  1. молекулы газа считаются материальными точками,
  2. молекулы не взаимодействуют между собой,
  3. молекулы, соударяясь с преградами, испытывают упругие взаимодействия.

Иными словами, движение отдельных молекул идеального газа подчиняется законам механики. Реальные газы ведут себя подобно идеальным при достаточно больших разрежениях, когда расстояния между молекулами во много раз больше их размеров.

Основное уравнение молекулярно-кинетической теории можно записать в виде

Скорость называют средней квадратичной скоростью.

ТЕМПЕРАТУРА

Любое макроскопическое тело или группа макроскопических тел называется термодинамической системой.

Тепловое или термодинамическое равновесие - такое состояние термодинамической системы, при котором все ее макроскопические параметры остаются неизменными: не меняются объем, давление, не происходит теплообмен, отсутствуют переходы из одного агрегатного состояния в другое и т.д. При неизменных внешних условиях любая термодинамическая система самопроизвольно переходит в состояние теплового равновесия.

Температура - физическая величина, характеризующая состояние теплового равновесия системы тел: все тела системы, находящиеся друг с другом в тепловом равновесии, имеют одну и ту же температуру.

Абсолютный нуль температуры - предельная температура, при которой давление идеального газа при постоянном объеме должно быть равно нулю или должен быть равен нулю объем идеального газа при постоянном давлении.

Термометр - прибор для измерения температуры. Обычно термометры градуируют по шкале Цельсия: температуре кристаллизации воды (таяния льда) соответствует 0°С, температуре ее кипения - 100°С.

Кельвин ввел абсолютную шкалу температур, согласно которой нулевая температура соответствует абсолютному нулю, единица измерения температуры по шкале Кельвина равна градусу Цельсия: [Т] = 1 К (Кельвин).

Связь температуры в энергетических единицах и температуры в градусах Кельвина:

где k = 1,38*10 -23 Дж/К - постоянная Больцмана.

Связь абсолютной шкалы и шкалы Цельсия:

T = t + 273

где t - температура в градусах Цельсия.

Средняя кинетическая энергия хаотического движения молекул газа пропорциональна абсолютной температуре:

Средняя квадратичная скорость молекул

Учитывая равенство (1), основное уравнение молекулярно-кинетической теории можно записать так:

УРАВНЕНИЕ СОСТОЯНИЯ ИДЕАЛЬНОГО ГАЗА

Пусть газ массой m занимает объем V при температуре Т и давлении р , а М - молярная масса газа. По определению, концентрация молекул газа: n = N/V , где N -число молекул.

Подставим это выражение в основное уравнение молекулярно-кинетической теории:

Величину R называют универсальной газовой постоянной, а уравнение, записанное в виде

называют уравнением состояния идеального газа или уравнением Менделеева-Клапейрона. Нормальные условия - давление газа равно атмосферному ( р = 101,325 кПа) при температуре таяния льда ( Т = 273,15 К ).

1. Изотермический процесс

Процесс изменения состояния термодинамической системы при постоянной температуре называют изотермическим.

Если Т =const, то

Закон Бойля-Мариотта

Для данной массы газа произведение давления газа на его объем постоянно, если температура газа не меняется: p 1 V 1 =p 2 V 2 при Т = const

График процесса, происходящего при постоянной температуре, называется изотермой.

2. Изобарный процесс

Процесс изменения состояния термодинамической системы при постоянном давлении называют изобарным.

Закон Гей-Люссака

Объем данной массы газа при постоянном давлении прямо пропорционален абсолютной температуре:

Если газ, имея объем V 0 находится при нормальных условиях: а затем при постоянном давлении переходит в состояние с температурой Т и объемом V, то можно записать

Обозначив

получим V=V 0 T

Коэффициент называют температурным коэффициентом объемного расширения газов. График процесса, происходящего при постоянном давлении, называется изобарой .

3. Изохорный процесс

Процесс изменения состояния термодинамической системы при постоянном объеме называют изохорным. Ecли V = const , то

Закон Шарля

Давление данной массы газа при постоянном объеме прямо пропорционально абсолютной температуре:

Если газ, имея объем V 0 ,находится при нормальных условиях:

а затем, сохраняя объем, переходит в состояние с температурой Т и давлением р , то можно записать

График процесса, происходящего при постоянном объеме, называется изохорой .

Пример. Каково давление сжатого воздуха, находящегося в баллоне вместимостью 20 л при 12°С, если масса этого воздуха 2 кг?

Из уравнения состояния идеального газа

определим величину давления.

Конспект открытого урока по теме «Постоянный электрический ток» I курс (СПО)

Цель урока: Обобщение знаний по теме "Постоянный электрический ток".

Задачи:

образовательная: повторить основные величины, понятия, законы.

развивающая: устанавливать логические связи между физическими величинами, понятиями, уметь обобщать полученные знания.

воспитательная: уметь работать в группах, получать положительную мотивацию от полученных знаний.

Оборудование:

Интерактивная доска

Лабораторное оборудование:

амперметр,

вольтметр,

2 резистора,

выключатель,

соединитель провода.

Наглядность : электрическая цепь, путеводитель.

Ход урока

Организационный момент.

Вступительное слово учителя. Сегодня ребята нам предстоит обобщить изученный материал по теме "Постоянный электрический ток", совершив путешествие по стране "Электричество". И начнем с города "Перепутье".

Основная часть урока.

1) "Перепутье". Время - 5 мин.

Найди правильную дорогу. На интерактивной доске представлены все изученные физические величины. Найти правильную дорогу, последовательно провести линии.

Задание распечатано на листах и раздается всем учащимся и 1 учащийся у доски.

2) "Подумайград". Время - 2 мин.

Вопрос записан на доске. Устно. Кто первый ответит? (Используется Презентация РРS).

Вопрос: Почему количество единиц измерения не соответствует количеству физических величин?

Ответ: 1) А (работа), Q (количество теплоты) - имеют одну и ту же единицу измерения [Дж] Джоуль.

2) Е (электродвижущая сила), U (напряжение) - также имеют одну и ту же единицу измерения [В] - Вольт.

3) "Формулград". От каждой группы выходят к доске по 1 ученику. Время - 5 мин.

Допиши формулу. 3 человека выполняют на доске, остальные учащиеся выполняют в рабочих тетрадях.

4) "Прибороград". На интерактивной доске представлена следующая таблица. Учащиеся на листах с подписанными фамилиями отвечают цифрами (1-5), (2-6) и т.д. Время 3 мин.

Барковская Светлана Евгеньевна
Учебное заведение: МОУ сш № рп Кузоватово Ульяновской области
Краткое описание работы: Нестандартные задачи требуют нестандартного мышления, их решение невозможно свести к алгоритму. Поэтому наряду с традиционными методами необходимо вооружить учащихся и эвристическими методами решения задач, которые основаны на фантазии, преувеличении, «вживании» в изучаемый предмет или явление и др.

Сачук Татьяна Ивановна
Учебное заведение:
Краткое описание работы: Представленное поурочное планирование по физике предназначено для учащихся 11 класса, обучающихся на профильном уровне, составлено в соответствии с программой для общеобразовательных учреждений, рекомендованной на федеральном уровне: Примерная программа среднего (полного) общего образования.

Сачук Татьяна Ивановна
Учебное заведение: ГБОУ СОШ №1 "ОЦ" им. Героя Советского Союза С.В. Вавилова с. Борское
Краткое описание работы: Представленное поурочное планирование по физике предназначено для учащихся 10 класса, обучающихся на базовом уровне, составлено в соответствии с программой для общеобразовательных учреждений, рекомендованной на федеральном уровне: Примерная программа среднего (полного) общего образования.

Физика — это раздел естествознание, который изучает наиболее общие законы природы и материи. В российский школах физика преподается в 7-11 классах На нашем сайте материалы по физике находятся в разделах: Конспекты уроков Технологические карты Контрольные и проверочные Лабораторные и практические Самостоятельные Тесты Подготовка к ЕГЭ Подготовка к ОГЭ Олимпиадные задания Викторины и игры Внеклассные мероприятия […]


Поурочные планы по физике на портале Конспектека

Планирование учебного процесса является неотъемлемой частью работы любого учителя. Грамотно составленный поурочный план представляет собой залог успешного усвоения учебного материала учащимися. Важность и трудоемкость процесса составления поурочных планов по физике вынуждает многих педагогов искать готовые разработки в интернете. Раздел «Поурочное планирование» для учителей физики на сайте Конспектека содержит работы, присланные нашими читателями - учителями с многолетним стажем. Материалы предназначены для облегчения учительского труда - их вы можете скачать в ознакомительных целях и использовать в качестве источника вдохновения и новых идей. Разработки соответствуют принципам, закрепленных во ФГОС, и отражают новейшие тенденции в образовании.

База нашего сайта постоянно пополняется новыми разработками, поэтому если у вас имеется готовый поурочный план либо какой-либо иной материал, мы будем рады опубликовать его на страницах нашего сайта.