Фракталы в реальном мире объект исследования. Фракталы в окружающем нас мире. Фракталы в природе

МУНИЦИПАЛЬНОЕ БЮДЖЕТНОЕ ОБЩЕОБРАЗОВАТЕЛЬНОЕ -УЧРЕЖДЕНИЕ СРЕДНЯЯ ОБЩЕОБРАЗОВАТЕЛЬНАЯ ШКОЛА

с. Мечетное

Научно-практическая конференция «Удивительный мир математики»

Исследовательская работа «Путешествие в мир фракталов»

Выполнила: учащаяся 10 класса

Аллахвердиева Наиля

Руководитель: Давыдова Е. В.


  1. Вступление.

  2. Основная часть:
а) Понятие фрактал;

б) История создания фракталов;

в) Классификация фракталов;

г) Применение фракталов;

д) Фракталы в природе;

е) Цвета фракталов.

3. Заключение.

Вступление.

Что скрывается за таинственным понятием «фрактал»? Наверное, для многих этот термин ассоциируется с красивыми изображениями, замысловатыми узорами и яркими образами, созданными с помощью компьютерной графики. Но фракталы – это непросто красивые картинки. Это особые структуры, которые лежат в основе всего, что нас окружает. Ворвавшись в научный мир всего несколько десятилетий назад, фракталы успели произвести настоящую революцию в восприятии окружающей действительности. Используя фракталы, человек может создавать высокоточные математические модели природных объектов, систем, процессов и явлений.

Основная часть
Понятие фрактала.

Фрактал (от лат. fractus - дробленый, сломанный, разбитый) - сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком. Многие объекты в природе обладают фрактальными свойствами, например, побережья, облака, кроны деревьев, кровеносная система и система альвеол человека или животных.

Фракталы, особенно на плоскости, популярны благодаря сочетанию красоты с простотой построения при помощи компьютера.

История создания .
Вывести науку о фракталах на новый уровень сумел французский математик Бенуа Мандельброт – ученый, который сегодня признан отцом фрактальной геометрии. Мандельброт впервые дал определение термину «фрактал»:

Цитата


"Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому"
В 70-е годы Бенуа Мандельброт работал математическим аналитиком в компании IBM. Ученый впервые задумался о фракталах в процессе изучения шумов в электронных сетях. На первый взгляд, помехи при передаче данных происходили абсолютно хаотично. Мандельброт построил график появления ошибок и с удивлением обнаружил, что в любом временном масштабе все фрагменты выглядели аналогично. В масштабе недели шумы появлялись в такой же последовательности, как и в масштабе одного дня, часа или минуты. Мандельброт понял, что частота возникновения ошибок при передаче данных распределяется во времени по принципу, изложенному Кантором в конце XIX века. Тогда Бенуа Мандельброт всерьез увлекся изучением фракталов.
В отличие от своих предшественников, для создания фракталов Мандельброт использовал не геометрические построения, а алгебраические преобразования различной сложности. Математик применял метод обратных итераций, который подразумевает многократное вычисление одной и той же функции. Используявозможности ЭВМ, математик выполнял огромное количество последовательных вычислений, результаты которых отобразил графически на комплексной плоскости. Так появилось множество Мандельброта – сложный алгебраический фрактал, который сегодня считается классикой науки о фракталах. В некоторых случаях один и тот же предмет может считаться одновременно гладким и фрактальным. Чтобы объяснить, почему это происходит, Мандельброт приводит интересный наглядный пример. Клубок шерстяных ниток, удаленный на некоторое расстояние, выглядит как точка с размерностью 1. Клубок, расположенный неподалеку, выглядит как двумерный диск. Взяв его в руки, можно отчетливо ощутить объем клубка – теперь он воспринимается как трехмерный. А фракталом клубок может считаться только с точки зрения наблюдателя, использующего увеличительный прибор, или мухи, севшей на поверхность неровной шерстяной нити. Поэтому истинная фрактальность объекта зависит от точки зрения наблюдателя и от разрешающей способности используемого прибора.
Мандельброт отметил интересную закономерность – чем ближе рассматривать измеряемый объект, тем более протяженной будет его граница. Это свойство можно наглядно продемонстрировать на примере измерения протяженности одного из природных фракталов - береговой линии. Проводя измерения на географической карте, можно получить приблизительное значение длины, поскольку все неровности и изгибы не будут учтены. Если проводить измерение с учетом всех неровностей рельефа, видимых с высоты человеческого роста, то результат будет несколько другим – длина береговой линии значительно увеличится. А если теоретически представить, что измерительный прибор будет огибать неровности каждого камешка, то в этом случае протяженность береговой линии будет практически бесконечной.
Классификация фракталов.

Фракталы разделяют на:

геометрические: фракталы этого класса - самые наглядные, в них сразу видна самоподобность. История фракталов началась именно с геометрических фракталов, которые исследовались математиками в XIX веке.

алгебраические:эта группа фракталов получила такое название потому, что фракталы образуются при помощи простых алгебраических формул.

стохастические:образуются в случае случайной перемены в итерационном процессе параметров фрактала. Двумерные стохастические фракталы используются при моделировании рельефа местности и поверхности моря.

Геометрические фракталы

Именно с них и начиналась история фракталов. Этот тип фракталов получается путем простых геометрических построений. Обычно при построении этих фракталов поступают так: берется "затравка" - аксиома - набор отрезков, на основании которых будет строиться фрактал. Далее к этой "затравке" применяют набор правил, который преобразует ее в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если мы проведем (по крайней мере, в уме) бесконечное количество преобразований - получим геометрический фрактал. Классические примеры геометрических фракталов: Снежинка Коха, Лист, Треугольник Серпинского, Драконова ломанная (приложение 1).


Алгебраические фракталы

Вторая большая группа фракталов – алгебраические (приложение 2). Свое название они получили за то, что их строят, на основе алгебраических формул иногда весьма простых. Методов получения алгебраических фракталов несколько.

К сожалению, многие термины уровня 10-11 класса, связанные с комплексными числами, необходимые для объяснения построения фрактала, мне неизвестны и пока трудны для понимания, поэтому подробно описать построение фракталов подобного вида для меня не представляется возможным.

Изначально фрактальная природа черно-белая, но если добавить немного фантазии и красок, то можно получить настоящее произведение искусств.


Стохастические фракталы

Типичный представитель данного класса фракталов «Плазма» (приложение 3). Для ее построения возьмем прямоугольник и для каждого его угла определим цвет. Далее находим центральную точку прямоугольника и раскрашиваем ее в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число – тем более «рваным» будет рисунок. Если мы теперь скажем, что цвет точки это высота над уровнем моря – получим вместо плазмы – горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладываем текстуру и, пожалуйста, фотореалистичные горы готовы!

Применение фракталов

Уже сегодня фракталы находят широкое применение в самых разнообразных областях. Активно развивается направление фрактального архивирования графической информации. Теоретически, фрактальное архивирование может сжимать изображения до размеров точки без потери качества. При увеличении картинок, сжатых по фрактальному принципу, отчетливо отображаются мельчайшие детали, а эффект зернистости при этом полностью отсутствует.


Принципы теории фракталов используются в медицине для анализа электрокардиограмм, поскольку ритм сердечных сокращений также является фракталом. Активно развивается направление исследований кровеносной системы и других внутренних систем человеческого организма. В биологии фракталы применяются для моделирования процессов, происходящих внутри популяций.
Метеорологи используют фрактальные зависимости для анализа интенсивности движения воздушных масс, благодаря чему появляется возможность более точного прогнозирования изменений погоды. Физика фрактальных сред с большим успехом решает задачи изучения динамики сложных турбулентных потоков, процессов адсорбции и диффузии. В нефтехимической отрасли фракталы используются для моделирования пористых материалов. Теория о фракталах эффективно применяется в работе на финансовых рынках. Фрактальная геометрия используется для создания мощных антенных устройств.
Сегодня теория фракталов является самостоятельной областью науки, на основе которой создаются все новые и новые направления в различных областях. Значимости фракталов посвящено множество научных трудов.

Но эти необычные объекты не только чрезвычайно полезны, но и невероятно красивы. Именно поэтому фракталы постепенно находят свое место в искусстве. Их удивительная эстетическая привлекательность вдохновляет многих художников на создание фрактальных картин. Современные композиторы создают музыкальные произведения, используя электронные инструменты с различными фрактальными характеристиками. Писатели применяют фрактальную структуру для формирования своих литературных произведений, а дизайнеры создают фрактальные предметы мебели и интерьера.


Фрактальность в природе

В 1977 году была издана книга Мандельброта «Фракталы: форма, случайность и размерность», а в 1982 году вышла еще одна монография – «Фрактальная геометрия природы», на страницах которой автор продемонстрировал наглядные примеры различных фрактальных множеств и привел доказательства существования фракталов в природе. Главную идею теории фракталов Мандельброт выразил следующими словами:

"Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать".


Свойствами фрактального множества обладают многие природные объекты (приложение 4) .

Действительно ли фракталы являются универсальными структурами, которые были взяты за основу при создании абсолютно всего, что есть в этом мире? Форма многих природных объектов максимально приближена к фракталам. Но не все существующие в мире фракталы имеют настолько правильную и бесконечно повторяющуюся структуру, как множества, созданные математиками. Горные хребты, поверхности разлома металла, турбулентные потоки, облака, пена и многие-многие другие природные фракталы лишены идеально точного самоподобия. И было бы абсолютно ошибочно полагать, что фракталы являются универсальным ключом ко всем тайнам Вселенной. При всей своей кажущейся сложности, фракталы – это лишь упрощенная модель реальности. Но среди всех доступных на сегодняшний день теорий фракталы являются самым точным средством описания окружающего мира.

Действительно ли фракталы являются универсальными структурами, которые были взяты за основу при создании абсолютно всего, что есть в этом мире? Форма многих природных объектов максимально приближена к фракталам. Но не все существующие в мире фракталы имеют настолько правильную и бесконечно повторяющуюся структуру, как множества, созданные математиками. Горные хребты, поверхности разлома металла, турбулентные потоки, облака, пена и многие-многие другие природные фракталы лишены идеально точного самоподобия. И было бы абсолютно ошибочно полагать, что фракталы являются универсальным ключом ко всем тайнам Вселенной. При всей своей кажущейся сложности, фракталы – это лишь упрощенная модель реальности. Но среди всех доступных на сегодняшний день теорий фракталы являются самым точным средством описания окружающего мира.
Цвета фракталов

Красоту фракталам добавляет их яркая и броская расцветка. Сложные цветовые схемы делают фракталы красивыми и запоминающимися. С математической точки зрения фракталы – это черно-белые объекты, каждая точка которых либо принадлежит множеству, либо не принадлежит. Но возможности современных компьютеров позволяют делать фракталы цветными и яркими. И это не простое раскрашивание соседних областей множества в произвольном порядке.

Анализируя значение каждой точки, программа автоматически определяет оттенок того или иного фрагмента. Черным цветом изображаются точки, в которых функция принимает постоянное значение. Если же значение функции стремится к бесконечности, то тогда точка окрашивается в другой цвет. Интенсивность окрашивания зависит от скорости приближения к бесконечности. Чем больше повторений требуется для приближения точки к стабильному значению, тем светлее становится ее оттенок. И наоборот – точки, быстро устремляющиеся к бесконечности, окрашены в яркие и насыщенные цвета.
Заключение

Первый раз услышав о фракталах, задаёшься вопросом, что это такое?

С одной стороны – это сложная геометрическая фигура, обладающая свойством самоподобия, то есть составленная из нескольких частей, каждая из которых подобна всей фигуре целиком.

Это понятие завораживает своей красотой и таинственностью, проявляясь в самых неожиданных областях: метеорологии, философии, географии, биологии, механике и даже истории.

Практически невозможно не увидеть фрактал в природе, ведь почти каждый объект (облака, горы, береговая линия и т.д.) имеют фрактальное строение. У большинства веб-дизайнеров, программистов есть собственная галерея фракталов(необычайно красивы).

По сути, фракталы открывают нам глаза и позволяют посмотреть на математику с другой стороны. Казалось бы, производятся обычные расчёты с обычными «сухими» цифрами, но это даёт нам по-своему уникальные результаты, позволяющие почувствовать себя творцом природы. Фракталы дают понять, что математика - это тоже наука о прекрасном.

Своей проектной работой я хотела рассказать о довольно новом понятии в математике «фрактал». Что это такое, какие существуют виды, где распространяются. Я очень надеюсь, что фракталы заинтересовали вас. Ведь, как оказалось, фракталы довольно интересны и они есть почти на каждом шагу.

Список литературы


  • http://ru.wikipedia.org/wiki

  • http://www.metaphor.ru/er/misc/fractal_gallery.xml

  • http://fractals.narod.ru/

  • http://rusproject.narod.ru/article/fractals.htm

  • Бондаренко В.А.,Дольников В.Л. Фрактальное сжатие изображений по Барнсли-Слоану. // Автоматика и телемеханика.-1994.-N5.-с.12-20.

  • Ватолин Д. Применение фракталов в машинной графике. // Computerworld-Россия.-1995.-N15.-с.11.

  • Федер Е. Фракталы. Пер. с англ.-М.: Мир,1991.-254с. (Jens Feder, Plenum Press, NewYork, 1988)

  • Application of fractals and chaos. 1993, Springer-Verlag, Berlin.

Приложение 1

Приложение 2

Приложение 3

Приложение 4

Фракталы известны уже почти век, хорошо изучены и имеют многочисленные приложения в жизни. Однако в основе этого явления лежит очень простая идея: бесконечное по красоте и разнообразию множество фигур можно получить из относительно простых конструкций при помощи всего двух операций — копирования и масштабирования.

Евгений Епифанов

Что общего у дерева, берега моря, облака или кровеносных сосудов у нас в руке? На первый взгляд может показаться, что все эти объекты ничто не объединяет. Однако на самом деле существует одно свойство структуры, присущее всем перечисленным предметам: они самоподобны. От ветки, как и от ствола дерева, отходят отростки поменьше, от них — еще меньшие, и т. д. , то есть ветка подобна всему дереву. Подобным же образом устроена и кровеносная система: от артерий отходят артериолы, а от них — мельчайшие капилляры, по которым кислород поступает в органы и ткани. Посмотрим на космические снимки морского побережья: мы увидим заливы и полуострова; взглянем на него же, но с высоты птичьего полета: нам будут видны бухты и мысы; теперь представим себе, что мы стоим на пляже и смотрим себе под ноги: всегда найдутся камешки, которые дальше выдаются в воду, чем остальные. То есть береговая линия при увеличении масштаба остается похожей на саму себя. Это свойство объектов американский (правда, выросший во Франции) математик Бенуа Мандельброт назвал фрактальностью, а сами такие объекты — фракталами (от латинского fractus — изломанный).


У этого понятия нет строгого определения. Поэтому слово «фрактал» не является математическим термином. Обычно фракталом называют геометрическую фигуру, которая удовлетворяет одному или нескольким из следующих свойств: Обладает сложной структурой при любом увеличении масштаба (в отличие от, например, прямой, любая часть которой является простейшей геометрической фигурой — отрезком). Является (приближенно) самоподобной. Обладает дробной хаусдорфовой (фрактальной) размерностью, которая больше топологической. Может быть построена рекурсивными процедурами.

Геометрия и алгебра

Изучение фракталов на рубеже XIX и XX веков носило скорее эпизодический, нежели систематический характер, потому что раньше математики в основном изучали «хорошие» объекты, которые поддавались исследованию при помощи общих методов и теорий. В 1872 году немецкий математик Карл Вейерштрасс строит пример непрерывной функции, которая нигде не дифференцируема. Однако его построение было целиком абстрактно и трудно для восприятия. Поэтому в 1904 году швед Хельге фон Кох придумал непрерывную кривую, которая нигде не имеет касательной, причем ее довольно просто нарисовать. Оказалось, что она обладает свойствами фрактала. Один из вариантов этой кривой носит название «снежинка Коха».

Идеи самоподобия фигур подхватил француз Поль Пьер Леви, будущий наставник Бенуа Мандельброта. В 1938 году вышла его статья «Плоские и пространственные кривые и поверхности, состоящие из частей, подобных целому», в которой описан еще один фрактал — С-кривая Леви. Все эти вышеперечисленные фракталы можно условно отнести к одному классу конструктивных (геометрических) фракталов.


Другой класс — динамические (алгебраические) фракталы, к которым относится и множество Мандельброта. Первые исследования в этом направлении начались в начале XX века и связаны с именами французских математиков Гастона Жулиа и Пьера Фату. В 1918 году вышел почти двухсотстраничный мемуар Жулиа, посвященный итерациям комплексных рациональных функций, в котором описаны множества Жулиа — целое семейство фракталов, близко связанных с множеством Мандельброта. Этот труд был удостоен приза Французской академии, однако в нем не содержалось ни одной иллюстрации, так что оценить красоту открытых объектов было невозможно. Несмотря на то что это работа прославила Жулиа среди математиков того времени, о ней довольно быстро забыли. Вновь внимание к ней обратилось лишь полвека спустя с появлением компьютеров: именно они сделали видимыми богатство и красоту мира фракталов.

Фрактальные размерности

Как известно, размерность (число измерений) геометрической фигуры — это число координат, необходимых для определения положения лежащей на этой фигуре точки.
Например, положение точки на кривой определяется одной координатой, на поверхности (не обязательно плоскости) двумя координатами, в трёхмерном пространстве тремя координатами.
С более общей математической точки зрения, можно определить размерность таким образом: увеличение линейных размеров, скажем, в два раза, для одномерных (с топологической точки зрения) объектов (отрезок) приводит к увеличению размера (длины) в два раза, для двумерных (квадрат) такое же увеличение линейных размеров приводит к увеличению размера (площади) в 4 раза, для трехмерных (куб) — в 8 раз. То есть «реальную» (т.н. Хаусдорфову) размерность можно подсчитать в виде отношения логарифма увеличения «размера» объекта к логарифму увеличения его линейного размера. То есть для отрезка D=log (2)/log (2)=1, для плоскости D=log (4)/log (2)=2, для объема D=log (8)/log (2)=3.
Подсчитаем теперь размерность кривой Коха, для построения которой единичный отрезок делят на три равные части и заменяют средний интервал равносторонним треугольником без этого сегмента. При увеличении линейных размеров минимального отрезка в три раза длина кривой Коха возрастает в log (4)/log (3)~1,26. То есть размерность кривой Коха — дробная!

Наука и искусство

В 1982 году вышла книга Мандельброта «Фрактальная геометрия природы», в которой автор собрал и систематизировал практически всю имевшуюся на тот момент информацию о фракталах и в легкой и доступной манере изложил ее. Основной упор в своем изложении Мандельброт сделал не на тяжеловесные формулы и математические конструкции, а на геометрическую интуицию читателей. Благодаря иллюстрациям, полученным при помощи компьютера, и историческим байкам, которыми автор умело разбавил научную составляющую монографии, книга стала бестселлером, а фракталы стали известны широкой публике. Их успех среди нематематиков во многом обусловлен тем, что с помощью весьма простых конструкций и формул, которые способен понять и старшеклассник, получаются удивительные по сложности и красоте изображения. Когда персональные компьютеры стали достаточно мощными, появилось даже целое направление в искусстве — фрактальная живопись, причем заниматься ею мог практически любой владелец компьютера. Сейчас в интернете можно легко найти множество сайтов, посвященных этой теме.


Схема получения кривой Коха

Война и мир

Как уже отмечалось выше, один из природных объектов, имеющих фрактальные свойства, — это береговая линия. С ним, а точнее, с попыткой измерить его длину, связана одна интересная история, которая легла в основу научной статьи Мандельброта, а также описана в его книге «Фрактальная геометрия природы». Речь идет об эксперименте, который поставил Льюис Ричардсон — весьма талантливый и эксцентричный математик, физик и метеоролог. Одним из направлений его исследований была попытка найти математическое описание причин и вероятности возникновения вооруженного конфликта между двумя странами. В числе параметров, которые он учитывал, была протяженность общей границы двух враждующих стран. Когда он собирал данные для численных экспериментов, то обнаружил, что в разных источниках данные об общей границе Испании и Португалии сильно отличаются. Это натолкнуло его на следующее открытие: длина границ страны зависит от линейки, которой мы их измеряем. Чем меньше масштаб, тем длиннее получается граница. Это происходит из-за того, что при большем увеличении становится возможным учитывать все новые и новые изгибы берега, которые раньше игнорировались из-за грубости измерений. И если при каждом увеличении масштаба будут открываться ранее не учтенные изгибы линий, то получится, что длина границ бесконечна! Правда, на самом деле этого не происходит — у точности наших измерений есть конечный предел. Этот парадокс называется эффектом Ричардсона.


Конструктивные (геометрические) фракталы

Алгоритм построения конструктивного фрактала в общем случае таков. Прежде всего нам нужны две подходящие геометрические фигуры, назовем их основой и фрагментом. На первом этапе изображается основа будущего фрактала. Затем некоторые ее части заменяются фрагментом, взятым в подходящем масштабе, — это первая итерация построения. Затем у полученной фигуры снова некоторые части меняются на фигуры, подобные фрагменту, и т. д. Если продолжить этот процесс до бесконечности, то в пределе получится фрактал.

Рассмотрим этот процесс на примере кривой Коха (см. врезку на предыдущей странице). За основу кривой Коха можно взять любую кривую (для «снежинки Коха» это треугольник). Но мы ограничимся простейшим случаем — отрезком. Фрагмент — ломаная, изображенная сверху на рисунке. После первой итерации алгоритма в данном случае исходный отрезок совпадет с фрагментом, затем каждый из составляющих его отрезков сам заменится на ломаную, подобную фрагменту, и т. д. На рисунке показаны первые четыре шага этого процесса.


Языком математики: динамические (алгебраические) фракталы

Фракталы этого типа возникают при исследовании нелинейных динамических систем (отсюда и название). Поведение такой системы можно описать комплексной нелинейной функцией (многочленом) f (z). Возьмем какую-нибудь начальную точку z0 на комплексной плоскости (см. врезку). Теперь рассмотрим такую бесконечную последовательность чисел на комплексной плоскости, каждое следующее из которых получается из предыдущего: z0, z1=f (z0), z2=f (z1), … zn+1=f (zn). В зависимости от начальной точки z0 такая последовательность может вести себя по‑разному: стремиться к бесконечности при n -> ∞; сходиться к какой-то конечной точке; циклически принимать ряд фиксированных значений; возможны и более сложные варианты.

Комплексные числа

Комплексное число — это число, состоящее из двух частей — действительной и мнимой, то есть формальная сумма x + iy (x и y здесь — вещественные числа). i — это т.н. мнимая единица, то есть то есть число, удовлетворяющее уравнению i^ 2 = -1. Над комплексными числами определены основные математические операции — сложение, умножение, деление, вычитание (не определена только операция сравнения). Для отображения комплексных чисел часто используется геометрическое представление — на плоскости (ее называют комплексной) по оси абсцисс откладывают действительную часть, а по оси ординат — мнимую, при этом комплексному числу будет соответствовать точка с декартовыми координатами x и y.

Таким образом, любая точка z комплексной плоскости имеет свой характер поведения при итерациях функции f (z), а вся плоскость делится на части. При этом точки, лежащие на границах этих частей, обладают таким свойством: при сколь угодно малом смещении характер их поведения резко меняется (такие точки называют точками бифуркации). Так вот, оказывается, что множества точек, имеющих один конкретный тип поведения, а также множества бифуркационных точек часто имеют фрактальные свойства. Это и есть множества Жулиа для функции f (z).

Семейство драконов

Варьируя основу и фрагмент, можно получить потрясающее разнообразие конструктивных фракталов.
Более того, подобные операции можно производить и в трехмерном пространстве. Примерами объемных фракталов могут служить «губка Менгера», «пирамида Серпинского» и другие.
К конструктивным фракталам относят и семейство драконов. Иногда их называют по имени первооткрывателей «драконами Хейвея-Хартера» (своей формой они напоминают китайских драконов). Существует несколько способов построения этой кривой. Самый простой и наглядный из них такой: нужно взять достаточно длинную полоску бумаги (чем тоньше бумага, тем лучше), и согнуть ее пополам. Затем снова согнуть ее вдвое в том же направлении, что и в первый раз. После нескольких повторений (обычно через пять-шесть складываний полоска становится слишком толстой, чтобы ее можно было аккуратно гнуть дальше) нужно разогнуть полоску обратно, причем стараться, чтобы в местах сгибов образовались углы в 90˚. Тогда в профиль получится кривая дракона. Разумеется, это будет лишь приближение, как и все наши попытки изобразить фрактальные объекты. Компьютер позволяет изобразить гораздо больше шагов этого процесса, и в результате получается очень красивая фигура.

Множество Мандельброта строится несколько иначе. Рассмотрим функцию fc (z) = z 2 +с, где c — комплексное число. Построим последовательность этой функции с z0=0, в зависимости от параметра с она может расходиться к бесконечности или оставаться ограниченной. При этом все значения с, при которых эта последовательность ограничена, как раз и образуют множество Мандельброта. Оно было детально изучено самим Мандельбротом и другими математиками, которые открыли немало интересных свойств этого множества.

Видно, что определения множеств Жулиа и Мандельброта похожи друг на друга. На самом деле эти два множества тесно связаны. А именно, множество Мандельброта — это все значения комплексного параметра c, при которых множество Жулиа fc (z) связно (множество называется связным, если его нельзя разбить на две непересекающиеся части, с некоторыми дополнительными условиями).


Фракталы и жизнь

В наши дни теория фракталов находит широкое применение в различных областях человеческой деятельности. Помимо чисто научного объекта для исследований и уже упоминавшейся фрактальной живописи, фракталы используются в теории информации для сжатия графических данных (здесь в основном применяется свойство самоподобия фракталов — ведь чтобы запомнить небольшой фрагмент рисунка и преобразования, с помощью которых можно получить остальные части, требуется гораздо меньше памяти, чем для хранения всего файла). Добавляя в формулы, задающие фрактал, случайные возмущения, можно получить стохастические фракталы, которые весьма правдоподобно передают некоторые реальные объекты — элементы рельефа, поверхность водоемов, некоторые растения, что с успехом применяется в физике, географии и компьютерной графике для достижения большего сходства моделируемых предметов с настоящими. В радиоэлектронике в последнее десятилетие начали выпускать антенны, имеющие фрактальную форму. Занимая мало места, они обеспечивают вполне качественный прием сигнала. Экономисты используют фракталы для описания кривых колебания курсов валют (это свойство было открыто Мандельбротом более 30 лет назад). На этом мы завершим эту небольшую экскурсию в удивительный по красоте и разнообразию мир фракталов.

Министерство образования, науки и молодежи Республики Крым

Муниципальное бюджетное общеобразовательное учреждение «Магазинский учебно-воспитательный комплекс» муниципального образования Красноперекопский район Республики Крым

Направление: математика

ИССЛЕДОВАНИЕ ОСОБЕННОСТЕЙ ФРАКТАЛЬНЫХ МОДЕЛЕЙ

ДЛЯ ПРАКТИЧЕСКОГО ПРИМЕНЕНИЯ

Работу выполнил:

ученик 8 класса муниципального бюджетного общеобразовательного учреждения «Магазинский учебно-воспитательный комплекс» муниципального образования Красноперекопский район Республики Крым

Научный руководитель:

учитель математики муниципального бюджетного общеобразовательного учреждения «Магазинский учебно-воспитательный комплекс» муниципального образования Красноперекопский район Республики Крым

Красноперекопский район – 2016

Наукой совершено множество гениальных открытий и изобретений, основательно изменивших жизнь человечества: электричество, атомная энергия , вакцина и многое другое. Однако есть такие открытия, которым мало придают значения, но они также способны повлиять и влияют на нашу жизнь. Одним из таких открытий являются фракталы, которые помогают установить связь между событиями даже в хаосе.

Американский математик Бенуа Мандельброт в своей книге «Фрактальная геометрия природы» писал: «Почему геометрию часто называют холодной и сухой? Одна из причин заключается в том, что она неспособна достаточно точно описать форму облака, горы, дерева или берега моря. Облака – это не сферы, линии берега – это не окружности, и кора не является гладкой, а молния не распространяется по прямой. Природа демонстрирует нам не просто более высокую степень, а совсем другой уровень сложности. Число различных масштабов длин в структурах всегда бесконечно. Существование этих структур бросает нам вызов в виде трудной задачи изучения тех форм, которые Евклид отбросил как бесформенные – задачи исследования морфологии аморфного. Математики, однако, пренебрегли этим вызовом и предпочли все больше и больше отдаляться от природы, изобретая теории, которые не соответствуют ничему из того, что можно увидеть или почувствовать».

Гипотеза: всё, что существует в окружающем нас мире – фрактал.

Цель работы: создание объектов, образы которых похожи на природные.

Объект исследования: фракталы в различных областях науки и реальном мире.

Предмет исследования: фрактальная геометрия.

Задачи исследования:

1. знакомство с понятием фрактала, историей его возникновения и исследованиями Б. Мандельброта, Г. Коха, В. Серпинского и др.;

3. нахождение подтверждения теории фрактальности окружающего мира;

4. изучение применения фракталов в других науках и на практике;

5. проведение эксперимента по созданию собственных фрактальных изображений.

Методы исследования: аналитический, поисковый, экспериментальный.

История возникновения понятия «фрактал»

Фрактальная геометрия, как новое направление в математике, появилась в 1975 году. Понятие «фрактал» впервые ввел в математику американский ученый Бенуа Мандельброт. Фрактал (от англ. «fraction») – дробь, поделенный на части. Определение фрактала, данное Мандельбротом, звучит так: «Фракталом называется структура, состоящая из частей, которые в каком-то смысле подобны целому».

Работая в исследовательском центре компании IBM, сотрудники которого трудились над передачей данных на расстояние, перед Бенуа встала сложная и очень важная задача - понять, как предсказать возникновение шумовых помех в электронных схемах . Мандельброт обратил внимание на одну странную закономерность - графики шумов в разном масштабе выглядели одинаково. Одинаковая картина наблюдалась независимо от того, был ли это график шумов за один день, неделю или час. Стоило изменить масштаб графика, и картина каждый раз повторялась. Вдумываясь в смысл странных узоров, к Бенуа пришло осознание сути фракталов.

Однако первые идеи фрактальной геометрии возникли ещё в 19 веке.

Так Георг Кантор (Cantor, 1845-1918) - немецкий математик, логик, теолог, создатель теории бесконечных множеств, с помощью простой повторяющейся процедуры превратил линию в набор несвязанных точек. Он брал линию и удалял центральную треть и после этого повторял то же самое с оставшимися отрезками. То, что получилось, назвали Пылью Кантора (Рисунок 1).

А итальянский математик Джузеппе Пеано (Giuseppe Peano; 1858-1932) брал линию и заменял ее на 9 отрезков длинной в 3 раза меньшей, чем длина исходной линии. Далее он делал то же самое с каждым отрезком. И так до бесконечности. Позднее аналогичное построение было осуществлено в трехмерном пространстве (Рисунок 2).

Один из первых рисунков фрактала был графической интерпретацией множества Мандельброта, которое родилось благодаря исследованиям Гастона Мориса Жюлиа (Gaston Maurice Julia) (Рисунок 3).

Все фракталы можно поделить на группы, но самые большие из них это:

Геометрические фракталы;

Алгебраические фракталы;

Стохастические фракталы.

Геометрические фракталы

Геометрические фракталы самые наглядные и получаются они путём простых геометрических построений. Берут некоторую ломанную (или поверхность в трехмерном случае), называемую генератором. Затем каждый из отрезков, составляющих ломаную, заменяется на ломаную-генератор, в соответствующем масштабе. В результате бесконечного повторения этой процедуры, получается геометрический фрактал. Примерами геометрических фракталов могут служить:

1) Кривая Коха. В начале ХХ века с бурным развитием квантовой механики перед учеными встала задача найти такую кривую, которая бы наилучшим образом показывала движение броуновских частиц. Для этого кривая должна была обладать следующим свойством: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую: берём единичный отрезок, разделяем на три равные части и заменяем средний интервал равносторонним треугольником без этого сегмента. В результате образуется ломаная, состоящая из четырех звеньев длины 1/3. На следующем шаге повторяем операцию для каждого из четырёх получившихся звеньев и т. д.

Предельная кривая и есть кривая Коха (Рисунок 4). Выполнив аналогичные преобразование на сторонах равностороннего треугольника можно получить фрактальное изображение снежинки Коха.

2) Кривая Леви. Берётся половина квадрата и каждая сторона заменяется таким же фрагментом. Операция повторяется много раз и в конечном итоге получается кривая Леви (Рисунок 5).

3) Кривая Минковского. Фундаментом является отрезок, а генератором - ломаная из восьми звеньев (два равных звена продолжают друг друга) (Рисунок 6).

4) Кривая Пеано (Рисунок 2).

5) Кривая дракона (Рисунок 7).

6) Дерево Пифагора. Построено на фигуре, известной как «Пифагоровы штаны», где на сторонах прямоугольного треугольника расположены квадраты. Впервые дерево Пифагора построил, используя обычную чертёжную линейку (Рисунок 8).

7) Квадрат Серпинского. Известен как «решётка» или «салфетка» Серпинского (Рисунок 9). Квадрат делится прямыми, параллельными его сторонам, на 9 равных квадратов. Из квадрата удаляется центральный квадрат. Получается множество, состоящее из 8 оставшихся квадратов "первого ранга". Поступая точно так же с каждым из квадратов первого ранга, получим множество, состоящее из 64 квадратов второго ранга. Продолжая этот процесс бесконечно, получим бесконечную последовательность или квадрат Серпинского.

Алгебраические фракталы

Фракталы, строящиеся на основе алгебраических формул, относятся к алгебраическим фракталам. Это самая крупная группа фракталов. К ним можно отнести фрактал Мандельброта (Рисунок 3), фрактал Ньютона (Рисунок 10), множество Жюлиа (Рисунок 11) и многие другие.

Некоторые алгебраические фракталы поразительным образом напоминают изображения животных, растений и других биологических объектов, вследствие чего получили название биоморфов.

Стохастические фракталы

Стохастические фракталы – ещё одна крупная разновидность фракталов, которые образуются путем многократных повторений случайных изменений каких-либо параметров. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т. д.

Так если взять прямоугольник и каждому его углу определить цвет. Затем взять его центральную точку и раскрасить её в цвет равный среднему арифметическому цветов по углам прямоугольника плюс некоторое случайное число. Чем больше случайное число - тем более "рваным" будет рисунок. Таким образом, получится фрактал «плазма» (Рисунок 12). А если предположить, что цвет точки это высота над уровнем моря - получим вместо плазмы - горный массив. Именно на этом принципе моделируются горы в большинстве программ. С помощью алгоритма, похожего на плазму строится карта высот, к ней применяются различные фильтры, накладывается текстура и фотореалистичные горы готовы.

Применение фракталов

Фрактальная живопись. Популярное среди цифровых художников направление современного арта. Фрактальные картины необычно и завораживающе действуют на человека, рождая яркие пылающие образы. Сказочные абстракции создаются посредством скучных математических формул, но воображение воспринимает их живыми (Рисунок 13). Любой человек может упражняться с фрактальными программами и генерировать свои фракталы. Подлинное искусство состоит в умении найти неповторимое сочетание цвета и формы.

Фракталы в литературе. Среди литературных произведений находят такие, которые обладают фрактальной природой, т. е. вложенной структурой самоподобия:

1. «Вот дом.

Который построил Джек.

А вот пшеница.

Который построил Джек

А вот весёлая птица-синица,

Которая ловко ворует пшеницу,

Которая в тёмном чулане храница

Который построил Джек…».

Самуил Маршак

2. Блох больших кусают блошки

Блошек тех – малютки-крошки,

Как говорят, ad infinitum.

Джонатан Свифт

Фракталы в медицине. Человеческий организм состоит из множества фракталоподобных структур: кровеносная, лимфотическая и нервная системы, мышцы, бронхи и т. д. (Рисунок 14, 15).

Фракталы в физике и механике. Фрактальные модели природных объектов позволяют моделировать различные физические явления и делать прогнозы.

Американский инженер Натан Коэн, живший в центре Бостона, где была запрещена установка внешних антен, вырезал из алюминиевой фольги фигуру в форме кривой Коха, наклеил ее на лист бумаги и присоединил к приёмнику. Оказалось, что такая антенна работает не хуже обычной. И хотя физические принципы такой антенны до сих пор не изучены, это не помешало Коэну обосновать собственную компанию и наладить их серийный выпуск. В данный момент американская фирма «Fractal Antenna System» производит фрактальные антены для мобильных телефонов.

Фракталы в природе. Природа зачастую создаёт удивительные и прекрасные фракталы, с идеальной геометрией и такой гармонией, что просто замираешь от восхищения. И вот их примеры:

- морские раковины;

Подвид цветной капусты (Brassica cauliflora), папоротник;

Оперение павлина;

https://pandia.ru/text/80/404/images/image009_13.jpg" align="left" width="237" height="178 src=">

Дерево от листочка до корня.

https://pandia.ru/text/80/404/images/image011_13.jpg" alt="Картинка 7 из 122" align="left" width="168" height="113 src=">

Фракталы есть везде и всюду в окружающей нас природе. Вся Вселенная построена по удивительно гармоничным законам с математической точностью. Разве можно после этого думать, что наша планета это случайное сцепление частиц?

Практическая работа

Фрактальное дерево. C помощью панели инструментов «Рисование» программы Microsoft Word и нехитрых преобразований группировки, копирования и вставки, я построил своё фрактальное дерево. Генекатором моего фрактала стали пять отрезков расположенных определённым образом.
.jpg" width="449 height=303" height="303">

Рисунок 8. Дерево Пифагора

Рисунок 9. Квадрат Серпинского

Рисунок 10. Фрактал Ньютона

Рисунок 11. Множество Жюлиа

Рисунок 12. Фрактал «Плазма»

https://pandia.ru/text/80/404/images/image028_2.jpg" width="480 height=299" height="299">

Рисунок 14. Кровеносная система человека

Рисунок 15. Скопление нервных клеток

Фракталы в окружающем нас мире.

Выполнила: ученица 9 класса

МБОУ Кировская СОШ

Литовченко Екатерина Николаевна.
Руководитель: учитель математики

МБОУ Кировская СОШ

Качула Наталья Николаевна.

    Введение……………………………………………………………… 3

      Объект исследования.

      Предметы исследования.

      Гипотезы.

      Цели, задачи и методы исследования.

    Исследовательская часть. …………………………………………. 7

      Нахождение связи между фракталами и треугольником Паскаля.

      Нахождение связи между фракталами и золотым сечением.

      Нахождение связи между фракталами и фигурными числами.

      Нахождение связи между фракталами и литературными произведениями.

3. Практическое применение фракталов…………………………….. 13

4. Заключение………………………………………………………….. 15

4.1 Результаты исследования.

5. Библиография……………………………………………………….. 16

    Введение.

      Объект исследования: Фракталы .

Когда большинству людей казалось, что геометрия в природе ограничивается такими простыми фигурами, как линия, круг, коническое сечение, многоугольник, сфера, квадратичная поверхность, а также их комбинациями. К примеру, что может быть красивее утверждения о том, что планеты в нашей солнечной системе движутся вокруг солнца по эллиптическим орбитам?

Однако многие природные системы настолько сложны и нерегулярны, что использование только знакомых объектов классической геометрии для их моделирования представляется безнадежным. Как к примеру, построить модель горного хребта или кроны дерева в терминах геометрии? Как описать то многообразие биологических конфигураций, которое мы наблюдаем в мире растений и животных? Представьте себе всю сложность системы кровообращения, состоящей из множества капилляров и сосудов и доставляющей кровь к каждой клеточке человеческого тела. Представьте, как хитроумно устроены легкие и почки, напоминающие по структуре деревья с ветвистой кроной.

Столь же сложной и нерегулярной может быть и динамика реальных природных систем. Как подступиться к моделированию каскадных водопадов или турбулентных процессов, определяющих погоду?

Фракталы и математический хаос - подходящие средства для исследования поставленных вопросов. Термин фрактал относится к некоторой статичной геометрической конфигурации, такой как мгновенный снимок водопада. Хаос - термин динамики, используемый для описания явлений, подобных турбулентному поведению погоды. Нередко то, что мы наблюдаем в природе, интригует нас бесконечным повторением одного и того же узора, увеличенного или уменьшенного во сколько угодно раз. Например, у дерева есть ветви. На этих ветвях есть ветки поменьше и т.д. Теоретически, элемент «разветвление» повторяется бесконечно много раз, становясь все меньше и меньше. То же самое можно заметить, разглядывая фотографию горного рельефа. Попробуйте немного приблизить изображение горной гряды - вы снова увидите горы. Так проявляется характерное для фракталов свойство самоподобия.

Во многих работах по фракталам самоподобие используется в качестве определяющего свойства. Следуя Бенуа Мадельброту, мы принимаем точку зрения, согласно которой фракталы должны определяться в терминах фрактальной (дробной) размерности. Отсюда и происхождение слова фрактал (от лат. fractus - дробный).

Понятие дробной размерности представляет собой сложную концепцию, которая излагается в несколько этапов. Прямая - это одномерный объект, а плоскость - двумерный. Если хорошенько перекрутив прямую и плоскость, можно повысить размерность полученной конфигурации; при этом новая размерность обычно будет дробной в некотором смысле, который нам предстоит уточнить. Связь дробной размерности и самоподобия состоит в том, что с помощью самоподобия можно сконструировать множество дробной размерности наиболее простым образом. Даже в случае гораздо более сложных фракталов, таких как граница множества Мандельброта, когда чистое самоподобие отсутствует, имеется почти полное повторение базовой формы во все более и более уменьшенном виде.

Слово «фрактал» не является математическим термином и не имеет общепринятого строгого математического определения. Оно может употребляться, когда рассматриваемая фигура, обладает какими- либо из перечисленных ниже свойств:

    Теоретическая многомерность (можно продолжать в любом количестве измерений).

    Если рассмотреть небольшой фрагмент регулярной фигуры в очень крупном масштабе, он будет похож на фрагмент прямой. Фрагмент фрактала же в крупном масштабе будет таким же, как и в любом другом масштабе. Для фрактала увеличение масштаба не ведёт к упрощению структуры, на всех шкалах мы увидим одинаково сложную картину.

    Является самоподобной или приближённо самоподобной, каждый уровень подобен целому

    Длины, площади и объемы одних фракталов равны нулю, других - обращаются в бесконечность.

    Обладает дробной размерностью.

Виды фракталов: алгебраические, геометрические, стохастические.

Алгебраические фракталы – самая крупная группа фракталов. Получают их с помощью нелинейных процессов в n-мерных пространствах, например, множества Мандельброта и Жюлиа.

Вторая группа фракталов – геометрические фракталы. История фракталов началась с геометрических фракталов, которые исследовались математиками в XIX веке. Фракталы этого класса - самые наглядные, потому что в них сразу видна самоподобность. Этот тип фракталов получается путем простых геометрических построений. При построении этих фракталов обычно берется набор отрезков, на основании которых будет строиться фрактал. Далее к этому набору применяют набор правил, который преобразует их в какую-либо геометрическую фигуру. Далее к каждой части этой фигуры применяют опять тот же набор правил. С каждым шагом фигура будет становиться все сложнее и сложнее, и если представить бесконечное количество подобных операций, получается геометрических фрактал.

На рисунке справа изображен треугольник Серпинского – геометрический фрактал, который образуется следующим образом: на первом шаге мы видим обычный треугольник, на следующем шаге соединяются середины сторон, образуя 4 треугольника, один из которых перевернутый. Далее мы повторяем проделанную операцию со всеми треугольниками, кроме перевернутых, и так до бесконечности.

Примеры геометрических фракталов:

1.1 Звезда Коха

В начале ХХ века математики искали такие кривые, которые ни в одной точке не имеют касательной. Это означало, что кривая резко меняет свое направление, и притом с колоссально большой скоростью (производная равна бесконечности). Поиски данных кривых были вызваны не просто праздным интересом математиков. Дело в том, что в начале ХХ века очень бурно развивалась квантовая механика. Исследователь М.Броун зарисовал траекторию движения взвешенных частиц в воде и объяснил это явление так: беспорядочно движущиеся атомы жидкости ударяются о взвешенные частицы и тем самым приводят их в движение. После такого объяснения броуновского движения перед учеными встала задача найти такую кривую, которая бы наилучшим образом аппроксимировала движение броуновских частиц. Для этого кривая должна была отвечать следующим свойствам: не иметь касательной ни в одной точке. Математик Кох предложил одну такую кривую. Мы не будем вдаваться в объяснения правила ее построения, а просто приведем ее изображение, из которого все станет ясно. Одно важное свойство, которым обладает граница снежинки Коха ….. ее бесконечная длина. Это может показаться удивительным, потому что мы привыкли иметь дело с кривыми из курса математического анализа. Обычно гладкие или хотя бы кусочно-гладкие кривые всегда имеют конечную длину (в чем можно убедиться интегрированием). Мандельброт в этой связи опубликовал ряд увлекательных работ, в которых исследуется вопрос об измерении длины береговой линии Великобритании. В качестве модели он использовал фрактальную кривую, напоминающую границу снежинки за тем исключением, что в нее введен элемент случайности, учитывающий случайность в природе. В результате оказалось, что кривая, описывающая береговую линию, имеет бесконечную длину.

Губка Менгера



Еще одним известным классом фракталов являются стохастические фракталы, которые получаются в том случае, если в итерационном процессе случайным образом менять какие-либо его параметры. При этом получаются объекты очень похожие на природные - несимметричные деревья, изрезанные береговые линии и т.д. .

      Предметы исследования

      1. Треугольник Паскаля.

У
стройство треугольника Паскаля – боковые стороны единицы, каждое число равно сумме двух расположенных над ним. Треугольник можно продолжать неограниченно.

Треугольник Паскаля служит для вычисления коэффициентов разложения выражений вида (x+1) n . Начав с треугольника из единиц, вычисляют значения на каждом последовательном уровне путём сложения соседних чисел; последней ставят единицу. Таким образом, можно определить, например, что (x + 1) 4 = 1x 4 + 4x 3 + 6x 2 + 4x + 1x 0 .

        Фигурные числа.

Пифагор впервые, в VI до нашей эры, обратил внимание на то, что, помогая себе при счете камушками, люди иногда выстраивают камни в правильные фигуры. Можно просто класть камушки в ряд: один, два, три. Если класть их в два ряда, чтобы получались прямоугольники, мы обнаружим, что получаются все четные числа. Можно выкладывать камни в три ряда: получатся числа, делящиеся на три. Всякое число, которое на что-нибудь делится, можно представить прямоугольником, и только простые числа не могут быть «прямоугольниками».

    Линейные числа - числа, не разлагающиеся на сомножители, то есть их ряд совпадает с рядом простых чисел, дополненным единицей: (1,2,3,5,7,11,13,17,19,23,...). Это простые числа.

    Плоские числа - числа, представимые в виде произведения двух сомножителей (4,6,8,9,10,12,14,15,...)

    Телесные числа - числа, выражаемые произведением трёх сомножителей (8,12,18,20,24,27,28,...) и т. д.

    Многоугольные числа:

    Треугольные числа: (1, 3, 6, 10, 15, 21, 28, 36, 45, 55, ...)

    Квадратные числа представляют собой произведение двух одинаковых чисел, то есть являются полными квадратами: (1, 4, 9, 16, 25, 36, 49, 64, 81, 100, ..., n2, ...)

    Пятиугольные числа: (1, 5, 12, 22, 35, 51, 70, 92, 117, 145, ...)

    Шестиугольные числа (1, 6, 15, 28, 45, ...)

        Золотое сечение..

Золотое сечение (золотая пропорция, деление в крайнем и среднем отношении, гармоническое деление, число Фидия) - деление непрерывной величины на части в таком отношении, при котором большая часть так относится к меньшей, как вся величина к большей. На рисунке слева точка С производит золотое сечение отрезка АВ, если: АС:АВ = СВ:АС.

Эту пропорцию принято обозначать греческой буквой . Оно равно 1,618. Из этой пропорции видно, что при золотом сечении длина большего отрезка есть среднее геометрическое длин всего отрезка и его меньшей части. Части золотого сечения составляют приблизительно 62% и 38% всего отрезка. С числом связана последовательность целых чисел Фибоначчи : 1, 1, 2, 3, 5, 8, 13, 21, ... , часто встречающаяся в природе. Она порождена рекуррентным соотношением F n+2 =F n+1 +F n с начальными условиями F 1 =F 2 = 1.

Древнейшим литературным памятником, в котором встречается деление отрезка в отношении золотого сечения, являются «Начала» Евклида. Уже во второй книге «Начал» Евклид строит золотое сечение, а в дальнейшем применяет его для построения некоторых правильных многоугольников и многогранников.

      Гипотезы:

Существует ли связь между фракталами и

    треугольником Паскаля.

    золотым сечением.

    фигурными числами.

    литературными произведениями

1.4 Цель работы:

1. Ознакомить слушателей с новой ветвью математики - фракталами.

2. Опровергнуть или доказать гипотезы, поставленные в работе.

      Задачи исследования:

    Проработать и проанализировать литературу по теме исследования.

    Рассмотреть различные виды фракталов.

    Собрать коллекцию фрактальных образов для первичного ознакомления с миром фракталов.

    Установить взаимосвязи между треугольником Паскаля, литературными произведениями, фигурными числами и золотым сечением.

      Методы исследования:

Теоретический (изучение и теоретический анализ научной и специальной литературы; обобщение опыта);

Практический (составление расчетов, обобщение результатов).

    Исследовательская часть.

2.1 Нахождение связи между фракталами и треугольником Паскаля.

Треугольник Паскаля Треугольник Серпинского

При выделении нечетных чисел в треугольнике Паскаля получается треугольник Серпинского. Узор демонстрирует свойство коэффициентов, применяемое при «арифметизации» компьютерных программ, которая преобразует их в алгебраические уравнения.

2.1 Нахождение связи между фракталами и золотым сечением.

Размерность фракталов.

Если смотреть с математической точки зрения, то размерность определяется следующим образом.

Для одномерных объектов - увеличение в 2 раза линейных размеров приводит к увеличению размеров (в данном случае длины) в 2 раза, т.е. в 2 1 .

Для двухмерных объектов увеличение в 2 раза линейных размеров приводит к увеличению размера (площади) в 4 раза, т.е. в 2 2 . Приведем пример. Дан круг радиуса r, тогда S= π r 2 .

Если увеличить в 2 раза радиус, то: S1 = π(2r) 2 ; S 1 = 4πr 2 .

Для трехмерных объектов увеличение в 2 раза линейных размеров приводит к увеличению объема в 8 раз, т.е. 2 3 .

Если мы возьмем куб, то V=а 3 , V"=(2а) 3 =8а; V"/V= 8.

Однако природа не всегда подчиняется этим законам. Попробуем рассмотреть размерность фрактальных объектов на простом примере.

Представим себе, что муха хочет сесть на клубок шерсти. Когда она смотрит на него издалека, то видит только точку, размерность которой 0. Подлетая ближе, она видит сначала круг, его размерность 2, а затем шар – размерность 3. Когда муха сядет на клубок, она шара уже не увидит, а рассмотрит ворсинки, нитки, пустоты, т.е. объект с дробной размерностью.

Размерность объекта (показатель степени) показывает, по какому закону растет его внутренняя область. Аналогичным образом с ростом размера возрастает «объем фрактала». Ученые пришли к выводу, что фрактал - это множество с дробной размерностью.

Фракталы как математические объекты возникли вследствие потребностей научного познания мира в адекватном теоретическом описании все более сложных природных систем (таких, например, как горный хребет, береговая линия, крона дерева, каскадный водопад, турбулентный поток воздуха в атмосфере и т.п.) и, в конечном счете, в математическом моделировании природы в целом. А золотое сечение, как известно, представляет собой одно из наиболее ярких и устойчивых проявлений гармонии природы. Поэтому вполне возможно выявить взаимосвязь вышеупомянутых объектов, т.е. обнаружить золотое сечение в теории фракталов.

Напомним, что золотое сечение определяется выражением
(*) и является единственным положительным корнем квадратного уравнения
.

С золотым сечением тесно связаны числа Фибоначчи 1,1,2,3,5,8,13,21,…, каждое из которых представляет собой сумму двух предыдущих. Действительно, величина является пределом ряда, составленного из отношений соседних чисел Фибоначчи:
,

а величина– пределом ряда, составленного из отношений чисел Фибоначчи, взятых через одно:

Фракталом же называется структура, состоящая из частей, подобных целому. Согласно другому определению, фрактал представляет собой геометрический объект с дробной (нецелой) размерностью. Кроме того, фрактал всегда возникает в результате бесконечной последовательности однотипных геометрических операций по его построению, т.е. является следствием предельного перехода, что роднит его с золотым сечением, которое тоже представляет собой предел бесконечного числового ряда. Наконец, размерность фрактала, как правило, является иррациональным числом (как и золотое сечение).

В свете всего вышесказанного отнюдь не удивительным выглядит обнаружение того факта, что размерности многих классических фракталов с той или иной степенью точности могут быть выражены через золотое сечение. Так, например, соотношения для размерностей снежинки Кох d СК =1,2618595… и губки Менгера d ГМ =2,7268330… , с учетом (*) могут быть записаны в виде
и
.

Причем, погрешность первого выражения составляет всего лишь 0,004%, а второго выражения – 0,1%, а с учетом элементарного соотношения 10=2·5 следует, что величины d СК и d ГМ представляют собой комбинации золотого сечения и чисел Фибоначчи.

Размерности ковра Серпинского d КС =1,5849625… и пыли Кантора d ПК =0,6309297…тоже можно считать близкими по значению к золотому сечению:
и
. Погрешность этих выражений равна 2%.

Размерность широко применяемого в физических приложениях теории фракталов (например, при исследовании тепловой конвекции) неравномерного (двухмасштабного) множества Кантора (длины образующих отрезков которого –
и
– относятся друг к другу как числа Фибоначчи:
) , а d МК =0,6110… отличается от величины
лишь на 1%.

Таким образом, золотое сечение и фракталы взаимосвязаны.

2.2 Нахождение связи между фракталами и фигурными числами .

Рассмотрим каждую группу чисел.

Первое число – 1. Следующее число – 3. Оно получается прибавлением к предыдущему числу, 1, двух точек, чтобы искомая фигура стала треугольником. На третьем шаге мы добавляем три точки, сохраняя фигуру треугольник. На последующих шагах добавляется n точек, где n – порядковый номер треугольного числа. Каждое число получается добавлением к предыдущему определенного количества точек. Из этого свойства получилась рекуррентная формула для треугольных чисел: t n = n + t n -1 .

Первое число – 1. Следующее число – 4. Оно получается прибавлением 3 точек к предыдущему числу в виде прямого угла, чтобы получился квадрат. Формула для квадратных чисел очень проста, она выходит из названия этой группы чисел: g n = n 2 . Но также, кроме этой формулы, можно вывести рекуррентную формулу для квадратных чисел. Для этого рассмотрим первые пять квадратных чисел:

g n = g n-1 +2n-1

2 = 4 = 1+3 = 1+2·2-1

g 3 = 9 = 4+5 = 4+2·3-1

g 4 = 16 = 9+7 = 9+2·4-1

g 5 = 25 = 16+9 = 16+2·5-1

Первое число – 1. Следующее число – 5. Оно получается прибавлением четырех точек, таким образом, получившаяся фигура принимает форму пятиугольника. Одна сторона такого пятиугольника содержит 2 точки. На следующем шаге на одной стороне будет 3 точки, общее количество точек – 12. Попробуем вывести формулу для вычисления пятиугольных чисел. Первые пять пятиугольных чисел: 1, 5, 12, 22, 35. Они образуются следующим образом:

f 2 = 5 = 1+4 = 1+3·2-2

f n = f n-1 +3n-2

3 = 12 = 5+7 = 5+3·3-2

f 4 = 22 = 12+10 = 12+3·4-2

f 5 = 35 = 22+13 = 22+3·5-2

Первое число – 1. Второе – 6. Фигура выглядит как шестиугольник со стороной в 2 точки. На третьем шаге уже 15 точек выстраиваются в виде шестиугольника со стороной 3 точки. Выведем рекуррентную формулу:

u n = u n-1 +4n-3

2 = 6=1+4·2-3

u 3 = 15 = 6+4·3-3

u 4 = 28 = 15+4·4-3

u 5 = 45 = 28+4·5-3

Если посмотреть внимательнее, то можно заметить связь между всеми рекуррентными формулами.

Для треугольных чисел: t n = t n -1 + n = t n -1 +1 n -0

Для квадратных чисел: g n = g n -1 +2 n -1

Для пятиугольных чисел: f n = f n -1 +3 n -2

Для шестиугольных чисел: u n = u n -1 +4 n -3

Мы видим, что фигурные числа построены на повторяемости: это хорошо видно на рекуррентных формулах. Можно смело утверждать, что фигурные числа в своей основе имеют фрактальную структуру.

2.3 Нахождение связи между фракталами и литературными произведениями.

Рассмотрим фрактал именно как произведение искусства, причем характеризующееся двумя основными характеристиками: 1) часть его неким образом подобна целому (в идеале, эта последовательность подобий распространяется на бесконечность, хотя никто никогда не видел действительно бесконечной последовательности итераций, строящих снежинку Коха; 2) его восприятие происходит по последовательности вложенных уровней. Заметим, что очарование фрактала как раз и возникает на пути следования по этой завораживающей и головокружительной системе уровней, возвращение с которой не гарантировано.

Как же можно создать бесконечный текст? Этим вопросом задавался герой рассказа Х.-Л.Борхеса «Сад расходящихся тропок»: «…я спрашивал себя, как может книга быть бесконечной. В голову не приходит ничего, кроме цикличного, идущего по кругу тома, тома, в котором последняя страница повторяет первую, что и позволяет ему продолжаться сколько угодно».

Посмотрим, какие еще решения могут существовать.

Самыми простым бесконечным текстом будет текст из бесконечного количества дублирующихся элементов, или куплетов, повторяющейся частью которого является его «хвост» – тот же текст с любым количеством отброшенных начальных куплетов. Схематически такой текст можно изобразить в виде неразветвляющегося дерева или периодической последовательности повторяющихся куплетов. Единица текста – фраза, строфа или рассказ, начинается, развивается и заканчивается, возвращаясь в исходную точку, точку перехода к следующей единице текста, повторяющей исходную. Такой текст можно уподобить бесконечной периодической дроби: 0,33333…, ее еще можно записать как 0,(3). Видно, что отсечение «головы» – любого количества начальных единиц, ничего не изменит, и «хвост» будет в точности совпадать с целым текстом.

Неразветвляющееся бесконечное дерево тождественно самому себе с любого куплета.

Среди таких бесконечных произведений – стихи для детей или народные песенки, как, например, стишок о попе и его собаке из русской народной поэзии, или стихотворение М.Яснова «Чучело-мяучело», повествующее о котенке, который поет о котенке, который поет о котенке. Или, самое короткое: «У попа был двор, на дворе был кол, на колу мочало – не начать ли сказочку сначала?...У попа был двор...»

Еду я и вижу мост, под мостом ворона мокнет,
Взял ворону я за хвост, положил ее на мост, пусть ворона сохнет.
Еду я и вижу мост, на мосту ворона сохнет,
Взял ворону я за хвост, положил ее под мост, пусть ворона мокнет…

В отличие от бесконечных куплетов, фрагменты фракталов Мандельброта все же не тождественны, а подобны друг другу, и это качество и придает им завораживающее очарование. Поэтому в изучении литературных фракталов встает задача поиска подобности, сходства (а не тождественности) элементов текста.

В случае бесконечных куплетов замена тождества на подобие была осуществлена различными способами. Можно привести, по крайней мере, две возможности: 1) создание стихов с вариациями, 2) тексты с наращениями.

Стихи с вариациями – это, например, запущенная в оборот С.Никитиным и ставшая народной песенка «У Пегги жил веселый гусь», в которой варьируются Пеггины приживалы и их привычки.

У Пегги жил веселый гусь,

Он знал все песни наизусть.

Ах, до чего веселый гусь!

Спляшем, Пегги, спляшем!

У Пегги жил смешной щенок,

Он танцевать под дудку мог.

Ах, до чего смешной щенок!

Спляшем, Пегги, спляшем!

У Пегги стройный жил жираф,

Он элегантен был, как шкаф,

Вот это стройный был жираф!

Спляшем, Пегги, спляшем!

У Пегги жил смешной пингвин,

Он различал все марки вин,

Ах, до чего смешной пингвин!

Спляшем, Пегги, спляшем!

У Пегги жил веселый слон,

Он скушал синхрофазотрон,

Ну до чего веселый слон,

Спляшем, Пегги, спляшем!..

Сочинено уже если не бесконечное, то довольно большое число куплетов: утверждают, что кассета «Песни нашего века» вышла с двумястами вариациями песенки, и, вероятно, число это продолжает расти. Бесконечность тождественных куплетов здесь пытаются преодолеть за счет сотворчества, детского, наивного и забавного.

Еще одна возможность кроется в текстах с «приращениями». Таковы известные нам с детства сказки о репке или о колобке, в каждом эпизоде которых количество персонажей увеличивается:

«Теремок»


Муха-горюха.
Муха-горюха, комар-пискун.
Муха-горюха, комар-пискун, мышка-норушка.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик-попрыгайчик.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик- попрыгайчик, лисичка-сестричка.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик- попрыгайчик, лисичка-сестричка, волчище-серый хвостище.
Муха-горюха, комар-пискун, мышка-норушка, лягушка-квакушка, зайчик- попрыгайчик, лисичка-сестричка, волчище-серый хвостище, медведь-всех давишь.

Такие тексты имеют структуру «елочки» или «матрешки», у которых каждый уровень повторяет предыдущий с увеличением размера изображения.

Поэтическое произведение, в котором каждый куплет может быть прочитан независимо, как отдельный «этаж» елочки, а также вместе, составляя текст, развивающийся от Одного до Другого, и далее к Природе, Миру и Вселенной, создан Т.Васильевой:

Теперь, я думаю, можно сделать вывод, что существуют литературные произведения, обладающие фрактальной структурой.

3. Практическое применение фракталов

Фракталы находят все большее и большее применение в науке. Основная причина этого заключается в том, что они описывают реальный мир иногда даже лучше, чем традиционная физика или математика. Вот несколько примеров:

КОМПЬЮТЕРНЫЕ СИСТЕМЫ

Наиболее полезным использованием фракталов в компьютерной науке является фрактальное сжатие данных. В основе этого вида сжатия лежит тот факт, что реальный мир хорошо описывается фрактальной геометрией. При этом, картинки сжимаются гораздо лучше, чем это делается обычными методами (такими как jpeg или gif). Другое преимущество фрактального сжатия в том, что при увеличении картинки, не наблюдается эффекта пикселизации (увеличения размеров точек до размеров, искажающих изображение). При фрактальном же сжатии, после увеличения, картинка часто выглядит даже лучше, чем до него.

МЕХАНИКА ЖИДКОСТЕЙ

1. Изучение турбулентности в потоках очень хорошо подстраивается под фракталы. Турбулентные потоки хаотичны и поэтому их сложно точно смоделировать. И здесь помогает переход к из фрактальному представлению. Что сильно облегчает работу инженерам и физикам, позволяя им лучше понять динамику сложных потоков.

2. При помощи фракталов также можно смоделировать языки пламени.

3. Пористые материалы хорошо представляются во фрактальной форме в связи с тем, что они имеют очень сложную геометрию. Это используется в нефтяной науке.

ТЕЛЕКОММУНИКАЦИИ

Для передачи данных на расстояния используются антенны, имеющие фрактальные формы, что сильно уменьшает их размеры и вес.

ФИЗИКА ПОВЕРХНОСТЕЙ

Фракталы используются для описания кривизны поверхностей. Неровная поверхность характеризуется комбинацией из двух разных фракталов.

МЕДИЦИНА

1.Биосенсорные взаимодействия.

2.Биение сердца

БИОЛОГИЯ

Моделирование хаотических процессов, в частности при описании моделей популяций.

4. Заключение

4.1 Результаты исследования

В моей работе приведены далеко не все области человеческих знаний, где нашла свое применение теория фракталов. Хочу только сказать, что со времени возникновения теории прошло не более трети века, но за это время фракталы для многих исследователей стали внезапным ярким светом в ночи, которые озарил неведомые доселе факты и закономерности в конкретных областях данных. С помощью теории фракталов стали объяснять эволюцию галактик и развитие клетки, возникновение гор и образование облаков, движение цен на бирже и развитие общества и семьи. Может быть, в первое время данное увлечение фракталами было даже слишком бурным и попытки все объяснять с помощью теории фракталов были неоправданными. Но, без сомнения, данная теория имеет право на существование.

В своей работе я собрала интересную информацию о фракталах, их видах, размерности и свойствах, об их применении, а также о треугольнике Паскаля, фигурных числах, золотом сечении, о фрактальных литературных произведениях и многом другом.

В процессе исследования была проделана следующая работа:

Проанализирована и проработана литература по теме исследования.

    Рассмотрены и изучены различные виды фракталов.

    Собрана коллекция фрактальных образов для первичного ознакомления с миром фракталов.

    Установлены взаимосвязи между фракталами и треугольником Паскаля, литературными произведениями, фигурными числами и золотым сечением.

Я убедилась, что тем, кто занимается фракталами, открывается прекрасный, удивительный мир, в котором царят математика, природа и искусство. Я думаю, что после знакомства с моей работой, вы, как и я, убедитесь в том, что математика прекрасна и удивительна.

5.Библиография:

1. Божокин С.В., Паршин Д.А. Фракталы и мультифракталы. Ижевск: НИЦ «Регулярная и хаотическая динамика», 2001. – 128с.

2. Волошинов А. В. Математика и искусство: Кн. для тех, кто не только любит математику и искусство, но и желает задуматься о природе прекрасного и красоте науки. 2-е изд., дораб. и доп. – М.: Просвещение, 2000. - 399с.

3. Гарднер М. А. Нескучная математика. Калейдоскоп головоломок. М.: АСТ: Астрель, 2008. – 288с.: ил.

4. Гринченко В. Т., Мацыпура В.Т., Снарский А.А. Введение в нелинейную динамику. Хаос и фрактал
. Издательство: ЛКИ, 2007 г. 264 стр.

5. Литинский Г.И. Функции и графики. 2-ое издание. – М.: Аслан, 1996. – 208с.: ил.

6. Морозов А. Д. Введение в теорию фракталов. Издательство: Издательство Нижегородского университета, 2004 г.

7. Ричард М. Кроновер Фракталы и хаос в динамических системах Introduction to Fractals and Chaos.
Издательство: Техносфера, 2006 г. 488 стр.

8. окружающего нас мира как сплошные тела с четко обозначенными... Найти программу формирования и просмотра фракталов , исследовать и построить несколько фракталов . Литература 1.А.И.Азевич «Двадцать...

Мы уже писали о том, как абстрактная математическая теория хаоса нашла применения в самых разных науках – от физики до экономики и политологии. Сейчас мы приведем еще один подобный пример – теорию фракталов. Строгого определения понятия «фрактал» нет даже в математике. Что-то там такое они, конечно, говорят. Но «простому человеку» этого не понять. Как вам, например, такая фраза: «Фрактал – это множество, обладающее дробной хаусдорфовой размерностью, которая больше топологической». Тем не менее, они, фракталы, окружают нас и помогают понять многие явления из разных сфер жизни.

С чего все началось

Фракталами долго никто кроме профессиональных математиков не интересовался. До появления компьютеров и соответствующего софта. Все изменилось в 1982 году, когда в свет вышла книга Бенуа Мандельброта «Фрактальная геометрия природы». Эта книга стала бестселлером, не столько по причине простого и понятного изложения материала (хотя это утверждение весьма относительно – человек, не имеющий профессионального математического образования в ней ничего не поймет), сколько из-за приведенных компьютерных иллюстраций фракталов, которые, действительно, завораживают. Давайте посмотрим на эти картинки. Они, правда, того стоят.

И таких картинок множество. Но какое все это великолепие имеет отношение к нашей реальной жизни и к тому, что окружает нас в природе и повседневном мире? Оказывается, самое прямое.

Но сначала скажем несколько слов о самих фракталах, как геометрических объектах.

Что такое фрактал, если говорить по-простому

Первое. Как они, фракталы, строятся. Это довольно сложная процедура, использующая специальные преобразования на комплексной плоскости (что это такое – знать не надо). Важно только то, что эти преобразования являются повторяющимися (происходят, как говорят в математике, итерациями). Вот в результате этого повторения и возникают фракталы (те, которые вы видели выше).

Второе. Фрактал является самоподобной (точно или приблизительно) структурой. Это значит следующее. Если вы поднесете к любой из представленных картинок микроскоп, увеличивающий изображение, например, в 100 раз, и посмотрите на фрагмент попавшего в окуляр кусочка фрактала, то вы обнаружите, что он идентичен исходному изображению. Если вы возьмете более сильный микроскоп, увеличивающий изображение в 1000 раз, то вы обнаружите, что кусочек попавшего в окуляр фрагмента предыдущего изображения имеет ту же самую или очень похожую структуру.

Из этого следует крайне важный для последующего вывод. Фрактал имеет крайне сложную структуру, которая повторяется на разных масштабах. Но чем больше мы забираемся вглубь его устройства, тем сложнее он становится в целом. И количественные оценки свойств первоначальной картинки могут начинать меняться.

Вот теперь мы оставим абстрактную математику и перейдем к окружающим нас вещам – таким, казалось бы, простым и понятным.

Фрактальные объекты в природе

Береговая линия

Представьте себе, что вы с околоземной орбиты фотографируете некий остров, например Британию. Вы получите такое же изображение, как на географической карте. Плавное очертание берегов, со всех сторон – море.

Узнать протяженность береговой линии очень просто. Возьмите обычную нитку и аккуратно выложите ее по границам острова. Потом, измеряйте ее длину в сантиметрах и, полученное число, умножайте на масштаб карты – в одном сантиметре сколько-то там километров. Вот и результат.

А теперь следующий эксперимент. Вы летите на самолете на высоте птичьего полета и фотографируете береговую линию. Получается картина, похожая на фотографии со спутника. Но эта береговая линия оказывается изрезанной. На ваших снимках появляются небольшие бухты, заливы, выступающие в море фрагменты суши. Все это соответствует действительности, но не могло быть увиденным со спутника. Структура береговой линии усложняется.

Допустим, прилетев домой, вы на основании своих снимков сделали подробную карту береговой линии. И решили измерить ее длину с помощью той самой нитки, выложив ее строго по полученным вами новым данным. Новое значение длины береговой линии превысит старое. И существенно. Интуитивно это понятно. Ведь теперь ваша нитка должна огибать берега всех заливов и бухт, а не просто проходить по побережью.

Заметьте. Мы уменьшили масштаб, и все стало намного сложнее и запутаннее. Как у фракталов.

А теперь еще одна итерация. Вы идете по тому же побережью пешком. И фиксируете рельеф береговой линии. Выясняется, что берега заливов и бухт, которые вы снимали с самолета, вовсе не такие гладкие и простые, как вам казалось на ваших снимках. Они имеют сложную структуру. И, таким образом, если вы нанесете на карту вот эту «пешеходную» береговую линию, длина ее вырастет еще больше.

Да, бесконечностей в природе не бывает. Но совершенно понятно, что береговая линия – это типичный фрактал. Она остается себе подобной, но ее структура становится все более и более сложной при ближайшем рассмотрении (вспомните про пример с микроскопом).

Это воистину удивительное явление. Мы привыкли к тому, что любой ограниченный по размерам геометрический объект на плоскости (квадрат, треугольник, окружность) имеет фиксированную и конечную длину своих границ. А здесь все по-другому. Длина береговой линии в пределе оказывается бесконечной.

Дерево

А вот представим себе дерево. Обычное дерево. Какую-нибудь развесистую липу. Посмотрим на ее ствол. Около корня. Он представляет собой такой слегка деформированный цилиндр. Т.е. имеет очень простую форму.

Поднимем глаза выше. От ствола начинают выходить ветви. Каждая ветвь, в своем начале, имеет такую же структуру, как ствол – цилиндрическую, с точки зрения геометрии. Но структура всего дерева изменилась. Она стала намного более сложной.

А теперь посмотрим на эти ветви. От них отходят более мелкие ветки. У своего основания они имеют ту же слегка деформированную цилиндрическую форму. Как тот же ствол. А потом и от них отходят куда более мелкие ветки. И так далее.

Дерево воспроизводит само себя, на каждом уровне. При этом его структура постоянно усложняется, но остается себе подобной. Это ли не фрактал?

Кровообращение

А вот кровеносная система человека. Она тоже имеет фрактальную структуру. Есть артерии и вены. По одним из них кровь подходит к сердцу (вены), по другим поступает от него (артерии). А далее, кровеносная система начинает напоминать то самое дерево, о котором мы говорили выше. Сосуды, сохраняя свое строение, становятся все более тонкими и разветвленными. Они проникают в самые отдаленные участки нашего тела, доносят кислород и другие жизненно важные компоненты до каждой клетки. Это типичная фрактальная структура, которая воспроизводит саму себя все в более и более мелких масштабах.

Стоки реки

«Из далека долго течет река Волга». На географической карте это такая голубая извилистая линия. Ну, притоки крупные обозначены. Ока, Кама. А если мы уменьшим масштаб? Выяснится, что притоков этих намного больше. Не только у самой Волги, но и у Оки и Камы. А у них есть и свои притоки, только более мелкие. А у тех – свои. Возникает структура, удивительно похожая на кровеносную систему человека. И опять возникает вопрос. Какова протяженность всей этой водной системы? Если измерять протяженность только основного русла – все понятно. В любом учебнике можно прочитать. А если все измерять? Опять в пределе бесконечность получается.

Наша Вселенная

Конечно, в масштабах миллиардов световых лет, она, Вселенная, устроена однородно. Но давайте посмотрим на нее поближе. И тогда мы увидим, что никакой однородности в ней нет. Где-то расположены галактики (звездные скопления), где-то – пустота. Почему? Почему распределение материи подчиняется иррегулярным иерархическим законам. А что происходит внутри галактик (еще одно уменьшение масштаба). Где-то звезд больше, где-то меньше. Где-то существуют планетные системы, как в нашей Солнечной, а где-то – нет.

Не проявляется ли здесь фрактальная сущность мира? Сейчас, конечно, существует огромный разрыв между общей теорией относительности, которая объясняет возникновение нашей Вселенной и ее устройством, и фрактальной математикой. Но кто знает? Возможно, это все когда-то будет приведено к «общему знаменателю», и мы посмотрим на окружающий нас космос совсем другими глазами.

К практическим делам

Подобных примеров можно приводить много. Но давайте вернемся к более прозаическим вещам. Вот, например, экономика. Казалось бы, причем здесь фракталы. Оказывается, очень даже причем. Пример тому – фондовые рынки.

Практика показывает, что экономические процессы носят зачастую хаотичный, непредсказуемый характер. Существовавшие до сегодняшнего дня математические модели, которые пытались эти процессы описывать, не учитывали одного очень важного фактора – способность рынка к самоорганизации.

Вот тут на помощь и приходит теория фракталов, которые имеют свойства «самоорганизации», воспроизводя себя на уровне разных масштабов. Конечно, фрактал является чисто математическим объектом. И в природе, да и в экономике, их не существует. Но есть понятие фрактальных явлений. Они являются фракталами только в статистическом смысле. Тем не менее симбиоз фрактальной математики и статистики позволяет получить достаточно точные и адекватные прогнозы. Особенно эффективным этот подход оказывается при анализе фондовых рынков. И это не «придумки» математиков. Экспертные данные показывают, что многие участники фондовых рынков тратят немалые деньги на оплату специалистов в области фрактальной математики.

Что же дает теория фракталов? Она постулирует общую, глобальную зависимость ценообразования от того, что было в прошлом. Конечно, локально процесс ценообразования случаен. Но случайные скачки и падения цен, которые могут происходить сиюминутно, имеют особенность собираться в кластеры. Которые воспроизводятся на больших масштабах времени. Поэтому, анализируя то, что было когда-то, мы можем прогнозировать, как долго продлиться та или иная тенденция развития рынка (рост или падение).

Таким образом, в глобальном масштабе тот или иной рынок «воспроизводит» сам себя. Допуская случайные флуктуации, вызванные массой внешних факторов, в каждый конкретный момент времени. Но глобальные тенденции сохраняются.

Заключение

Почему мир устроен по фрактальному принципу? Ответ, возможно, состоит в том, что фракталы, как математическая модель, обладают свойством самоорганизации и самоподобия. При этом каждая их форма (см. приведенные в начале статьи картинки) сколь угодно сложна, но живет своей собственной жизнью, развивая себе подобные формы. Не так ли и наш мир устроен?

А вот общество. Появляется какая-нибудь идея. Сначала довольно абстрактная. А потом «проникает в массы». Да как-то трансформируется. Но в целом сохраняется. И превращается на уровне большинства людей в целеуказание жизненного пути. Вот тот же СССР. Принял очередной съезд КПСС очередные эпохальные решения, и пошло все это вниз. В более и более мелкие масштабы. Горкомы, парткомы. И так до каждого человека. Повторяющаяся структура.

Конечно, теория фракталов не позволяет нам прогнозировать будущие события. А это вряд ли и возможно. Но на многое то, что нас окружает, и что происходит в нашей повседневной жизни, позволяет смотреть совсем другими глазами. Осознанными.