Схема системы передачи информации. Передача и кодирование информации Кодирование и декодирование

На сегодняшний день информация так быстро распространяется, что не всегда хватает времени ее осмыслить. Большинство людей редко задумываются о том, как и с помощью каких средств она передается, а уж тем более не представляют себе схему передачи информации.

Основные понятия

Передачей информации принято считать физический процесс перемещения данных (знаков и символов) в пространстве. С точки зрения передачи данных - это спланированное заранее, технически оснащенное мероприятие по перемещению информационных единиц за установленное время от так называемого источника к приемнику посредством информационного канала, или канала передачи данных.

Канал передачи данных - совокупность средств или среда распространения данных. Другими словами, это та часть схемы передачи информации, которая обеспечивает движение информации от источника к получателю, а при определенных условиях и обратно.

Классификаций каналов передачи данных много. Если выделить основные из них, то можно перечислить следующие: радиоканалы, оптические, акустические или беспроводные, проводные.

Технические каналы передачи информации

Непосредственно к техническим каналам передачи данных относятся радиоканалы, оптоволоконные каналы и кабельные. Кабель может быть коаксиальный или на основе витых пар. Первые представляют собой электрический кабель с медным проводом внутри, а вторые - витые пары медных проводов, изолированные попарно, находящиеся в диэлектрической оболочке. Эти кабели довольно гибкие и удобные в использовании. Оптоволокно состоит из оптоволоконных нитей, передающих световые сигналы посредством отражения.

Основными характеристиками являются пропускная способность и помехоустойчивость. Под пропускной способностью принято понимать тот объем информации, который можно передать по каналу за определенное время. А помехоустойчивостью называют параметр устойчивости канала к воздействию внешних помех (шумов).

Общее представление о передаче данных

Если не конкретизировать область применения, общая схема передачи информации выглядит несложно, включает в себя три компонента: «источник», «приемник» и «канал передачи».

Схема Шеннона

Клод Шеннон, американский математик и инженер, стоял у истоков теории информации. Им была предложена схема передачи информации по техническим каналам связи.

Понять эту схему несложно. Особенно если представить её элементы в виде знакомых предметов и явлений. Например, источник информации - человек, говорящий по телефону. Телефонная трубка будет являться кодирующим устройством, которое преобразует речь или звуковые волны в электрические сигналы. Каналом передачи данных в этом случае является узлы связи, в общем, вся телефонная сеть, ведущая от одного телефонного аппарата к другому. Декодирующим устройством выступает трубка абонента. Она преобразует электрический сигнал обратно в звук, то есть в речь.

В этой схеме процесса передачи информации данные представлены в виде непрерывного электрического сигнала. Такая связь называется аналоговой.

Понятие кодирования

Кодированием принято считать преобразование информации, посылаемой источником, в форму, пригодную для передачи по используемому каналу связи. Самый понятный пример кодирования - это азбука Морзе. В ней информация преобразуется в последовательность точек и тире, то есть коротких и длинных сигналов. Принимающая сторона должна декодировать эту последовательность.

В современных технологиях используется цифровая связь. В ней информация преобразуются (кодируется) в двоичные данные, то есть 0 и 1. Существует даже бинарный алфавит. Такая связь называется дискретной.

Помехи в информационных каналах

В схеме передачи данных также присутствует шум. Понятие "шум" в данном случае означает помехи, из-за которых происходит искажение сигнала и, как следствие, его потеря. Причины помех могут быть различные. Например, информационные каналы могут быть плохо защищены друг от друга. Для предотвращения помех применяют различные технические способы защиты, фильтры, экранирование и т. д.

К. Шенноном была разработана и предложена к использованию теория кодирование для борьбы с шумом. Идея заключается в том, что раз под воздействием шума происходит потеря информации, значит, передаваемые данные должны быть избыточны, но в то же время не настолько, чтобы снизить скорость передачи.

В цифровых каналах связи информация делится на части - пакеты, для каждого из которых вычисляется контрольная сумма. Эта сумма передается вместе с каждым пакетом. Приемник информации заново вычисляет эту сумму и принимает пакет, только если она совпадает с первоначальной. В противном случае пакет отправляется снова. И так до тех пор, пока отправленная и полученная контрольные суммы не совпадут.

  • 2. Сложение вероятностей независимых несовместных событий
  • 3. Умножение вероятностей независимых совместных событий
  • 4. Нахождение среднего для значений случайных независимых величин
  • 5. Понятие условной вероятности
  • 6. Общая формула для вероятности произведения событий
  • 7. Общая формула для вероятности суммы событий
  • Лекция 3. Понятие энтропии
  • 1. Энтропия как мера неопределенности
  • 2. Свойства энтропии
  • 3. Условная энтропия
  • Лекция 4. Энтропия и информация
  • 1. Объемный подход к измерению количества информации
  • 2. Энтропийный подход к измерению количества информации
  • Лекция 5. Информация и алфавит
  • Лекция 6. Постановка задачи кодирования. Первая теорема Шеннона.
  • Лекция 7. Способы построения двоичных кодов. Алфавитное неравномерное двоичное кодирование сигналами равной длительности. Префиксные коды.
  • 1. Постановка задачи оптимизации неравномерного кодирования
  • 2. Неравномерный код с разделителем
  • 3. Коды без разделителя. Условие Фано
  • 4. Префиксный код Шеннона–Фано
  • 5. Префиксный код Хаффмана
  • Лекция 8. Способы построения двоичных кодов. Другие варианты
  • 1. Равномерное алфавитное двоичное кодирование. Байтовый код
  • 2. Международные системы байтового кодирования текстовых данных. Универсальная система кодирования текстовых данных
  • 3. Алфавитное кодирование с неравной длительностью элементарных сигналов. Код Морзе
  • 4. Блочное двоичное кодирование
  • 5. Кодирование графических данных
  • 6. Кодирование звуковой информации
  • Лекция 9. Системы счисления. Представление чисел в различных системах счисления. Часть 1
  • 1. Системы счисления
  • 2. Десятичная система счисления
  • 3. Двоичная система счисления
  • 4. 8- И 16-ричная системы счисления
  • 5. Смешанные системы счисления
  • 6. Понятие экономичности системы счисления
  • Лекция 10. Системы счисления. Представление чисел в различных системах счисления. Часть 2.
  • 1. Задача перевода числа из одной системы счисления в другую
  • 2. Перевод q  p целых чисел
  • 3. Перевод p  q целых чисел
  • 4. Перевод p  q дробных чисел
  • 6. Перевод чисел между 2-ичной, 8-ричной и 16-ричной системами счисления
  • Лекция 11. Кодирование чисел в компьютере и действия над ними
  • 1. Нормализованные числа
  • 2. Преобразование числа из естественной формы в нормализованную
  • 3. Преобразование нормализованных чисел
  • 4. Кодирование и обработка целых чисел без знака
  • 5. Кодирование и обработка целых чисел со знаком
  • 6. Кодирование и обработка вещественных чисел
  • Лекция 12. Передача информации в линии связи
  • 1. Общая схема передачи информации в линии связи
  • 2. Характеристики канала связи
  • 3. Влияние шумов на пропускную способность канала
  • Лекция 13. Обеспечение надежности передачи информации.
  • 1. Постановка задачи обеспечения надежности передачи
  • 2. Коды, обнаруживающие одиночную ошибку
  • 3. Коды, исправляющие одиночную ошибку
  • Лекция 14. Способы передачи информации в компьютерных линиях связи
  • 1. Параллельная передача данных
  • 2. Последовательная передача данных
  • 3. Связь компьютеров по телефонным линиям
  • Лекция 15. Классификация данных. Представление данных в памяти компьютера
  • 1. Классификация данных
  • 2. Представление элементарных данных в озу
  • Лекция 16. Классификация структур данных
  • 1. Классификация и примеры структур данных
  • 2. Понятие логической записи
  • Лекция 17. Организация структур данных в оперативной памяти и на внешних носителях
  • 1. Организация структур данных в озу
  • 2. Иерархия структур данных на внешних носителях
  • 3. Особенности устройств хранения информации
  • Контрольные вопросы
  • Список литературы
  • Лекция 12. Передача информации в линии связи

      Общая схема передачи информации в линиии связи

      Характеристики канала связи

      Влияние шумов на пропускную способность канала

    1. Общая схема передачи информации в линии связи

    Использование информации для решения каких-либо задач, безусловно, сопряжено с необходимостью ее распространения, то есть с необходимостью осуществления процессов передачи и приема информации. При этом приходится решать проблему согласования метода кодирования с характеристиками канала связи, а также обеспечивать защиту передаваемой информации от возможных искажений.

    Источник информации определен как объект или субъект, порождающий информацию и имеющий возможность представить ее в виде сообщения, то есть последовательности сигналов в материальном носителе. Другими словами, источник информации связывает информацию с ее материальным носителем. Передача сообщения от источника к приемнику всегда связана с некоторым нестационарным процессом, происходящим в материальной среде – это условие является обязательным, поскольку сама информация материальным объектом не является.

    Способов передачи информации существует множество: почта, телефон, радио, телевидение, компьютерные сети и пр. Однако при всем разноообразии конкретной реализации способов связи в них можно выделить общие элементы: источник и получатель информации, кодирующее и декодирующее устройства, преобразователь кодов в сигналы и преобразователь сигналов в коды, канал связи, а также источники шумов (помех) и факторы, обеспечивающие защиту от шумов (см. схему на рис. 4).

    Понимать схему нужно следующим образом. Источник , порождающий информацию, для передачи должен представить ее виде сообщения, то есть последовательности сигналов. При этом для представления информации он дожен использовать некоторую систему кодирования.Устройство, выполняющее операцию кодирования информации, может являться подсистемой источника информации. Например, наш мозг порождает информацию и он же кодирует эту информацию с помощью языка (например, русского), а затем представляет информацию в виде речевого сообщения посредством органов речи. Компьютер обрабатывает и хранит информацию в двоичном представлении, но при выводе ее на экран монитора он же – компьютер – производит ее перекодировку пользователю виду.

    Возможна ситуация, когда кодирующее устройство оказывается внешним по отношению к источнику информации, например, телеграфный аппарат или компьютер по отношению к человеку – работающему на нем оператору. Далее коды должны быть переведены в последовательность материальных сигналов, то есть помещены на материальный носитель – эту операцию выполняет преобразователь . Преобразователь может бытьсовмещен с кодирующим устройством (например, телеграфный аппарат), но может быть исамостоятельным элементом линиии связи (например, модем, преобразующий электрические дискретные сигналы с частотой компьютера в аналоговые сигналы с частотой, на которой их затухание в телефонных линиях будет наименьшим).

    К преобразователям относят также устройства, которые переводят сообщение с одного носителя на другой . Например:

      телефонный аппарат, преобразующий звуковые сигналы в электрические;

      радипередатчик, преобразующий звуковые сигналы в радиоволны;

      телекамера, преобразующая изображение в последовательность электрических импульсов.

    Рис. 4. Общая схема передачи информации

    В общем случае при преобразовании выходные сигналы воспроизводят не полностью все особенности входного сообщения, а лишь его наиболее существенные стороны, то есть при преобразовании часть информации теряется. Например, полоса пропускания частот при телефонной связи находится в промежутке от 300 до 3400 Гц, в то время как частоты, воспринимаемые человеческим ухом, лежат в интервале от 16 до 20000 Гц.

    Таким образом, телефонные линиии «обрезают» высокие частоты, что приводитк искажениям звука; в черно-белом телевидении при преобразовании сообщения в сигналы теряется цвет изображения. Именно в связи с этими проблемами возникает задача выработки такого способа кодирования сообщения, который обеспечивал бы возможно более полное представление исходной информации при преобразовании, и, в то же время, этот способ был бы согласован со скоростью передачи информации по данной линии связи.

    После преобразователя сигналы поступают в канал связи и распространяются в нем.Понятие канала связи включает в себя материальную среду , а также физический или иной процесс , посредством которого осуществляется передача сообщения, то есть распространение сигналов в пространстве с течением времени.

    В табл. 20приведены примеры некоторых каналов связи.

    Табл. 20. Примеры каналов связи

    Канал связи

    Среда

    Носитель сообщения

    Процесс, используемый для передачи сообщения

    Среда обитания человека

    Механическое перемещение носителя

    Телефон, компьютерные сети

    Проводник

    Электрические заряды

    Перемещение зарядов (ток)

    Радио, телевидение

    Электромагнитное

    Электромагнитные

    Распространение электромагнитных волн

    Звуковые волны

    Распространение звуковых волн

    Обоняние, вкус

    Воздух, пища

    Химические вещества

    Химические реакции

    Осязание

    Поверхность кожи

    Ввоздействующий на кожу объект

    Теплопередача, давление

    Любой реальный канал связи подвержен внешним воздействиям, а также в нем могут происходить внутренние процессы, в результате которых искажаются передаваемые сигналы, и, следовательно, связанные с этими сигналами сообщения. Такие воздействия называютсяшумами (помехами ). Источники помех могут бытьвнешними ивнутренними . Квнешним помехам относятся, например, так называемые «наводки» от мощных потребителей электричества или атмосферных явлений; одновременное действие нескольких близкорасположенных однотипых источников сообщений (одновременный разговор нескольких человек). К помехам могут привоить ивнутренние особенности данного канала связи, например, физические неоднородности носителя; процессы затухания сигнала в линии связи, существенные при большой удаленности приемника от источника.

    Если уровень помех оказывается соизмеримым с мощностью несущего информацию сигнала, то передача информации по данному каналу оказывается невозможной. Даже шумы относительно низких уровней могут вызвать существенные искажения передаваемого сигнала.

    Существуют и применяются различные методы защиты от помех . Например, используется экранирование элетрических линий связи; улучшение избирательности примного устройства и так далее Другим способом защиты от помех является использование специальных методов кодирования информации.

    После прохождения сообщения по каналу связи сигналы с помощью приемного преобразователя переводятся в последовательность кодов, которыедекодирующим устройством представляются в форме, необходимой для примника информации (в воспринимаемой приемником форме). На этапе приема, как и при передаче, преобразователь может быть совмещенным с декодирующим устройством (например, радиоприемник или телевизор) или существовать отдельно от декодирующего устройства (преобразователь модем может существует отдельно от компьютера).

    Понятие «линия связи » объединяет элементы представленной на рис. 1 схемы между источником и приемником информации.Характеристиками любой линии связи являютсяскорость , с которой возможна передача сообщения в ней, а такжестепень искажения сообщения в процессе передачи.

    Что такое информация

    С начала 1950-х годов предпринимаются попытки использовать понятие информации (не имеющее до настоящего времени единого определения) для объяснения и описания самых разнообразных явлений и процессов. В некоторых учебниках дается следующее определение информации:

    Информация - это совокупность сведений, подлежащих хранению, передаче, обработке и использованию в человеческой деятельности.

    Такое определение не является полностью бесполезным, т.к. оно помогает хотя бы смутно представить, о чем идет речь. Но с точки зрения логики оно бессмысленно. Определяемое понятие (информация ) здесь подменяется другим понятием (совокупность сведений) , которое само нуждается в определении.

    При всех различиях в трактовке понятия информации, бесспорно, то, что проявляется информация всегда в материально-энергетической форме в виде сигналов.

    Информацию, представленную в формализованном виде, позволяющем осуществлять ее обработку с помощью технических средств, называют данными .

    В основе решения многих задач лежит обработка информации. Для облегчения обработки информации создаются информационные системы (ИС). Автоматизированными называют ИС, в которых применяют технические средства, в частности ЭВМ. Большинство существующих ИС являются автоматизированными, поэтому для краткости просто будем называть их ИС. В широком понимании под определение ИС подпадает любая система обработки информации. По области применения ИС можно разделить на системы, используемые в производстве, образовании, здравоохранении, науке, военном деле, социальной сфере, торговле и других отраслях. По целевой функции ИС можно условно разделить на следующие основные категории: управляющие, информационно-справочные, поддержки принятия решений. Заметим, что иногда используется более узкая трактовка понятия ИС как совокупности аппаратно-программных средств, задействованныхдля решения некоторой прикладной задачи. В организации, например, могут существовать информационные системы, на которые возложены следующие задачи: учет кадров и материально-технических средств, расчет с поставщиками и заказчиками, бухгалтерский учет и т. п. Эффективность функционирования информационной системы (ИС) во многом зависит от ее архитектуры. В настоящее время перспективной является архитектура клиент-сервер. В распространенном варианте она предполагает наличие компьютерной сети и распределенной базы данных, включающей корпоративную базу данных (КБД) и персональные базы данных (ПБД). КБД размещается на компьютере-сервере, ПБД размещаются на компьютерах сотрудников подразделений, являющихся клиентами корпоративной БД. Сервером определенного ресурса в компьютерной сети называется компьютер (программа), управляющий этим ресурсом. Клиентом - компьютер (программа), использующий этот ресурс. В качестве ресурса компьютерной сети могут выступать, к примеру, базы данных, файловые системы, службы печати, почтовые службы. Тип сервера определяется видом ресурса, которым он управляет. Например, если управляемым ресурсом является база данных, то соответствующий сервер называется сервером базы данных. Достоинствоморганизации информационной системы по архитектуре клиент-сервер является удачное сочетание централизованногохранения, обслуживания и коллективного доступа к общей корпоративной информации с индивидуальной работой пользователей над персональной информацией. Архитектура клиент-сервер допускает различные варианты реализации.

    Информация поступает в систему в форме сообщений. Под сообщением понимают совокупность знаков или первичных сигналов , содержащих информацию .

    Источник сообщений в общем случае образует совокупность источника информации (ИИ) (исследуемого или наблюдаемого объекта) и первичного преобразователя (ПП) (датчика, человека-оператора и т.д.), воспринимающего информацию о протекающем в нем процессе.

    Рис. 1. Структурная схема одноканальной системы передачи информации.

    Различают дискретные и непрерывные сообщения.

    Дискретные сообщения формируются в результате последовательной выдачи источником сообщений отдельных элементов - знаков .

    Множество различных знаков называют алфавитом источника сообщения , а число знаков - объемом алфавита .

    Непрерывные сообщения не разделены на элементы. Они описываются непрерывными функциями времени, принимающими непрерывное множество значений (речь, телевизионное изображение).

    Для передачи сообщения по каналу связи ему ставят в соответствие определенный сигнал. Под сигналом понимают физический процесс, отображающий (несущий) сообщение.

    Преобразование сообщения в сигнал, удобный для передачи по данному каналу связи, называюткодированием в широком смысле слова .

    Операцию восстановления сообщения по принятому сигналу называют декодированием .

    Как правило, прибегают к операции представления исходных знаков в другом алфавите с меньшим числом знаков, называемых символами . При обозначении этой операции используется тот же термин “кодирование ”, рассматриваемый в узком смысле . Устройство, выполняющее такую операцию, называют кодирующим или кодером . Так как алфавит символов меньше алфавита знаков, то каждому знаку соответствует некоторая последовательность символов, которую называют кодовой комбинацией .

    Число символов в кодовой комбинации называют ее значностью , число ненулевых символов - весом .

    Для операции сопоставления символов со знаками исходного алфавита используют термин “декодирование ”. Техническая реализация этой операции осуществляется декодирующим устройством или декодером .

    Передающее устройство осуществляет преобразование непрерывных сообщений или знаков в сигналы, удобные для прохождения по линии связи. При этом один или несколько параметров выбранного сигнала изменяют в соответствии с передаваемой информацией. Такой процесс называют модуляцией . Он осуществляется модулятором . Обратное преобразование сигналов в символы производится демодулятором

    Под линией связи понимают среду (воздух, металл, магнитную ленту и т.д.), обеспечивающую поступление сигналов от передающего устройства к приемному устройству.

    Сигналы на выходе линии связи могут отличаться от сигналов на ее входе (переданных) вследствие затухания, искажения и воздействия помех.

    Помехами называют любые мешающие возмущения, как внешние, так и внутренние, вызывающие отклонение приинятых сигналов от переданных сигналов.

    Из смеси сигнала с помехой приемное устройство выделяет сигнал и посредством декодера восстанавливает сообщение, которое в общем случае может отличаться от посланного. Меру соответствия принятого сообщения посланному сообщению называют верностью передачи .

    Принятое сообщение с выхода системы связи поступает к абоненту-получателю, которому была адресована исходная информация.

    Совокупность средств, предназначенных для передачи сообщений, называют каналом связи .

    Способы представления чисел

    Двоичные (binary) числа – каждая цифра означает значение одного бита (0 или 1), старший бит всегда пишется слева, после числа ставится буква «b». Для удобства восприятия тетрады могут быть разделены пробелами. Например, 1010 0101b.
    Шестнадцатеричные (hexadecimal) числа – каждая тетрада представляется одним символом 0...9, А, В, ..., F. Обозначаться такое представление может по-разному, здесь используется только символ «h» после последней шестнадцатеричной цифры. Например, A5h. В текстах программ это же число может обозначаться и как 0хА5, и как 0A5h, в зависимости от синтаксиса языка программирования. Незначащий ноль (0) добавляется слева от старшей шестнадцатеричной цифры, изображаемой буквой, чтобы различать числа и символические имена.
    Десятичные (decimal) числа – каждый байт (слово, двойное слово) представляется обычным числом, а признак десятичного представления (букву «d») обычно опускают. Байт из предыдущих примеров имеет десятичное значение 165. В отличие от двоичной и шестнадцатеричной формы записи, по десятичной трудно в уме определить значение каждого бита, что иногда приходится делать.
    Восьмеричные (octal) числа – каждая тройка бит (разделение начинается с младшего) записывается в виде цифры 0–7, в конце ставится признак «о». То же самое число будет записано как 245о. Восьмеричная система неудобна тем, что байт невозможно разделить поровну.

    Для перевода десятичного числа в двоичную систему его необходимо последовательно делить на 2 до тех пор, пока не останется остаток, меньший или равный 1. Число в двоичной системе записывается как последовательность последнего результата деления и остатков от деления в обратном порядке.

    Пример. Число перевести в двоичную систему счисления.

    Для перевода десятичного числа в восьмеричную систему его необходимо последовательно делить на 8 до тех пор, пока не останется остаток, меньший или равный 7. Число в восьмеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

    Пример.

    Для перевода десятичного числа в шестнадцатеричную систему его необходимо последовательно делить на 16 до тех пор, пока не останется остаток, меньший или равный 15. Число в шестнадцатеричной системе записывается как последовательность цифр последнего результата деления и остатков от деления в обратном порядке.

    Пример. Число перевести в шестнадцатеричную систему счисления.

    7. Чтобы перевести число из двоичной системы в восьмеричную, его нужно разбить на триады (тройки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую триаду нулями, и каждую триаду заменить соответствующей восьмеричной цифрой (табл. 3).

    Пример. Число перевести в восьмеричную систему счисления.

    8. Чтобы перевести число из двоичной системы в шестнадцатеричную, его нужно разбить на тетрады (четверки цифр), начиная с младшего разряда, в случае необходимости дополнив старшую тетраду нулями, и каждую тетраду заменить соответствующей восьмеричной цифрой (табл. 3).

    Пример. Число перевести в шестнадцатеричную систему счисления.

    Теорема Котельникова

    В области цифровой обработки сигналов, Теоре́ма Коте́льникова (в англоязычной литературе - теорема Найквиста - Шеннона, или теорема отсчётов) связывает аналоговые и дискретные сигналы и гласит, что, если аналоговый сигнал имеет конечный (ограниченный по ширине) спектр, то он может быть восстановлен однозначно и без потерь по своимотсчётам, взятым с частотой, большей или равной удвоенной верхней частоте :

    Такая трактовка рассматривает идеальный случай, когда сигнал начался бесконечно давно и никогда не закончится, а также не имеет во временно́й характеристике точек разрыва. Если сигнал имеет разрывы любого рода в функции зависимости его от времени, то его спектральная мощность нигде не обращается в нуль. Именно это подразумевает понятие «спектр, ограниченный сверху конечной частотой ».

    Разумеется, реальные сигналы (например, звук на цифровом носителе) не обладают такими свойствами, так как они конечны по времени и обычно имеют разрывы во временно́й характеристике. Соответственно, ширина их спектра бесконечна. В таком случае полное восстановление сигнала невозможно, и, из теоремы Котельникова, вытекают два следствия:

    1. Любой аналоговый сигнал может быть восстановлен с какой угодно точностью по своим дискретным отсчётам, взятым с частотой , где - максимальная частота, которой ограничен спектр реального сигнала;

    2. Если максимальная частота в сигнале превышает половину частоты дискретизации, то способа восстановить сигнал из дискретного в аналоговый без искажений не существует.

    Говоря шире, теорема Котельникова утверждает, что непрерывный сигнал можно представить в виде интерполяционного ряда:

    где - функция sinc. Интервал дискретизации

    удовлетворяет ограничениям

    Мгновенные значения данного ряда есть дискретные отсчёты сигнала .

    Хотя в западной литературе теорема часто называется теоремой Найквиста со ссылкой на работу 1928 года «Certain topics in telegraph transmission theory», в этой работе речь идёт лишь о требуемой полосе линии связи для передачи импульсного сигнала (частота следования должна быть меньше удвоенной полосы). Таким образом, в контексте теоремы отсчётов справедливо говорить лишь о частоте Найквиста. Примерно в это же время Карл Купфмюллер получил тот же результат . О возможности полной реконструкции исходного сигнала по дискретным отсчётам в этих работах речь не идёт. Теорема была предложена и доказана В. А. Котельниковым в 1933 году в работе «О пропускной способности эфира и проволоки в электросвязи», в которой, в частности, была сформулирована одна из теорем следующим образом : «Любую функцию , состоящую из частот от 0 до , можно непрерывно передавать с любой точностью при помощи чисел, следующих друг за другом через секунд». Независимо от него эту теорему в 1949 (через 16 лет) году доказал Клод Шеннон , поэтому в западной литературе эту теорему часто называют теоремой Шеннона.

    Частота дискретизации (или частота сэмплирования ) - частота, с которой происходит оцифровка, хранение, обработка или конвертация сигнала из аналога в цифру. Частота дискретизации, согласно Теореме Котельникова, ограничивает максимальную частоту оцифрованного сигнала до половины своей величины.

    Чем выше частота дискретизации, тем более качественной будет оцифровка. Как следует из теоремы Котельникова для того чтобы одназначно восстановить исходный сигнал, частота дискретизации должна превышать наибольшую необходимую частоту сигнала в два раза.

    На данный момент, в звуковой технике среднего уровня глубина дискретизации находится в пределах 10-12 бит. Но на слух заметить разницу между 10 и 12 битами не представляется возможным в связи с тем, что человеческое ухо не способно различить такие малые отклонения. Ещё одной причиной бесполезности служит Коэффициент нелинейных искажений УМЗЧ и других компонентов звукогого тракта, явно превышающий величину шага квантования. Бо́льшее разрешение зачастую носит лишь маркетинговый смысл и фактически на слух не заметно.

    Оцифро́вка (англ. digitization ) - описание объекта, изображения или аудио- видеосигнала (в аналоговом виде) в виде набора дискретных цифровых замеров (выборок) этого сигнала/объекта, при помощи той или иной аппаратуры, т. е. перевод его вцифровой вид, пригодный для записи на электронные носители.

    Для оцифровки объект подвергается дискретизации (в одном или нескольких измерениях, например, в одном измерении для звука, в двух для растрового изображения) и аналогово-цифровому преобразованию конечных уровней.

    Полученный в результате оцифровки массив данных («цифровое представление» оригинального объекта) может использоваться компьютером для дальнейшей обработки, передачи по цифровым каналам, сохранению на цифровой носитель. Перед передачей или сохранением цифровое представление, как правило, подвергается фильтрации и кодированию для уменьшения объема.

    Иногда термин «оцифровка» используется в переносном смысле, в качестве замены для соответствующего термина [ уточнить ] , при переводе информации из аналогового вида в цифровой. Например:

    · Оцифровка звука.

    · Оцифровка видео.

    · Оцифровка изображения.

    · Оцифровка книг - как сканирование, так и (в дальнейшем) распознавание.

    · Оцифровка бумажных карт местности - означает сканирование и, как правило, последующую векторизацию (растрово-векторное преобразование, т. е. перевод в формат векторного описания).

    Дискретизация

    При оцифровке сигнала привязанного ко времени, дискретизацию обычно характеризуют частотой дискретизации - частотой снятия замеров

    При сканировании изображения с физических объектов, дискретизация характеризуется количеством результирующих пикселов на единицу длины (например, количеством точек на дюйм - англ. dot per inch, DPI ) по каждому из измерений.

    В цифровой фотографии дискретизация характеризуется количеством пикселей на кадр.

    Квантование сигналов

    Дискретные сигналы создаются на основе непрерывных сигналов. Процесс преобразования непрерывного сигнала в дискретный называется «квантование сигнала». Исходный непрерывный сигнал называется «квантуемый сигнал», сигнал, получаемый в результате квантования, называется «квантованный сигнал». Существуют разные способы квантования непрерывного сигнала.

    Квантование по времени . Квантованный сигнал содержит отдельные значения (дискреты) квантуемого сигнала, которые выделяются в фиксированные моменты времени. Процесс квантования по времени показан на рис. 21, где x(t) – квантуемый сигнал, x(t) – квантованный сигнал.

    Значения сигнала выделяются через равные промежутки времени T, где T – период (интервал) квантования. Следовательно, квантованный сигнал будет состоять из последовательности дискрет квантуемого сигнала, выделенных в моменты времени, кратные периоду квантования. Квантованный сигнал при квантовании по времени описывается решетчатой функцией времени квантуемого сигнала

    где m – целочисленный аргумент времени, m=1,2,3…

    Квантование по уровню . В моменты достижения квантуемым сигналом некоторых фиксированных уровней, квантованному сигналу присваивается значение достигнутого уровня, и это значение квантованного сигнала сохраняется до момента достижения квантуемым сигналам следующего уровня (рис.22).

    На рис. 22 для квантуемого сигнала x(t) определены уровни квантования с интервалом (шагом) a. Значения квантованного сигнала x(t) изменяются в момент достижения квантуемым сигналом очередного уровня. В результате квантованный сигнал представляет собой ступенчатую функцию времени.

    Типичным устройством, которое осуществляет квантование по уровню, является электромагнитное реле (рис. 23), содержащее электромагнит K и переключаемые электромагнитом электрические контакты S. Входом для реле является напряжение U на обмотке электромагнита, а выходом – состояние контактов S. При непрерывном изменении напряжения на электромагните состояние контактов (замкнуты или разомкнуты) будет изменяться только при переходе величины напряжения через уровень срабатывания U ср реле (уровень срабатывания – значение тока, при котором электромагнит срабатывает и переключает контакты реле).

    Таким образом, для реле квантованный сигнал может принимать только два уровня: контакты S разомкнуты, или контакты S замкнуты. Состояние контактов удобно описывать как логическую величину, принимающую значение «1» при замкнутых контактах, и значение «0» при разомкнутых контактах.

    Характеристика преобразования входного напряжения U в состояние контактов S для реле показана на рис.23. Это ступенчатая характеристика, изменение уровня которой происходит при входном напряжении U = U ср. Характеристика подобного вида получила название «релейная характеристика». Релейная характеристика является одним из случаев нелинейной характеристики.

    Квантование по времени и по уровню . В этом случае оба предыдущих способа комбинируются, поэтому способ квантования называют также комбинированным. При комбинированном квантовании квантованному сигналу в наперед заданные моменты времени присваивается значение ближайшего фиксированного уровня, которого достиг квантуемый сигнал. Это значение сохраняется до следующего момента квантования.

    Графики квантуемого и квантованного сигналов показаны на рис. 24. На графике квантуемого сигнала x(t) точками показаны значения достигнутых уровней, ближайших к значениям квантуемого сигнала в момент квантования. Изменения квантованного сигнала происходят в моменты квантования, кратные периоду T квантования по времени. Таким образом, квантованный сигнал будет характеризоваться периодом квантования и значением ближайшего фиксированного уровня.

    Типичным примером устройства, в котором имеет место комбинированное квантование, является аналого-цифровой преобразователь (АЦП) и цифровой прибор, построенный с использованием аналого-цифрового преобразователя. Выходная информация таких устройств обновляется с периодом, определяемым длительностью преобразования входного сигнала в цифровой код (квантование по времени), а выходная информация представляется с конечной точностью, определяемой разрешающей способностью квантования или разрядностью кода для представления квантованного сигнала.

    Частота дискретизации (или частота семплирования , англ. sample rate ) - частота взятия отсчетов непрерывного во времени сигнала при его дискретизации (в частности, аналого-цифровым преобразователем). Измеряется в герцах.

    Термин применяется и при обратном, цифро-аналоговом преобразовании, особенно если частота дискретизации прямого и обратного преобразования выбрана разной (Данный приём, называемый также «Масштабированием времени», встречается, например, при анализе сверхнизкочастотных звуков, издаваемых морскими животными).

    Чем выше частота дискретизации, тем более широкий спектр сигнала может быть представлен в дискретном сигнале. Как следует из теоремы Котельникова, для того, чтобы однозначно восстановить исходный сигнал, частота дискретизации должна более чем в два раза превышать наибольшую частоту в спектре сигнала.

    Некоторые из используемых частот дискретизации звука:

    · 8 000 Гц - телефон, достаточно для речи, кодек Nellymoser;

    · 12 000 Гц (на практике встречается редко);

    · 22 050 Гц - радио;

    · 44 100 Гц - используется в Audio CD;

    · 48 000 Гц - DVD, DAT;

    · 96 000 Гц - DVD-Audio (MLP 5.1);

    · 192 000 Гц - DVD-Audio (MLP 2.0);

    · 2 822 400 Гц - SACD, процесс однобитной дельта-сигма модуляции, известный как DSD - Direct Stream Digital, совместно разработан компаниями Sony и Philips;

    · 5 644 800 Гц - DSD с удвоенной частотой дискретизации, однобитный Direct Stream Digital с частотой дискретизации вдвое больше, чем у SACD. Используется в некоторых профессиональных устройствах записи DSD.

    Доказательство

    Возьмем некоторое . формула для, , выглядит следующим образом:

    AEP показывает что для достаточно больших n , последовательность сгенерированная из источника недостоверна в типичном случае - , сходящаяся. В случае для достаточно больших: n , (см AEP)

    Определение типичных наборов подразумевает, что те последовательности, которые лежат в типичном наборе, удовлетворяют:

    Заметьте, что:

    · Вероятность того, что последовательность была получена из

    Больше чем

    · начиная с вероятности полной совокупности является наиболее большим.

    · . Fдля доказательства используйте верхнюю границу вероятности для каждого терма в типичном случае, и нижнюю границу для общего случая .

    Начиная с битов достаточно, чтобы отличить любую строку

    Алгоритм шифрования: шифратор проверяет является ли ложной входящая последовательность, если да, то возвращает индекс входящей частоты в последовательности, если нет, то возвращает случайное digit number. численное значение. В случае если входящая вероятность неверна в последовательности (с частотой примерно ), то шифратор не выдает ошибку. То есть вероятность ошибки составляет выше чем

    Доказательство обратимости Доказательство обратимости базируется на том, что требуется показать что для любой последовательности размером меньше чем (в смысле экспоненты) будет покрывать частоту последовательности, ограниченную 1.

    Доказательство теоремы об источнике шифрования для кодов символов[править | править исходный текст]

    Пусть длина слова для каждого возможного (). Определим , где С выбирается таким образом, что: .

    где вторая строка является неравенством Гиббса, а пятая строка является неравенством Крафта .

    для второго неравенства мы можем установить

    таким образом минимальное S удовлетворяет

    Тема: Результаты Шеннона и проблемы кодирования.

    Сжатие данных.

    Закодированные сообщения передаются по каналам связи, хранятся в запоминающих устройствах, обрабатываются процессором. Объемы данных, циркулирующих в АСУ, велики, и поэтому в о многих случаях важно обеспечить такое кодирование данных, которое характеризуется минимальной длиной получающихся сообщений. Эта проблема сжатия данных. Решение её обеспечивает увеличение скорости передачи информации и уменьшение требуемой памяти запоминающих устройств. В конечном итоге это ведет к повышению эффективности системы обработки данных.

    Существует два подхода (или два этапа) сжатия данных:

    Сжатие, основанное на анализе конкретной структуры и смыслового содержания данных;

    Сжатие, основанное на анализе статистических свойств кодируемых сообщений. В отличие от первого второй подход носит универсальный характер и может использоваться во всех ситуациях, где есть основания полагать, что сообщения подчиняются вероятностным законам. Далее мы рассмотрим оба этих подхода.

    4.1. Сжатие на основе смыслового содержания данных

    Эти методы носят эвристический, уникальный характер, однако основную идею можно пояснить следующим образом. Пусть множество содержит элементов. Тогда для кодирования элементов множества равномерным кодом потребуется двоичных знаков. При этом будут использованы все двоичные кодовые комбинации. Если используются не все комбинации, код будет избыточным. Таким образом, для сокращения избыточности следует попытаться очертить множество возможных значений элементов данных и с учетом этого произвести кодирование. В реальных условиях это не всегда просто, некоторые виды данных имеют очень большую мощность множества возможных значений. Посмотрим, как же поступают в конкретных случаях.

    Переход от естественных обозначений к более компактным. Значения многих конкретных данных кодируются в виде, удобном для чтения человеком. При этом они содержат обычно больше символов, чем это необходимо. Например, дата записывается в виде «26 января 1982 г.» или в самой краткой форме: «26.01.82». при этом многие кодовые комбинации, например «33.18.53» или «95.00.11», никогда не используются. Для сжатия таких данных день можно закодировать пятью разрядами, месяц - четырьмя, год - семью, т.е. вся дата займет не более двух байтов. Другой способ записи даты, предложенный еще в средние века состоит в том, чтобы записывать общее число дней, прошедших к настоящему времени с некоторой точки отсчета. При этом часто ограничиваются четырьмя последними цифрами этого представления. Например, 24 мая 1967 года записывается в виде 0000 и отсчет дней от этой даты требует, очевидно, два байта в упакованном десятичном формате.

    КОДИРОВАНИЕ ИНФОРМАЦИИ.

    АБСТРАКТНЫЙ АЛФАВИТ

    Информация передается в виде сообщений. Дискретная информация записывается с помощью некоторого конечного набора знаков, которые будем называть буквами, не вкладывая в это слово привычного ограниченного значения (типа «русские буквы» или «латинские буквы»). Буква в данном расширенном понимании - любой из знаков, которые некоторым соглашением установлены для общения. Например, при привычной передаче сообщений на русском языке такими знаками будут русские буквы - прописные и строчные, знаки препинания, пробел; если в тексте есть числа - то и цифры. Вообще, буквой будем называть элемент некоторого конечного множества (набора) отличных друг от друга знаков. Множество знаков, в котором определен их порядок, назовем алфавитом (общеизвестен порядок знаков в русском алфавите: А, Б,..., Я).

    Рассмотрим некоторые примеры алфавитов.

    1, Алфавит прописных русских букв:

    А Б В Г Д Е Е Ж З И Й К Л М Н О П Р С Т У Ф Х Ц Ч Ш Щ Ъ Ы Ь Э Ю Я

    2. Алфавит Морзе:

    3. Алфавит клавиатурных символов ПЭВМ IBM (русифицированная клавиатура):

    4. Алфавит знаков правильной шестигранной игральной кости:

    5. Алфавит арабских цифр:

    6. Алфавит шестнадцатиричных цифр:

    0123456789ABCDEF

    Этот пример, в частности, показывает, что знаки одного алфавита могут образовываться из знаков других алфавитов.

    7. Алфавит двоичных цифр:

    Алфавит 7 является одним из примеров, так называемых, «двоичных» алфавитов, т.е. алфавитов, состоящих из двух знаков. Другими примерами являются двоичные алфавиты 8 и 9:

    8. Двоичный алфавит «точка, «тире»:. _

    9. Двоичный алфавит «плюс», «минус»: + -

    10. Алфавит прописных латинских букв:

    ABCDEFGHIJKLMNOPQRSTUVWXYZ

    11. Алфавит римской системы счисления:

    I V Х L С D М

    12. Алфавит языка блок-схем изображения алгоритмов:

    13. Алфавит языка программирования Паскаль (см. в главе 3).
    ^

    КОДИРОВАНИЕ И ДЕКОДИРОВАНИЕ

    В канале связи сообщение, составленное из символов (букв) одного алфавита, может преобразовываться в сообщение из символов (букв) другого алфавита. Правило, описывающее однозначное соответствие букв алфавитов при таком преобразовании, называют кодом. Саму процедуру преобразования сообщения называют перекодировкой. Подобное преобразование сообщения может осуществляться в момент поступления сообщения от источника в канал связи (кодирование) и в момент приема сообщения получателем (декодирование). Устройства, обеспечивающие кодирование и декодирование, будем называть соответственно кодировщиком и декодировщиком. На рис. 1.5 приведена схема, иллюстрирующая процесс передачи сообщения в случае перекодировки, а также воздействия помех (см. следующий пункт).

    Рис. 1.5. Процесс передачи сообщения от источника к приемнику

    Рассмотрим некоторые примеры кодов.

    1. Азбука Морзе в русском варианте (алфавиту, составленному из алфавита русских заглавных букв и алфавита арабских цифр ставится в соответствие алфавит Морзе):

    2. Код Трисиме (знакам латинского алфавита ставятся в соответствие комбинации из трех знаков: 1,2,3):

    А 111 D 121 G 131 J211 M221 P231 S311 V321 Y331
    В 112 E 122 H 132 K212 N222 Q232 T312 W322 Z332
    С 113 F 123 I 133 L213 О223 R233 U313 X323 .333

    Код Трисиме является примером, так называемого, равномерного кода (такого, в котором все кодовые комбинации содержат одинаковое число знаков - в данном случае три). Пример неравномерного кода - азбука Морзе.

    3. Кодирование чисел знаками различных систем счисления см. §3.

    ПОНЯТИЕ О ТЕОРЕМАХ ШЕННОНА

    Ранее отмечалось, что при передаче сообщений по каналам связи могут возникать помехи, способные привести к искажению принимаемых знаков. Так, например, если вы попытаетесь в ветреную погоду передать речевое сообщению человеку, находящемуся от вас на значительном расстоянии, то оно может быть сильно искажено такой помехой, как ветер. Вообще, передача сообщений при наличии помех является серьезной теоретической и практической задачей. Ее значимость возрастает в связи с повсеместным внедрением компьютерных телекоммуникаций, в которых помехи неизбежны. При работе с кодированной информацией, искажаемой помехами, можно выделить следующие основные проблемы: установления самого факта того, что произошло искажение информации; выяснения того, в каком конкретно месте передаваемого текста это произошло; исправления ошибки, хотя бы с некоторой степенью достоверности.

    Схема передачи информации по сотовой связи в форме SMS-сообщения. Кодирование и декодирование заключаются в преобразовании письменного текста в последовательности электромагнитных сигналов и обратном преобразовании. Передача по каналам сотовой связи. Набор текста на клавиатуре с отражением на экране телефона и сохранение в его памяти. Сохранение в памяти принимающего аппарата. Преобразование в радиосигнал определенной частоты. Прием сигнала аппаратом адресата. Перевод во внутренний код. Передача радиосигнала. Хранение исходного текста. Кодирование – обработка текста. Декодирование – обработка радиосигнала. Хранение полученного текста.

    Слайд 7 из презентации ««Передача информации» информатика» . Размер архива с презентацией 1318 КБ.
    Скачать презентацию

    Передача информации

    краткое содержание других презентаций

    «Беспроводные технологии передачи данных» - Содержание КИМ. Выпускная аттестационная работа. Беспроводные сети датчиков. Содержание УМК. Объём программы. Практические и теоретические знания. Форма обучения. Основы технологий. Образовательные технологии. Кадровое обеспечение программы. Беспроводные технологии передачи данных. Методическое и материально-техническое обеспечение. Современные технологии.

    ««Передача информации» информатика» - Компьютерные сети. Распространение информации. Модель процесса передачи информации. Схема передачи информации по сотовой связи. Пропускная способность канала связи. Шум, защита от шума. Кодирование. Передача информации. Пропускная способность канала. Модель передачи информации К. Шеннона. Шеннон разработал специальную теорию кодирования. Котельников.

    «Передача информации в компьютерных сетях» - Основные характеристики каналов обмена информации. Схемы могут, в свою очередь, быть организованы двумя способами. Соединить компьютеры можно двумя способами - последовательно и звездой. Глобальная компьютерная сеть. Преимущества компьютерных сетей. Тип соединения - «шина». Одноранговая локальная сеть. Тип соединения - «звезда». Передача информации. Компьютерные сети. Локальная сеть. Назовите общую характеристику каналов передачи информации.

    «Процесс передачи информации» - В 1876 году в Америке был изобретен телефон. В 1895 году русский изобретатель А.С. Попов открыл радиосвязь. В 1969 году в США начала функционировать первая компьютерная сеть. Специальный код. Гонцы заучивали послания наизусть. Как передавали информацию в прошлом. Передача информации. Вопросы на засыпку. Любой процесс передачи информации. Звук барабана, особенно популярный среди африканских племен.

    «Технические системы передачи информации» - Телефонные линии. Защита от шума. Шум. Пример работы модели. Современные компьютерные системы. Контрольная сумма. Модель передачи информации К. Шеннона. Теория кодирования. Передача информации по техническим каналам. Потери информации при передаче. Технические системы передачи информации. Владимир Александрович Котельников. Система основных понятий. Кодирование информации. Скорость передачи информации.

    Ранее источник информации был определен как объект или субъект, порождающий информацию и имеющий возможность представить ее в виде сообщения, т.е. последовательности сигналов в материальном носителе. Другими словами, источник связывает информацию с ее материальным носителем. Передача сообщения от источника к приемнику всегда связана с некоторым нестационарным процессом, происходящим в материальной среде - это условие является обязательным, поскольку сама информация материальным объектом или формой существования материи не является. Способов передачи информации существует множество: почта, телефон, радио, телевидение, компьютерные сети и пр. Однако при всем разнообразии конкретной реализации способов связи в них можно выделить общие элементы, представленные на рис.5.1.

    Понимать схему нужно следующим образом. Источник, порождающий информацию, для передачи должен представить ее в виде сообщения, т.е. последовательности сигналов. При этом для представления информации он должен использовать некоторую систему кодирования. Устройство, выполняющее операцию кодирования информации, может являться подсистемой источника (например, наш мозг порождает информацию и он же кодирует эту информацию с помощью языка, а затем представляет в виде речевого сообщения посредством органов речи; компьютер обрабатывает и хранит информацию в двоичном представлении, но при выводе ее на экран монитора производит ее перекодировку к виду, удобному пользователю).

    Возможна ситуация, когда кодирующее устройство оказывается внешним по отношению к источнику информации, например, телеграфный аппарат или компьютер по отношению к работающему на нем оператору. Далее коды должны быть переведены в последовательность материальных сигналов, т.е. помещены на материальный носитель - эту операцию выполняет преобразователь. Преобразователь может быть совмещен с кодирующим устройством (например, телеграфный аппарат), но может быть и самостоятельным элементом линии связи (например, модем, преобразующий электрические дискретные сигналы с частотой компьютера в аналоговые сигналы с частотой, на которой их затухание в телефонных линиях будет наименьшим). К преобразователям относят также устройства, которые переводят сообщение с одного носителя на другой, например, мегафон или телефонный аппарат, преобразующие голосовые сигналы в электрические; радиопередатчик, преобразующие голосовые сигналы в радиоволны; телекамера, преобразующая изображение в последовательность электрических импульсов. В общем случае при преобразовании выходные сигналы не полностью воспроизводят все особенности сообщения на входе, а лишь его существенные стороны, т.е. при преобразовании часть информации теряется. Например, полоса пропускания частот при телефонной связи от 300 до 3400 Гц, в то время как частоты, воспринимаемые человечески ухом, лежат в интервале 16 - 20000 Гц (т.е. телефонные линии «обрезают» высокие частоты, что приводит к искажениям звука); в черно-белом телевидении при преобразовании теряется цвет изображения. Именно в связи с этим встает задача выработки такого способа кодирования сообщения, который обеспечивал бы возможно более полное представление исходной информации при преобразовании и, в то же время, был согласован со скоростью передачи информации по данной линии связи.

    После преобразователя сигналы поступают и распространяются по каналу связи. Понятие канала связи включает в себя материальную среду, а также физический или иной процесс, посредством которого осуществляется передача сообщения, т.е. распространение сигналов в пространстве с течением времени. Ниже приведены примеры некоторых каналов связи.

    После прохождения сообщения по каналу связи сигналы с помощью приемного преобразователя переводятся в последовательность кодов, которые декодирующим устройством представляются в форме, необходимой приемнику информации. На этапе приема, как и при передаче, преобразователь может быть совмещен с декодирующим устройством (например, радиоприемник или телевизор) или существовать самостоятельно (например, модем).

    Понятие линия связи объединяет все элементы представленной на рис.5.1. схемы от источника до приемника информации. Характеристиками любой линии связи являются скорость, с которой возможна передача сообщения в ней, а также степень искажения сообщения в процессе передачи. Из этих параметров вычленим те, что относятся непосредственно к каналу связи, т.е. характеризуют среду и процесс передачи.