Маркеры дисфункции эндотелия. Клиническое значение эндотелиальной дисфункции

В настоящее время подавляющее большинство патологов считает, что пусковым моментом для развития атеросклероза сосудов является повреждение (десквамация) сосудистого эндотелия. Основные повреждающие факторы представлены на рисунке.

Основные этиологические факторы, вызывающие повреждение эндотелия сосудов

Гипертензия является мощным фактором повреждения эндотелия сосудов, особенно в местах их бифуркации. Это явление хорошо иллюстрирует приводимый ниже рисунок.

Роль гипертензии в повреждении сосудистого эндотелия

В участке «а» давление крови наибольшее, напряжение сдвига максимальное. Именно здесь и происходит разрушение эндотелиоцитов и их десквамация (слущивание) с поверхности сосуда. В участке «б» давление крови наименьшее. Повреждение эндотелия на этих участках не происходит. Как известно, гипертоническая болезнь и атеросклероз - это два патологических процесса, тесно связанные между собою, или, точнее, способствующие развитию друг друга.

Связь между курением и атеросклерозом известна давно. Помимо приведенных на рисунке проатеросклеротических факторов, связанных с курением, следует иметь в виду, что у курильщиков усиленно продуцируются многие цитокины - активаторы воспаления. Таким образом, косвенно курение способствует поддержанию воспалительного процесса в местах повреждения сосудистого эндотелия.

О возможном влиянии на повреждение эндотелия и развитие атеросклероза некоторых инфекционных агентов было уже сказано. Стоит добавить, что антигены микробов и вирусов, внедрившиеся в эндотелиоциты и гладкомышечные клетки, способствуют активации соответствующих клеточных и гуморальных факторов иммунитета, что, в свою очередь, провоцирует и поддерживает воспалительный процесс.

В разделе лекции, посвященном истории изучения атеросклероза была уже описана роль гомоцистеина (точнее, гипергомоцистеинемии) в развитии атеросклероза. Основным повреждающим фактором гипергомоцистеинемии является значительное увеличение образования свободных радикалов. По отношению к сосудистому эндотелию этот фактор, безусловно, является повреждающим.

Вы также можете найти интересующую информацию в научном поисковике Otvety.Online. Воспользуйтесь формой поиска:

Еще по теме Повреждение сосудистого эндотелия - пусковой механизм развития атеросклероза:

  1. 1. Неспецифические формы повреждения клетки, их виды и механизмы развития.
  2. Тромбофилии, связанные с повышением активности тромбоцитов и повреждением сосудистой стенки.
  3. Из истории изучения атеросклероза. Теории атеросклероза
  4. Механизмы кровоточивости, связанные с тромбоцитами (тромбоцитопении и тромбоцитопатии) и сосудистой стенкой.

Catad_tema Артериальная гипертензия - статьи

Дисфункция эндотелия как новая концепция профилактики и лечения сердечно-сосудистых заболеваний

Конец XX века ознаменовался не только интенсивным развитием фундаментальных понятий патогенеза артериальной гипертонии (АГ), но и критическим пересмотром многих представлений о причинах, механизмах развития и лечении этого заболевания.

В настоящее время АГ рассматривается как сложнейший комплекс нейро-гуморальных, гемодинамических и метаболических факторов, взаимоотношение которых трансформируется во времени, что определяет не только возможность перехода одного варианта течения АГ в другой у одного и того же больного, но и заведомую упрощенность представлений о монотерапевтическом подходе, и даже о применении как минимум двух лекарственных препаратов с конкретным механизмом действия.

Так называемая "мозаичная" теория Пейджа, будучи отражением сложившегося традиционного концептуального подхода к изучению АГ, ставившего в основу АГ частные нарушения механизмов регуляции АД, может быть отчасти аргументацией против применения одного гипотензивного средства для лечения АГ. При этом, редко принимается во внимание такой немаловажный факт, что в своей стабильной фазе АГ протекает при нормальной или даже сниженной активности большинства систем, регулирующих АД .

В настоящее время серьезное внимание во взглядах на АГ стало уделяться метаболическим факторам, число которых, однако, увеличивается по мере накопления знаний и возможностей лабораторной диагностики (глюкоза, липопротеиды, С-реактивный белок, тканевой активатор плазминогена, инсулин, гомоцистеин и другие).

Возможности суточного мониторирования АД, пик внедрения которого в клиническую практику пришелся на 80-е годы, показали существенный патологический вклад нарушенной суточной вариабельности АД и особенностей суточных ритмов АД, в частности, выраженного предутреннего подъема, высоких суточных градиентов АД и отсутствия ночного снижения АД, что во многом связывалось с колебаниями сосудистого тонуса.

Тем не менее, к началу наступившего века отчетливо выкристаллизовалось направление, которое во многом включило в себя накопленный опыт фундаментальных разработок с одной стороны, и сосредоточило внимание клиницистов на новом объекте - эндотелии - как органе-мишени АГ, первым подвергающимся контакту с биологически активными веществами и наиболее рано повреждающимся при АГ.

С другой же стороны, эндотелий реализует многие звенья патогенеза АГ, непосредственно участвуя в повышении АД.

Роль эндотелия в сердечно-сосудистой патологии

В привычном человеческому сознанию виде эндотелий представляет собой орган весом 1,5-1,8 кг (сопоставимо с весом, например, печени) или непрерывный монослой эндотелиальных клеток длиной 7 км, или занимающий площадь футбольного поля, либо шести теннисных кортов. Без этих пространственных аналогий было бы трудно представить, что тонкая полупроницаемая мембрана, отделяющая кровоток от глубинных cтруктур сосуда, непрерывно вырабатывает огромное количество важнейших биологически активных веществ, являясь таким образом гигантским паракринным органом, распределенным по всей территории человеческого организма.

Барьерная роль эндотелия сосудов как активного органа определяет его главную роль в организме человека: поддержание гомеостаза путем регуляции равновесного состояния противоположных процессов - а) тонуса сосудов (вазодилатация/вазоконстрикция); б) анатомического строения сосудов (синтез/ингибирование факторов пролиферации); в) гемостаза (синтез и ингибирование факторов фибринолиза и агрегации тромбоцитов); г) местного воспаления (выработка про- и противовоспалительных факторов) .

Необходимо заметить, что каждая из четырех функций эндотелия, определяющая тромбогенность сосудистой стенки, воспалительные изменения, вазореактивность и стабильность атеросклеротической бляшки, напрямую или косвенно связана с развитием, прогрессированием атеросклероза, АГ и ее осложнений . Действительно недавние исследования показали, что надрывы бляшек, приводящих к инфаркту миокарда, отнюдь не всегда происходят в зоне максимального стенозирования коронарной артерии, напротив, зачастую случаются в местах небольших сужений - менее 50% по данным ангиографии .

Таким образом, изучение роли эндотелия в патогенезе сердечно-сосудистых заболеваний (ССЗ) привело к пониманию, что эндотелий регулирует не только периферический кровоток, но и другие важные функции. Именно поэтому объединяющей стала концепция об эндотелии как о мишени для профилактики и лечения патологических процессов, приводящих или реализующих ССЗ.

Понимание многоплановой роли эндотелия уже на качественно новом уровне вновь приводит к достаточно известной, но хорошо забытой формуле "здоровье человека определяется здоровьем его сосудов".

Фактически, к концу XX века, а именно в 1998 году, после получения Нобелевской Премии в области, медицины Ф. Мурадом, Робертом Фуршготом и Луисом Игнарро, была сформирована теоретическая основа для нового направления фундаментальных и клинических исследований в области АГ и других ССЗ - разработке участия эндотелия в патогенезе АГ и других ССЗ, а также способов эффективной коррекции его дисфункции.

Считается, что медикаментозное или немедикаментозное воздействие на ранних стадиях (предболезнь или ранние стадии болезни) способно отсрочить ее наступление или предотвратить прогрессирование и осложнения. Ведущая концепция превентивной кардиологии основана на оценке и коррекции так называемых факторов сердечно-сосудистого риска. Объединяющим началом для всех таких факторов является то, что рано или поздно, прямо или косвенно, все они вызывают повреждение сосудистой стенки, и прежде всего, в ее эндотелиальном слое.

Поэтому можно полагать, что одновременно они же являются факторами риска дисфункции эндотелия (ДЭ) как наиболее ранней фазы повреждения сосудистой стенки, атеросклероза и АГ, в частности.

ДЭ - это, прежде всего, дисбаланс между продукцией вазодилатирующих, ангиопротективных, антипролиферативных факторов с одной стороны (NO, простациклин, тканевой активатор плазминогена, С-тип натрийуретического пептида, эндотелиального гиперполяризующего фактора) и вазоконстриктивных, протромботических, пролиферативных факторов, с другой стороны (эндотелин, супероксид-анион, тромбоксан А2, ингибитор тканевого активатора плазминогена) . При этом, механизм их окончательной реализации неясен.

Очевидно одно - рано или поздно, факторы сердечно-сосудистого риска нарушают тонкий баланс между важнейшими функциями эндотелия, что в конечном итоге, реализуется в прогрессировании атеросклероза и сердечно-сосудистых инцидентах. Поэтому основой одного из нового клинического направлений стал тезис о необходимости коррекции дисфункции эндотелия (т.е. нормализации функции эндотелия) как показателе адекватности антигипертензивной терапии. Эволюция задач гипотензивной терапии конкретизировалась не только до необходимости нормализации уровня АД, но и нормализации функции эндотелия. Фактически это означает, что снижение АД без коррекции дисфункции эндотелия (ДЭ) не может считаться успешно решенной клинической задачей.

Данный вывод является принципиальным, еще и потому, что главные факторы риска атеросклероза, такие как, гиперхолестеринемия , АГ , сахарный диабет , курение , гипергомоцистеинемия сопровождаются нарушением эндотелий-зависимой вазодилатации - как в коронарном, так и в периферическом кровотоке. И хотя вклад каждого из этих факторов в развитие атеросклероза до конца не определен, это пока не меняет сложившихся представлений.

Среди изобилия биологически активных веществ, вырабатываемых эндотелием, важнейшим является оксид азота - NO. Открытие ключевой роли NO в сердечно-сосудистом гомеостазе было удостоено Нобелевской премии в 1998 году. Сегодня - это самая изучаемая молекула, вовлеченная в патогенез АГ и ССЗ в целом. Достаточно сказать, что нарушенное взаимоотношение ангиотензина-II и NO вполне способно определять развитие АГ .

Нормально функционирующий эндотелий отличает непрерывная базальная выработка NO с помощью эндотелиальной NO-синтетазы (eNOS) из L-аргинина. Это необходимо для поддержания нормального базального тонуса сосудов . В то же время, NO обладает ангиопротективными свойствами, подавляя пролиферацию гладкой мускулатуры сосудов и моноцитов , и предотвращая тем самым патологическую перестройку сосудистой стенки (ремоделирование), прогрессирование атеросклероза.

NO обладает антиоксидантным действием, ингибирует агрегацию и адгезию тромбоцитов, эндотелиально-лейкоцитарные взаимодействия и миграцию моноцитов . Таким образом, NO является универсальным ключевым ангиопротективным фактором.

При хронических ССЗ, как правило, наблюдается снижение синтеза NO. Причин тому достаточно много. Если суммировать все, то очевидно - снижение синтеза NO обычно связано с нарушением экспрессии или транскрипции eNOS , в том числе метаболического происхождения, снижением доступности запасов L-аргинина для эндотелиальной NOS , ускоренным метаболизмом NO (при повышенном образовании свободных радикалов ) или их комбинацией.

При всей многогранности эффектов NO Dzau et Gibbons удалось схематически сформулировать основные клинические последствия хронического дефицита NO в эндотелии сосудов , показав тем самым, на модели ишемичeской болезни сердца реальные следствия ДЭ и обратив внимание на исключительную важность ее коррекции на возможно ранних этапах.

Из схемы 1. следует важный вывод: NO играет ключевую ангиопротективную роль еще на ранних стадиях атеросклероза.

Схема 1. МЕХАНИЗМЫ ЭНДОТЕЛИАЛЬНОЙ ДИСФУНКЦИИ
ПРИ СЕРДЕЧНО-СОСУДИСТЫХ ЗАБОЛЕВАНИЯХ

Так, доказано, что NO уменьшает адгезию лейкоцитов к эндотелию , тормозит трансэндотелиальную миграцию моноцитов , поддерживает нормальную проницаемость эндотелия для липопротеидов и моноцитов , ингибирует окисление ЛПНП в субэндотелии . NO способен тормозить пролиферацию и миграцию гладко-мышечных клеток сосуда , а также синтез ими коллагена . Назначение ингибиторов NOS после сосудистой баллонной ангиопластики или в условиях гиперхолестеринемии приводило к гиперплазии интимы , и напротив, применение L-apгинина или доноров NO уменьшало выраженность индуцированной гиперплазии .

NO обладает антитромботическими свойствами, ингибируя адгeзию тромбоцитов , их активацию и агрегацию , активируя тканевой активатор плазминогена . Появляются убедительные основания полагать, что NO - важный фактор, модулирующий тромботический ответ на надрыв бляшки .

И безусловно, NO является мощным вазодилататором, модулирующим тонус сосудов, приводя к вазорелаксации опосредованно через повышение уровня цГМФ , поддерживая базальный тонус сосудов и осуществляя вазодилатацию в ответ на различные стимулы - напряжение сдвига крови , ацетилхолин , серотонин .

Нарушенная NO - зависимая вазодилатация и парадоксальная вазоконстрикция эпикардиальных сосудов приобретает особое клиническое значение для развития ишемии миокарда в условиях умственного и физического стресса, или холодовой нагрузки . А учитывая, что перфузия миокарда регулируется резистивными коронарными артериями , тонус которых зависит от вазодилататорной способности коронарного эндотелия , даже при отсутствии атеросклеротическнх бляшек, дефицит NO в коронарном эндотелии способен привести к миокардиальной ишемии .

Оценка функции эндотелия

Снижение синтеза NO является главным в развитии ДЭ. Поэтому, казалось бы, нет ничего более простого, чем измерение NO в качестве маркера функции эндотелия. Однако, нестабильность и короткий период жизни молекулы резко ограничивают применение этого подхода. Изучение же стабильных метаболитов NO в плазме или моче (нитратов и нитритов) не может рутинно применяться в клинике в связи с чрезвычайно высокими требованиями к подготовке больного к исследованию.

Кроме того, изучение одних метаболитов оксида азота вряд ли позволит получить ценную информацию о состоянии нитрат-продуцирующих систем. Поэтому, при невозможности одновременного изучения активности NO-синтетаз, наряду с тщательно контролируемым процессом подготовки пациента, наиболее реальным способом оценки состояния эндотелия in vivo является исследование эндотелий-зависимой вазодилатации плечевой артерии с помощью инфузии ацетилхолина или серотонина, либо с использованием венозно-окклюзионной плетизмографии, а также с помощью новейших методик - пробы с реактивной гиперемией и применением ультразвука высокого разрешения.

Кроме указанных методик, в качестве потенциальных маркеров ДЭ рассматривается несколько субстанций, продукция которых может отражать функцию эндотелия: тканевой активатор плазминогена и его ингибитор, тромбомодулин, фактор Виллебрандта .

Терапевтические стратегии

Оценка ДЭ как нарушения эндотелий-зависимой вазодилатации вследствие снижения синтеза NO, в свою очередь, требует пересмотра терапевтических стратегий воздействия на эндотелий с целью профилактики или уменьшения повреждений сосудистой стенки.

Уже показано, что улучшение функции эндотелия предшествует регрессу структурных атеросклеротических изменений . Влияние на вредные привычки - отказ от курения - приводит к улучшению функции эндотелия . Жирная еда способствует ухудшению функции эндотелия у практически здоровых лиц . Прием антиоксидантов (витамин Е, С) способствует коррекции функции эндотелия и тормозит утолщение интимы сонной артерии . Физические нагрузки улучшают состояние эндотелия даже при сердечной недостаточности .

Улучшение контроля гликемии у больных с сахарным диабетом само по себе уже является фактором коррекции ДЭ , а нормализация липидного профиля у пациентов с гиперхолестеринемией приводила к нормализации функции эндотелия , что значительно уменьшало частоту острых сердечно-сосудистых инцидентов .

При этом, такое "специфическое" воздействие, направленное на улучшение синтеза NO, у больных с ИБС или гиперхолестеринемией, как например, заместительная терапия L-аргинином - субстрата NOS - синтетазы, - также приводит к коррекции ДЭ . Аналогичные данные получены и при применении важнейшего кофактора NO-синтетазы - тетрагидробиоптерина - у больных с гиперхолестеринемией .

С целью снижения деградации NO применение витамина С в качестве антиоксиданта также улучшало функцию эндотелия у больных с гиперхолестеринемией , сахарным диабетом , курением , артериальной гипертонией , ИБС . Эти данные свидетельствуют о реальной возможности воздействовать на систему синтеза NO вне зависимости от причин, вызвавших его дефицит.

В настоящее время практически все группы лекарственных препаратов подвергаются проверке на предмет их активности в отношении системы синтеза NO. Косвенное влияние на ДЭ при ИБС , уже показано для ингибиторов АПФ, улучшающих функцию эндотелия опосредованно через косвенное увеличение синтеза и снижения деградации NO .

Позитивные результаты воздействия на эндотелий были получены также при клинических испытаниях антагонистов кальция , однако, механизм этого воздействия неясен.

Новым направлением развития фармацевтики, по-видимому, следует считать создание особого класса эффективных лекарственных препаратов, напрямую регулирующих синтез эндотелиальиого NO и тем самым, напрямую улучшающих функцию эндотелия.

В заключение, хотелось бы внопь подчеркнуть, что нарушения сосудистого тонуса и сердечно-сосудистое ремоделирование приводят к поражению органов - мишеней и осложнениям АГ. Становится очевидным, что биологически активные субстанции, регулирующие сосудистый тонус, одновременно модулируют и ряд важнейших клеточных процессов, таких как пролиферация и рост гладкой мускулатуры сосудов, рост мезангинальных структур, состояние экстрацеллюлярного матрикса , определяя тем самым скорость прогрессирования АГ и ее осложнений. Дисфункция эндотелия, как наиболее ранняя фаза повреждения сосуда, связана прежде всегo, с дефицитом синтеза NO - важнейшего фактора-регулятора сосудистого тонуса, но еще более важного фактора, от которого зависят структурные изменения сосудистой стенки .

Поэтому коррекция ДЭ при АГ и атеросклерозе должна быть рутинной и обязательной частью терапевтических и профилактических программ, а также жестким критерием оценки их эффективности.

Литература

1. Ю.В. Постнов. К истокам первичной гипертензии: подход с позиций биоэнергетики. Кардиология, 1998, N 12, С. 11-48.
2. Furchgott R.F., Zawadszki J.V. The obligatoryrole of endotnelial cells in the relazation of arterial smooth muscle by acetylcholine. Nature. 1980: 288: 373-376.
3. Vane J.R., Anggard E.E., Batting R.M. Regulatory functions of the vascular endotnelium. New England Journal of Medicine, 1990: 323: 27-36.
4. Hahn A.W., Resink T.J., Scott-Burden T. et al. Stimulation of endothelin mRNA and secretion in rat vascular smooth muscle cells: a novel autocrine function. Cell Regulation. 1990; 1: 649-659.
5. Lusher T.F., Barton M. Biology of the endothelium. Clin. Cardiol, 1997; 10 (suppl 11), II - 3-II-10.
6. Vaughan D.E., Rouleau J-L., Ridker P.M. et al. Effects of ramipril on plasma fibrinolytic balance in patients with acute anterior myocardial infarction. Circulation, 1997; 96: 442-447.
7. Cooke J.P, Tsao P.S. Is NO an endogenous antiathero-genic molecule? Arterioscler. Thromb. 1994; 14: 653-655.
8. Davies M.J., Thomas А.С. Plaque fissuring - the cause of acute myocardial infarction, sudden ischemic death, and creshendo angina. Brit. Heart Journ., 1985: 53: 363-373.
9. Fuster V., Lewis A. Mechanisms leading to myocardial infarction: Insights from studies of vascular biology. Circulation, 1994: 90: 2126-2146.
10. Falk E., Shah PK, Faster V. Coronary plaque disruption. Circulation, 1995; 92: 657-671.
11. Ambrose JA, Tannenhaum MA, Alexopoulos D et al. Angiographic progression of coronary artery disease ana the development of myocardial infarction. J. Amer. Coll. Cardiol. 1988; 92: 657-671.
12. Hacket D., Davies G., Maseri A. Pre-existing coronary stenosis in patients with first myocardial infarction are not necessary severe. Europ. Heart J. 1988, 9: 1317-1323.
13. Little WC, Constantinescu M., Applegate RG et al. Can coronary angiography predict the site of subsequent myocardial infarction in patients with mils-to-moderatecoronary disease? Circulation 1988: 78: 1157-1166.
14. Giroud D., Li JM, Urban P, Meier B, Rutishauer W. Relation of the site of acute myocardial infarction to the most severe coronary arterial stenosis at prior angiography. Amer. J. Cardiol. 1992; 69: 729-732.
15. Furchgott RF, Vanhoutte PM. Endothelium-derived relaxing and contracting factors. FASEB J. 1989; 3: 2007-2018.
16. Vane JR. Anggard ЕЕ, Batting RM. Regulatory functions of the vascular endothelium. New Engl. J. Med. 1990; 323: 27-36.
17. Vanhoutte PM, Mombouli JV. Vascular endothelium: vasoactive mediators. Prog. Cardiovase. Dis., 1996; 39: 229-238.
18. Stroes ES, Koomans НА, de Bmin TWA, Rabelink TJ. Vascular function in the forearm of hypercholesterolaemic patients off and on lipid-lowering medication. Lancet, 1995; 346: 467-471.
19. Chowienczyk PJ, Watts, GF, Cockroft JR, Ritter JM. Impaired endothelium - dependent vasodilation of forearm resistance vessels in hypercholesterolaemia. Lancet, 1992; 340: 1430-1432.
20. Casino PR, Kilcoyne CM, Quyyumi AA, Hoeg JM, Panza JA. The role ot nitric oxide in endothelium-dependent vasodilation of hypercholesterolemic patients, Circulation, 1993, 88: 2541-2547.
21. Panza JA, Quyyumi AA, Brush JE, Epstein SE. Abnormal endothelium-dependent vascular relaxation in patients with essential hypertension. New Engl. J. Med. 1990; 323: 22-27.
22. Treasure CB, Manoukian SV, Klem JL. et al. Epicardial coronary artery response to acetylclioline are impared in hypertensive patients. Circ. Research 1992; 71: 776-781.
23. Johnstone MT, Creager SL, Scales KM et al. Impaired endothelium-dependent vasodilation in patients with insulin-dependent diabetes mellitus. Circulation, 1993; 88: 2510-2516.
24. Ting HH, Timini FK, Boles KS el al. Vitamin С improves enoothelium-dependent vasodilatiiin in patients with non-insulin-dependent diabetes mellitus. J. Clin. Investig. 1996: 97: 22-28.
25. Zeiher AM, Schachinger V., Minnenf. Long-term cigarette smoking impairs endotheliu in-dependent coronary arterial vasodilator function. Circulation, 1995: 92: 1094-1100.
26. Heitzer Т., Via Herttuala S., Luoma J. et al. Cigarette smoking potentiates endothelial dislunction of forearm resistance vessels in patients with hypercholes-terolemia. Role of oxidized LDL. Circulation. 1996, 93: 1346-1353.
27. Tawakol A., Ornland T, Gerhard M. et al. Hyperhomocysteinemia is associated with impaired enaothcliurn - dependent vasodilation function in humans. Circulation, 1997: 95: 1119-1121.
28. Vallence P., Coller J., Moncada S. Infects of endothelium-derived nitric oxide on peripheial arteriolar tone in man. Lancet. 1989; 2: 997-999.
29. Mayer В., Werner ER. In search of a function for tetrahydrobioptcrin in the biosynthesis of nitric oxide. Naunyn Schmiedebergs Arch Pharmacol. 1995: 351: 453-463.
30. Drexler H., Zeiher AM, Meinzer К, Just H. Correction of endothelial dysfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
31. Ohara Y, Peterson ТЕ, Harnson DG. Hypercholesterolemia increases eiidothelial superoxide anion production. J. Clin. Invest. 1993, 91: 2546-2551.
32. Harnson DG, Ohara Y. Physiologic consequences of increased vascular oxidant stresses in hypercholesterolemia and atherosclerosis: Implications for impaired vasomotion. Amer. J. Cardiol. 1995, 75: 75B-81B.
33. Dzau VJ, Gibbons GH. Endothelium and growth factors in vascular remodelling of hypertension. Hypertension, 1991: 18 suppl. III: III-115-III-121.
34. Gibbons GH., Dzau VJ. The emerging concept of vascular remodelling. New Engl. J. Med., 1994, 330: 1431-1438.
35. Ignarro LJ, Byrns RE, Buga GM, Wood KS. Endothelium derived relaxing factor from pulmonary artery and vein possesses pharmaciilogical and chemical properties identical to those of nitric oxide radical. Circul. Research. 1987; 61: 866-879.
36. Palmer RMJ, Femge AG, Moncaila S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature. 1987, 327: 524-526.
37. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholin in athero-sclerotic coronary arteries. New Engl. J. Med. 1986, 315: 1046-1051.
38. Esther CRJr, Marino EM, Howard ТЕ et al. The critical role of tissue angiotensin-converting enzyme as revealed by gene targeting in mice. J. Clin. Invest. 1997: 99: 2375-2385.
39. Lasher TF. Angiotensin, ACE-inhibitors and endothelial control of vasomotor tone. Basic Research. Cardiol. 1993; 88(SI): 15-24.
40. Vaughan DE. Endothelial function, fibrinolysis, and angiotensyn-converting enzym inhibition. Clin. Cardiology. 1997; 20 (SII): II-34-II-37.
41. Vaughan DE, Lazos SA, Tong K. Angiotensin II regulates the expresiion of plasminogen activator inhibitor-1 in cultured endothelial cells. J. Clin. Invest. 1995; 95: 995-1001.
42. Ridker PM, Gaboury CL, Conlin PR et al. Stimulation of plasminogen activator inhibitor in vivo by infusion of angiotensin II. Circulation. 1993; 87: 1969-1973.
43. Griendling KK, Minieri CA, Ollerenshaw JD, Alexander RW. Angiotensin II stimulates NADH and NADH oxidase activity in cultured vascular smooth muscle cells. Circ. Res. 1994; 74: 1141-1148.
44. Griendling KK, Alexander RW. Oxidative stress and cardiovascular discase. Circulation. 1997; 96: 3264-3265.
45. Hamson DG. Endothelial function and oxidant stress. Clin. Cardiol. 1997; 20 (SII): II-11-II-17.
46. Kubes P, Suzuki M, Granger DN. Nitric oxide: An endogenous modulator of leukocyte adhesion. Proc. Natl. Acad. Sci. USA., 1991; 88: 4651-4655.
47. Lefer AM. Nitric oxide: Nature"s naturally occuring leukocyte inhibitor. Circulation, 1997; 95: 553-554.
48. Zeiker AM, Fisslthaler В, Schray Utz B, Basse R. Nitric oxide modulates the expression of monocyte chemoat-tractant protein I in cultured human endothelial cells. Circ. Res. 1995; 76: 980-986.
49. Tsao PS, Wang B, Buitrago R., Shyy JY, Cooke JP. Nitric oxide regulates monocyte chemotactic protein-1. Circulation. 1997; 97: 934-940.
50. Hogg N, Kalyanamman B, Joseph J. Inhibition of low-density lipoprotein oxidation by nitric oxide: potential role in atherogenesis. FEBS Lett, 1993; 334: 170-174.
51. Kubes P, Granger DN. Nitric oxide modulates microvascular permeability. Amer. J. Physiol. 1992; 262: H611-H615.
52. Austin MA. Plasma triglyceride and coronary heart disease. Artcrioscler. Thromb. 1991; 11: 2-14.
53. Sarkar R., Meinberg EG, Stanley JС et al. Nitric oxide reversibility inhibits the migration of cultured vascular smooth muscle cells. Circ. Res. 1996: 78: 225-230.
54. Comwell TL, Arnold E, Boerth NJ, Lincoln TM. Inhibition of smooth muscle cell growth by nitric oxide and activation of cAMP-dependent protein kinase by cGMP. Amer. J. Physiol. 1994; 267: C1405-1413.
55. Kolpakov V, Gordon D, Kulik TJ. Nitric oxide-generating compounds inhibit total protein and collgen synthesis in cultured vascular smooth cells. Circul. Res. 1995; 76: 305-309.
56. McNamara DB, Bedi B, Aurora H et al. L-arginine inhibits balloon catheter-induced intimal hyperplasia. Biochem. Biophys. Res. Commun. 1993; 1993: 291-296.
57. Cayatte AJ, Palacino JJ, Horten K, Cohen RA. Chronic inhibition of nitric oxide production accelerates neointima formation and impairs endothelial function in hypercholesterolemic rabbits. Arterioscler Thromb. 1994; 14: 753-759.
58. Tarry WC, Makhoul RG. L-arginine improves endothelium-dependent vasorelaxation and reduces intimal hyperplasia after balloon angioplasty. Arterioscler. Thromb. 1994: 14: 938-943.
59. De Graaf JC, Banga JD, Moncada S et al. Nitric oxide functions as an inhibitor of platelet adhesion under flow conditions. Circulation, 1992; 85: 2284-2290.
60. Azurna H, Ishikawa M, Sekizaki S. Endothelium-dependent inhibition of platelet aggregation. Brit. J. Pharmacol. 1986; 88: 411-415.
61. Stamler JS. Redox signaling: nitrosylation and related target interactions oi nitric oxide. Cell, 1994; 74: 931-938.
62. Shah PK. New insights inio the pathogenesis and prevention of acute coronary symptoms. Amer. J. Cardiol. 1997: 79: 17-23.
63. Rapoport RM, Draznin MB, Murad F. Endothelium-dependent relaxation in rat aorta may be mediated through cyclic GMO-depcndent protein phosphorviation Nature, 1983: 306: 174-176.
64. Joannides R, Haefeli WE, Linder L et al. Nitric oxide is responsible for flow-dependent dilation of human peripheral conduit arteries in vivo. Circulation, 1995: 91: 1314-1319.
65. Ludmer PL, Selwyn AP, Shook TL et al. Paradoxical vasoconstriction induced by acetylcholine in atlierosclerotic coronary arteries. New Engl. J. Mod. 1986, 315: 1046-1051.
66. Bruning ТА, van Zwiete PA, Blauw GJ, Chang PC. No functional involvement of 5-hydroxytryptainine la receptors in nitric oxide dependent dilation caused by serotonin in the human forearm vascular bed. J. Cardiovascular Pharmacol. 1994; 24: 454-461.
67. Meredith IT, Yeung AC, Weidinger FF et al. Role of impaired endotheliuin-dependent vasodilatioii in iscnemic manifestations ot coronary artery disease. Circulation, 1993, 87 (S.V): V56-V66.
68. Egashira K, Inou T, Hirooka Y, Yamada A. et al. Evidence of impaired endothclium-dependent coronary vasodilation in patients with angina pectoris and normal coronary angiograins. New Engl. J. Mod. 1993; 328: 1659-1664.
69. Chilian WM, Eastham CL, Marcus ML. Microvascular distribution of coronary vascular resistance in beating left ventricle. Amer. J. Physiol. 1986; 251: 11779-11788.
70. Zeiher AM, Krause T, Schachinger V et al. Impaired endothelium-dependent vasodilation of coronary resistance vessels is associated with exercise-induced myocardial ischemia. Circulation. 1995, 91: 2345-2352.
71. Blann AD, Tarberner DA. A reliable marker of endothelial cell disfunction: does it exist? Brit. J. Haematol. 1995; 90: 244-248.
72. Benzuly KH, Padgett RC, Koul S et al. Functional improvement precedes structural regression of atherosclerosis. Circulation, 1994; 89: 1810-1818.
73. Davis SF, Yeung AC, Meridith IT et al. Early endothelial dysfunction predicts the development ottransplant coronary artery disease at I year posttransplant. Circulation 1996; 93: 457-462.
74. Celemajer DS, Sorensen KE, Georgakopoulos D et al. Cigarette smoking is associated witn dose-related and potentially reversible iinpairement of endothelium-dependent dilation in healthy young adults. Circulation, 1993; 88: 2140-2155.
75. Vogel RA, Coretti MC, Ploinic GD. Effect of single high-fat meal on endothelial hinction in healthy subject. Amer. J. Cardiol. 1997; 79: 350-354.
76. Azen SP, Qian D, Mack WJ et al. Effect of supplementary antioxidant vitamin intake on carotid arterial wall intima-media thickness in a controlled clinical trial of cholesterol lowering. Circulation, 1996: 94: 2369-2372.
77. Levine GV, Erei B, Koulouris SN et al. Ascorbic acid reverses endothelial vasomotor dysfunction in patients with coronary artery discase. Circulation 1996; 93: 1107-1113.
78. Homing B., Maier V, Drexler H. Physical training improves endothelial function in patients with chronic heart failure. Circulation, 1996; 93: 210-214.
79. Jensen-Urstad KJ, Reichard PG, Rosfors JS et al. Early atherosclerosis is retarded by improved long-term blood-glucose control in patients with IDDM. Diabetes, 1996; 45: 1253-1258.
80. Scandinavian Simvastatin Sunnval Study Investigators. Randomiseci trial cholesterol lowering in 4444 patients with coronary heart disease: The Scandinavian Sinivastatin Survival Study (4S). Lancet, 1994; 344: 1383-1389.
81. Drexler H, Zeiher AM, Meinzer K, Just H. Correction of endothelial disfunction in coronary microcirculation of hypercholesterolemic patients by L-arginine. Lancet, 1991; 338: 1546-1550.
82. Crcager MA, Gallagher SJ, Girerd XJ et al. L-arginine improves endothelium-dependent vasodilation in hypercholcsterolcrnic humans. J. Clin. Invest., 1992: 90: 1242-1253.
83. Tienfenhacher CP, Chilian WM, Mitchel M, DeFily DV. Restoration of endothclium-dependent vasodilation after reperliision injury by tetrahydrobiopterin. Circulation, 1996: 94: 1423-1429.
84. Ting HH, Timimi FK, Haley EA, Roddy MA et al. Vitamin С improves endothelium-dependent vasodilation in forearm vessels of humans with hypercholes-terolemia. Circulation, 1997: 95: 2617-2622.
85. Ting HH, Timimi FK, Boles KS et al. Vitamin С improves endothelium-dependent vasodilation in patients with non-insulin-dependent diabetes mellitus. J. Clin. Invest. 1996: 97: 22-28.
86. Heilzer T, Just H, Munzel T. Antioxidant vitamin С improves endothelial dysfunction in chronic smokers. Circulation, 1996: 94: 6-9.
87. Solzbach U., Hornig B, Jeserich M, Just H. Vitamin С improves endothelial ctysfubction of epicardial coronary arteries in hypertensive patients. Circulation, 1997: 96: 1513-1519.
88. Mancini GBJ, Henry GC, Macaya C. et al. Angiotensin-converting enzyme inhibition with quinapril improves endothelial vasomotor dystunction in patients with coronary artery disease, the TREND study. Circulation, 1996: 94: 258-265.
89. Rajagopalan S, Harrison DG. Reversing endothelial dysfunction with ACE-inhibitors. A new TREND? Circulation, 1996, 94: 240-243.
90. Willix AL, Nagel B, Churchill V el al. Antiatherosclerotic effects of nicardipine and nifedipine in cholesterol-fed rabbits. Arteriosclerosis 1985: 5: 250-255.
91. Berk ВС, Alexander RW. Biology of the vascular wall in hypertension. In: Renner RM, ed. The Kidney. Philadelphia: WB Saunders, 1996: 2049-2070.
92. Kagami S., Border WA, Miller DA, Nohle NA. Angiotensin II stimulates extracellular matrix protein syntliesis through induction ot transforming growth factor В in rat glomerular mesangial cells. J. Clin. Invest, 1994: 93: 2431-2437.
93. Frohlich ED, Tarazi RC. Is arterial pressure the sole factor responsible for hypertensive cardiac hypertropliy ? Amer. J. Cardiol. 1979: 44: 959-963.
94. Frohlich ED. Overview of hemoilynamic factors associated with left ventricular hypertrophy. J. Mol. Cell. Cardiol., 1989: 21: 3-10.
95. Cockcroft JR, Chowienczyk PJ, Urett SE, Chen CP et al. Nebivolol vasodilated human forearm vasculature, evidence for an L-arginine/NO-dependent mccahanism. J. Pharmacol. Exper. Ther. 1995, Sep; 274(3): 1067-1071.
96. Brehm BR, Bertsch D, von Falhis J, Wolf SC. Beta-blockers of the third generation inhibit endothelium-I liberation mRNA production and proliferation of human coronary smooth muscle and endothelial cells. J. Cardiovasc. Pharmacol. 2000, Nov: 36 (5 Suppl.): S401-403.

Октябрь 30, 2017 Нет комментариев

Понятие «эндотелиальная дисфункция» было предложено в 1960 г. Williams-Kretschmer с соавт. для обозначения морфологических изменений эндотелия при различных патологических процессах. В дальнейшем, по мере изучения различных аспектов этого явления, оно постепенно приобретало расширенное толкование.

Понятие «эндотелиальная дисфункция» отражает генерализованное изменение функций эндотелиальной выстилки, проявляющееся расстройством регуляции регионарного и/или системного кровообращения, увеличением прокоагулянтной, проагрегантной антифибринолитической активности крови, повышением провоспалительного потенциала организма и т.д.

В отличие от интактного эндотелия, обладающего в основном антиагрегантным и антикоагулянтным потенциалом, вазодилатирующим и атимитогенным свойством, активность поврежденной эндотелиальной выстилки способствует гемокоагуляции, тромбообразованию, ангиоспазму, пролиферации элементов сосудистой стенки. Каждое из этих проявлений эндотелиальной дисфункции может иметь в зависимости от конкретных условий их развития как патогенное, так и защитно-приспособительное значение.

Кроме патогенетически значимых гемодинамических сдвигов, эндотелиальную дисфункцию могут вызывать интенсивные или продолжительные воздействия других повреждающих факторов: дефицит кислорода, токсины, медиаторы воспаления и аллергических реакций и т.д.

Самые разные воздействия, повреждающие эндотелий, в настоящее время нередко называют стрессорными факторами. Так, например, в современной фундаментальной кардиологии ключевую роль в инициации эндотелиальной дисфункции играет «оксидативный стресс» - процесс, характеризующийся образованием внутри клеток значительного количества активных форм кислорода (супероксидного анион-радикала, перекиси водорода, гидроксильного радикала), вызывающих перекисное (свободнорадикальное) окисление липидов и белков.

Эндотелиальная дисфункция по ряду общепринятых, «классических» критериев полиэтиологичности, монопатогенетичности, неднозначности (противоречивости) целевых (фенотипических) эффектов, отвечает статусу типовой формы патологии «эндотелиального эндокринного органа».

Результаты современных исследований позволяют считать, что эндотелиальная дисфункция является одним из ключевых независимых факторов риска практически всех сердечно-сосудистых заболеваний, включая ишемическую болезнь сердца, атеросклероз, первичную артериальную гипертензию, а также сахарный диабет, заболевания воспалительного, аутоиммунного и опухолевого характера. В связи с этим совершенно оправданным с патофизиологической точки зрения оказалось появление в медицинском лексиконе понятия «эндотелийзависимые болезни». Так нередко называют перечисленные выше и многие другие формы патологии современного человека.

Оценка функционального состояния эндотелия

Оценка функционального состояния эндотелия. Одним из ключевых патогенетических факторов эндотелиальной дисфункции является снижение синтеза NO эндотелиоцитами (см. ниже). Отсюда логичным представляется использование NO в качестве ее маркера. Однако нестабильность и очень короткий период полураспада (всего 0,05-1,0 с) NO резко ограничиваю! его диагностическое использование в медицинской практике. Оценка содержания стабильных метаболитов NO (нитратов и нитритов) в плазме идя моче также затруднительна в связи с чрезвычайно высокими требованиями к подготовке больного для такого обследования. Именно поэтому в основу разработки и внедрения в клиническую практику тестов по оценке степени выраженности эндотелиальной дисфункции легла извращенная реакция сосудов на те или иные вазодилатирующие стимулы.

В настоящее время наибольшее распространение получили методы ультразвуковой оценки сосудистой реакции (изменение скорости кровотока и/или диаметра просвета сосуда) в ответ на такие стимулы, как введение ацетилхолина или изменение объема кровотока.

Тест на введение ацетилхолина

Введение ацетилхолина в интактный сосуд вызывает вазодилатацию (син.: эндотелийзависимую дилатацию) и увеличение в нем скорости кровотока. В условиях развития эндотелиальной дисфункции сосудистая реакция в ответ на введение ацетилхолина становится «извращенной» (условно - «эндотелийнезави-симой») При этом, чем более выражена эндотелиальная дисфункция в исследуемом сосуде, тем меньше будет его дилатация. Возможно даже развитие парадоксальной реакции сосуда, т.е. его спазмирование (вместо расширения), на введение ацетилхолина.

Проба с реактивной («постокклюзионной») гиперемией (проба Целер-майера)

При проведении данной пробы исследуемый сосуд подвергают кратовременной обтурации (напр., путем раздувания баллончика в просвете коронарной артерии во время проведения коронарографии), или компрессии (напр., путем наложения жгута на плечевую артерию при ультразвуковой допплерографии), а затем оценивают реакцию сосуда в ответ на устранение препятствия кровотоку. В «постокклюзионном» периоде должна развиваться постишемическая артериальная гиперемия (дилатация артеральных сосудов и увеличение объемной скорости кровотока). Основу такой нормальной реакции составляют накопление тканевых вазодилатирующих факторов (прежде всего, аденозина тканевого происхождения) и тоногенное влияние самого тока крови, т.е. напряжение сдвига («потокзависимая дилатация»). В условиях эндотелиальной дисфункции наблюдают «извращенную» сосудистую реакцию, аналогичную той, которую регистрируют при проведении пробы с ацетилхолином.

Кроме указанных методик, в качестве потенциальных маркеров эндотелиальной дисфункции рассматривают ряд продуцируемых эндотелием факторов системы гемостаза, в том числе прокоагулянты – фактор фон Виллебранда и тканевой активатор плазминогена, антикоагулянты - ингибитор активаторов плазминогена и тромбомадулин.

В 2008 г. группа американских ученых получила данные о том, что биохимические маркеры оксидативного стресса являются независимым предметом эндотелиальной дисфункции. В исследованиях, проведенных на здоровых некурящих добровольцах, они оценивали эндотелиальную функцию двумя способами:

1) методом “потокзависимой вазодилатации” и 2) путем измерения у участников эксперимента содержания антиоксидантов – толового глютагиона и цистеина. При этом была установлена положительная корреляция между уровнями данных маркеров стресса и потокзависимой ваэодилатацией, что послужило основанием для заключения о причинно-следственной связи между усилением оксидативного стресса и эндотелиальной дисфункцией.

Текущая страница: 19 (всего у книги 49 страниц) [доступный отрывок для чтения: 33 страниц]

10.5. Дисфункция эндотелия и ее маркеры

Дисфункция эндотелия является одним из наиболее важных патогенетических механизмов многих заболеваний сердечно-сосудистой системы. В частности, дисфункция эндотелия может вызывать спазм сосудов, усиленное тромбообразование и усиленную адгезию лейкоцитов к эндотелию, что сопровождается нарушением регионарного кровообращения и микроциркуляции. Причинами эндотелиальной дисфункции могут быть различные факторы:

– генетические особенности;

возрастные изменения;

– дислипопротеинемия (гиперхолестеринемия);

– гиперцитокинемия;

– гипергомоцистеинемия;

– гипергликемия;

– гемодинамический фактор (гипертензия, ишемия, венозный застой);

эндогенные интоксикации (почечная печеночная недостаточность, панкреатит и др.);

– экзогенные интоксикации (курение и др.).

В широком смысле эндотелиальная дисфункция может быть определена как:

– образование конформационно измененных эндотелиальных факторов;

– уменьшение образования эндотелиальных факторов;

– нерегулируемое образование эндотелиальных факторов.

В последнее время сложилось более узкое представление об эндотелиальной дисфункции как о состоянии эндотелия, при котором имеется недостаточная продукция оксида азота. Поскольку оксид азота принимает участие в регуляции практически всех функций эндотелия (регуляция сосудистого тонуса, тромборезистентность сосудов, регуляция адгезии лейкоцитов и проницаемости сосудов), а кроме того, является фактором, наиболее чувствительным к повреждению, такое представление о дисфункции эндотелия достаточно корректно, хотя и не является полным. Важнейшим фактором нарушения образования и/или биодоступности оксида азота является избыточное образование активных форм кислорода, что наблюдается при многих заболеваниях.

Кроме понятия «дисфункция эндотелия» необходимо выделить также понятия «стимуляция эндотелия» (при которой под действием различных факторов происходит увеличение активности eNOS, циклооксигеназы-1 и других ферментов эндотелиоцитов с увеличением образования оксида азота, простациклина и других БАВ, а также высвобождение накопленных в эндотелиоцитах факторов), и «активация эндотелия», сопровождающиеся экспрессией генов и активацией синтетических процессов в эндотелиоцитах.

В клинической практике функциональную активность эндотелия оценивают преимущественно с помощью инструментальных методов. Для этого исследуют эндотелийзависимую вазодилатацию при фармакологических пробах (например, с ацетилхолином), пробе с реактивной гиперемией (по изменению напряжения сдвига при прекращении/восстановлении кровотока по плечевой артерии), пробе с холодовым или ментальным стрессом (при исследовании кровотока в миокарде) и некоторых других.

Другим методом оценки выраженности эндотелиальной дисфункции является лабораторная диагностика – оценка содержания в крови различных веществ, образующихся в эндотелии (табл. 10.5). В настоящее время существуют методики определения в крови практически всех известных веществ, образующихся в эндотелии, однако не все показатели имеют одинаковую диагностическую ценность, поскольку значительная часть маркеров эндотелиальной дисфункции образуется не только в эндотелии, но и в других клетках.

По скорости образования в эндотелии различных факторов (что связано во многомисихструктурой), а также по преимущественному направлению секреции этих веществ (внутриклеточная или внеклеточная) можно разделить вещества эндотелиального происхождения на следующие группы.

Факторы, постоянно образующиеся в эндотелии и выделяющиеся из клеток в базолатеральном направлении или в кровь, например NO, простациклин. Скорость образования этих факторов связана с быстро меняющимися условиями регуляции, в частности с изменением напряжения сдвига или действием вазоактивных веществ, цитокинов. Почти любое повреждение эндотелия сопровождается либо нарушением синтеза, либо снижением биодоступности этой группы веществ. В то же время при этом в эндотелии образуются индуцируемые синтаза оксида азота и циклооксигеназа-2, что приводит к значительному повышению выработки NO и простациклина.


Таблица 10.5

Маркеры эндотелия, изменение концентрации которых в крови является признаком эндотелиальной дисфункции


Факторы, накапливающиеся в эндотелии и выделяющиеся из него при стимуляции (фактор Виллебранда, Р-селектин, тканевой активатор плазминогена). При действии катехоламинов, гистамина, тромбина, активированных фрагментов системы комплемента, цитокинов, вазопрессина и других происходит высвобождение фактора Виллебранда и t-PA в кровь, перемещение на мембрану эндотелиоцита Р-селектина с незначительным поступлением его в кровь (растворенный Р-селектин). Эти факторы могут попадать в кровь не только при стимуляции эндотелия, но и при его активации и повреждении.

Факторы, синтез которых в нормальных условиях практически не происходит, однако резко увеличивается при активации эндотелия (эндотелин-1, ICAM-1, VCAM-1, E-селектин, PAI-1). Эти факторы либо экспрессируются на эндотелиоцитах (ICAM-1, VCAM-1, E-селектин) и частично выделяются в кровь (растворимые ICAM-1, VCAM-1, E-селектин), либо секретируются (эндотелин-1, PAI-1).

Факторы, являющиеся внутриклеточными белками (тканевой фактор, аннексин-V) либо являющиеся мембранными рецепторами эндотелия (тромбомодулин, рецептор протеина С). Высвобождение этих факторов в кровь наблюдается при повреждении эндотелия и апоптозе.

Таким образом, можно выделить несколько вариантов изменения функциональной активности эндотелия:

– дисфункция эндотелия (уменьшение синтеза факторов первой группы, синтез конформационно измененных эндотелиальных факторов, или нерегулируемый синтез эндотелиальных факторов);

– стимуляция эндотелия (повышение содержания в крови факторов второй группы);

– активация эндотелия (повышение содержания в крови факторов 1 – 3 групп). Косвенным методом оценки состояния эндотелия является исследование содержания в крови факторов, повреждающих эндотелий, уровень которых коррелирует с эндотелиальной дисфункцией. К таким факторам (медиаторам повреждения эндотелия) относятся:

– гиперхолестеринемия (уровень липопротеинов низкой плотности, липопротеинов очень низкой плотности);

– С-реактивный белок;

– антифосфолипидные антитела;

– ангиотензин-II;

– гипергомоцистеинемия;

– асимметричный диметиларгинин (ADMA);

– липопротеин (а);

– ксантиноксидаза;

– цитокины (ИЛ-1β, ФНО-α, ИЛ-8 и др.).

Как правило, в конкретной клинической ситуации имеется сразу несколько вариантов изменения функциональной активности эндотелия, поэтому в крови присутствуют самые различные эндотелиальные факторы. В связи с этим, все вышеописанные изменения нередко объединяются термином «дисфункция эндотелия». Дисфункция эндотелия может быть самостоятельной причиной нарушения кровообращения в органе, поскольку нередко провоцирует ангиоспазм или тромбоз сосудов, что, в частности, наблюдается при некоторых формах ишемической болезни сердца. С другой стороны, нарушения регионарного кровообращения (ишемия, венозный застой) тоже могут приводить к дисфункции эндотелия. Однако, поскольку проявления дисфункции при различных заболеваниях имеют свою специфику, как и степень нарушения образования в эндотелии отдельных эндотелиальных факторов, целесообразно выделить следующие типовые формы дисфункции эндотелия:

вазомоторная : нарушение образования оксида азота, простациклина, EDHF, повышение синтеза эндотелина-1. Эта форма дисфункции является важным звеном патогенеза развития артериальной гипертензии, ангиоспастической ишемии;

гемостатическая : изменение образования тромбогенных и атромбогенных эндотелиальных факторов, что, например, наблюдается при артериальном и венозном тромбозе, болезни Виллебранда и других;

адгезионная : гиперэкспрессия эндотелиальных молекул адгезии, гиперцитокинемия, системная воспалительная реакция, септический шок;

ангиогенная : избыточное образование ангиогенных факторов, возможно, изменение чувствительности эндотелия к ангиогенным факторам (опухолевый рост, хроническое воспаление).

Выделение отдельных форм дисфункции эндотелия имеет определенное практическое значение для оптимизации подходов к ее фармакологической коррекции. Данные формы эндотелиальной дисфункции редко существуют изолированно, но, как правило, доминируют при том или другом заболевании. Не исключено, что различные формы эндотелиальной дисфункции возникают в связи с преимущественным действием различных медиаторов дисфункции эндотелия.

На основании экспериментальных и клинических исследований мы полагаем, что системные изменения функциональной активности эндотелия – один из механизмов генерализации патологических процессов. Дальнейшее исследование эндотелиальной дисфункции, ее форм, и их зависимость от профиля факторов, влияющих на эндотелий, является перспективным направлением исследований в медицине.

Литература

Дисфункция эндотелия. Патогенетическое значение и методы коррекции / под ред. проф. Н. Н. Петрищева. – СПб.: ИИЦ ВМА, 2007. – 296 с.

Aird W. C. Spatial and temporal dynamics of the endothelium // J. Thromb. Haemost. – 2005. – № 3(7). – P. 1392 – 1406.

Boger R. H. Asymmetric Dimethylarginine, an Endogenous Inhibitor of Nitric Oxide Synthase, Explains the «L-Arginine Paradox» and Acts as a Novel Cardiovascular Risk // Factor. J. Nutr. – 2004. – Vol. 134 – P. 2842 – 2847.

Harder D. R . . Cytochrome P450 metabolites of arachidonic acid as intracellular signaling molecules in vascular tissue // J. Vasc. Res. – 1997. – Vol. 34(3). – P. 237 – 243.

Mateo A. N., Artinano A. A . Highlights on endothelins: a review // Pharmacol. Res. – 1997. – Vol. 36 (5). – P. 339 – 351.

Silva P. M . From endothelial dysfunction to vascular occlusion: role of the renin-angiotensin system // Rev. Port. Cardiol. – 2010. – 29(5). – P. 801 – 824.

Wong W. T . . Endothelial dysfunction: the common consequence in diabetes and hypertension // J. Cardiovasc. Pharmacol. – 2010. – Vol. 55(4). – P. 300 – 307.

ТЕМА 11
КАХЕКСИЯ КАК ТИПОВОЙ КЛИНИЧЕСКИЙ СИНДРОМ

В настоящее время многими авторами отождествляются понятия «истощение» и «кахексия». Однако при изучении процессов, лежащих в основе развития этих двух патологических состояний, можно сделать вывод об их принципиальном различии. Процессы, включающиеся при истощении, направлены на максимально адекватное поддержание жизнедеятельности организма в условиях стресса, то есть механизм истощения – это адаптационный механизм, нацеленный на сохранение гомеостаза. Кахексия же – состояние, возникающее в изначально больном организме, является следствием заболевания.

Истощение – это патологическое состояние при недостаточном или полном прекращении поступления пищи, которое на определенной стадии развития характеризуют расстройства деятельности всех функциональных систем, а также дефицит массы (при истощении дефицит жировой ткани может составлять 20 – 25 % и более, при развитии кахексии – ниже 50 %) и энергии во всех органах и клеточных элементах организма. Основное звено патогенеза, которое можно представить как низкую, относительно потребностей клеток, доставку к ним питательных веществ, источников свободной энергии и субстратов для анаболических процессов.

11.1. Этиология

Различают экзогенные и эндогенные причины истощения.

К экзогенным причинам относятся:

– абсолютное, полное, неполное и частичное голодание;

– низкая калорийность пищи, не способная восполнить энергозатраты организма.

Абсолютное голодание – это экзогенное голодание при полном отсутствии пищи и воды. Полное – это голодание при отсутствии пищи, но с сохранением питья. Неполное голодание характеризуется питанием, недостаточным для удовлетворения потребностей организма в нутриентах. Частичное голодание – непоступление одного или нескольких пищевых веществ: белков, жиров, минеральных веществ и витаминов. Данный вид голодания в чистом виде возможен только в эксперименте. В настоящее время голодание выходит за рамки биологической проблемы, в большей степени оно зависит от социальных условий. В слаборазвитых странах постоянно испытывают голод большие массы людей, 40 % из них составляют дети. Даже в странах с высоким уровнем развития голодание возможно при стихийных бедствиях, военных конфликтах, техногенных катастрофах.

Эндогенными причинами истощения являются факторы, связанные с различными заболеваниями. Их подразделяют на первичные и вторичные.

Первичные причины связаны с патологическими состояниями, подавляющими синтез нейропептида Y в гипоталамусе (травмы мозга, ишемия гипоталамуса, нервно-психические расстройства) и вызывающих гипосенситизацию клеток-мишеней к нейропептиду Y.

Кахексия на данный момент считается распространенным и опасным осложнением различных хронических заболеваний, с которым связывают неблагоприятный прогноз (табл. 11.1). Кахексия (wasting desease syndrome) – комплексный метаболический синдром, связанный с основным заболеванием и характеризующийся потерей мышечной массы или без потери массы жировой ткани.


Таблица 11.1

Заболевания, характеризующиеся наличием кахексии


Диагностика. При выборе критериев дифференциальной диагностики следует руководствоваться представлениями о патогенезе данных состояний. Большая часть критериев отображена в табл. 11.2.


Таблица 11.2

Показатели истощения и кахексии

Примечания : «–» – снижение показателя; «+» – повышение показателя; «0» – отсутствие изменений.


Оценка потери массы тела – один из самых доступных в практике критериев, но, к сожалению, не самый информативный. Следует понимать, что потеря массы тела у истощенного происходит в основном за счет расходования организмом жиров, и только в далеко зашедших случаях организм начинает использовать белки в качестве источника энергии. У больных же, страдающих кахексией, потеря веса может быть в принципе не так заметна, но происходит она за счет белков (в основном белков миофибрилл поперечнополосатой мускулатуры). Необходимо указать, что кахексия зачастую может сопровождаться и истощением, так как в силу определенных причин у больных кахексией происходит снижение аппетита.

Следующий часто упоминаемый в литературе критерий является логичным дополнением первого – это улучшение самочувствия больного в результате полноценного питания. Для истощенных больных полноценное питание является необходимым условием успешности лечения, в то время как для страдающих кахексией оно не приносит желаемых результатов.

При истощении снижается концентрация глюкозы в крови, содержание инсулина в крови также уменьшено. При кахексии в организме развивается резистентность к инсулину, и, несмотря на достаточное поступление глюкозы, ее усваивания не происходит. У больных с кахексией наблюдается повышение секреции таких веществ как, например, кортизол и миостатин, отвечающих за активацию катаболических реакций в организме.

Истощение характеризуется отсутствием как синтеза, так и распада белка (если речь идет не о заключительной стадии истощения). А для кахексии характерен усиленный распад белков (в крови могут быть обнаружены специфические маркеры), а также активный синтез в печени белков острой фазы.

Основной обмен при истощении, как это следует из вышесказанного, снижен, а при кахексии – повышен. Такое состояние при кахексии также называют гиперметаболизмом.

С клинической точки зрения предлагается следующая схема диагностики.

Кахексия диагностируется, если выполняются все следующие условия:

– менее чем за 12 месяцев происходит потеря более 50 % исходной массы тела;

– присутствует сопутствующее заболевание (см. табл. 11.1);

– наблюдаются следующие изменения: снижение двигательной способности мышечного аппарата, усталость, анорексия, измененные биохимические показатели крови (содержание белков острой фазы, инсулина, кортизола).

11.2. Патогенез истощения

В развитии полного голодания принято выделять три периода.

В первом, начальном периоде , который длится 5 – 7 дней, отмечается повышение основного обмена с увеличением энергетических затрат, а также наибольшая потеря веса за сутки. Основные жизненные процессы поддерживаются за счет депо углеводов в печени и мышцах. Этот период характеризуется: снижением уровня глюкозы в крови, уменьшением выработки инсулина и повышением уровня глюкагона, который в свою очередь способствует процессу гликогенолиза в печени. При снижении запасов гликогена, а также концентрации глюкозы и других нутриентов, секреция инсулина падает до базального уровня и происходит возбуждение пищевого центра на уровне латеральных ядер гипоталамуса – центра голода. Активность этого центра возрастает под действием нейропептида Y. Снижение массы жира приводит к снижению выделения гормона лептина, усиливается чувство голода, который, в свою очередь, активирует симпатический отдел автономной нервной системы. В результате растет секреция гормонов-антагонистов инсулина. Возникает изменение соотношения секреции инсулина и гормонов с преимущественно катаболическим действием, что стимулирует гликогенолиз, липолиз, протеолиз и глюконеогенез при угнетении гликогенообразования, синтеза жиров и белков. В процессе голодного стресса, в период экстренной адаптации, наибольшее влияние оказывают гормоны: адренокортикотропный, вазопрессин, глюкокортикоиды, катехоламины.

Адренокортикотропный гормон вызывает усиление липолиза, увеличивает синтез соматотропного гормона и одновременно тормозит синтез мочевины печенью. Действие соматотропного гормона направлено на усиление использования аминокислот в качестве энергетического субстрата, а также усиление процессов катаболизма жиров и подавление синтеза инсулина. Наряду с этими процессами под действием глюкокортикоидов усиливаются процессы глюконеогенеза из аминокислот, которые транспортируются из мышц в печень. На фоне этих процессов синтез белка в соединительной ткани, коже, жировой ткани, лимфоидных органах тормозится. Вазопрессин на начальных этапах голодания усиливает липолиз и захват жирных кислот печенью, но тормозит синтез кетоновых тел.

Таким образом, первый период голодания характеризуется усилением процессов глюконеогенеза из депо жировой, а также соединительной ткани и скелетных мышц (табл. 11.3).

При длительном полном голодании только нейроны головного и спинного мозга используют глюкозу как энергетический субстрат. Клетки всех других тканей и органов для биологического окисления утилизируют свободные жирные кислоты и кетоновые тела (бета-гидроксимасляная и ацетоуксусная кислоты).

Снижение процесса дезаминирования и переаминирования, начало усвоения мозгом кетоновых тел в качестве энергетического субстрата являются показателями начала второго периода (фазы стабильной долговременной адаптации по А. Ш. Зайчику и Л. П. Чурилову).


Таблица 11.3

Стадии приспособительных изменений обмена веществ в органах и тканях при голодании


При полном голодании, длящемся более 72 ч, падает выделение азота с мочой. Это свидетельствует о падении утилизации белка как источника свободной энергии. Таким образом, начало этого периода характеризуется снижением потребления аминокислот в процессе глюконеогенеза и нарастанием синтеза кетоновых тел. Нарастание кетоацидоза идет, в основном, за счет окисления липидов на фоне угнетения основных ферментов цикла Кребса. В большинстве органов развиваются патологические изменения, возникает нарушение водно-солевого равновесия (потеря калия, фосфатов, кальция). В плазме крови увеличивается концентрация холестерина, особенно липопротеидов очень низкой плотности, связанных с нарушением метаболизма печени. Это может обусловить развитие артериальной гипертензии. Интенсивность обмена веществ в целом снижена, происходит торможение окислительных процессов в митохондриях, развивается гипоэнергетическое состояние.

При продолжении голодания нарастает атрофия органов (в наименьшей степени снижается масса сердечной мышцы и мозга). Прогрессируют процессы торможения в нервной системе, со стороны сердечно-сосудистой системы возможны развития аритмий. Отмечается анемия, гипопротеинемия (в первую очередь сокращается фракция альбуминов).

Третий период (терминальный период декомпенсации) наблюдается при потере 40 – 50 % массы тела при полном использовании запасов жира. Этот период характеризуется распадом белков внутренних органов, распадом нуклеиновых кислот клеточных ядер, приводящих к усилению выделения с мочой азота мочевины, аминокислот, калия, фосфора. Постепенно нарастает угнетение центральной нервной системы, развивается коматозное состояние и гибель организма.

Таким образом, физиологическую адаптацию к экзогенному голоданию характеризует известная стадийность изменений обмена веществ со сменой основных источников свободной энергии, высвобождаемой при биологическом окислении и улавливаемой клеткой в виде макроэргов.

Поскольку голодание является непосредственной угрозой для жизни, различные системы организма пытаются защитить его от этой опасности. В связи с этим усиление чувства голода является стимулом для активизации поиска пищи (рис. 11.1).

Содержание инсулина, ключевого гормона гомеостаза, снижается в крови при голодании вследствие гипогликемии (повышается при возобновлении питания) и является основным фактором, обуславливающим переключение метаболизма с углеводного субстрата на жировой. Такое изменение обмена веществ обеспечивается разнообразными биохимическими процессами в жировой ткани, мышцах и печени. Инсулин влияет на аппетит, расходование энергии и нейроэндокринный статус организма. Проникая через гематоэнцефалический барьер, инсулин подавляет экспрессию нейропептида Y, который синтезируется в гипоталамусе и является основным активатором аппетита. Таким образом, при пониженном уровне инсулина в крови синтезируется нейропептид Y, вследствие чего повышается аппетит и корректируется энергетический баланс.

Грелин – гормон, синтезируемый в основном клетками желудка. Основным эффектом действия этого гормона является стимуляция выработки соматотропина. Грелин обладает и центральным действием, в результате чего усиливается чувство голода. Установлено, что грелин способен блокировать действие лептина. Лептин – гормон цитокинового типа, секретируемый, главным образом, адипоцитами.


Рис. 11.1 . Взаимодействие гормонов, влияющих на аппетит


В норме он снижает аппетит, воздействуя на гипоталамус и подавляя экспрессию нейропептида Y. При голодании уровень лептина быстро снижается, что ведет к уменьшению энергозатрат, усилению чувства голода. Было выяснено, что лептин уменьшает секрецию инсулина и может вызывать резистентность к нему. Лептин подавляет влияние инсулина на жировую клетчатку по принципу обратной связи, то есть выступает в качестве антагониста инсулина. Еще одним эффектом лептина является его воздействие на гипоталамо-гипофизарно-надпочечниковую систему. Лептин блокирует активацию данной системы (во время голодания этот блок исчезает) за счет снижения его содержания в крови и повышает секрецию глюкокортикоидных гормонов, в частности кортизола у человека. Глюкокортикоиды активируют глюконеогенез в печени, что необходимо для обеспечения глюкозой головного мозга в условиях ее ограниченного поступления в организм. В терминальной стадии голодания повышение концентрации кортизола может означать активацию протеолиза в мышцах для переработки аминокислот в глюкозу.

В ряде исследований показано, что снижение содержания лептина в крови при голодании сопровождается также снижением содержания тироксина. Поскольку тироксин является основным регулятором скорости основного обмена, а точнее, активатором катаболизма и стимулятором деления клеток, то снижение его концентрации в крови при голодании благоприятно для организма. На более поздних стадиях голодания могут проявляться отрицательные последствия гипотиреоза. Известно, что in vitro лептин индуцирует пролиферацию и блокирует апоптоз наивных Т-лимфоцитов и Т-клеток памяти, активирует продукцию цитокинов макрофагами, способствует заживлению ран, ангиогенезу. Таким образом, лептин играет роль иммуномодулятора, и при недостатке его в крови человек становится более восприимчивым к инфекциям. Из вышесказанного следует, что лептин играет определенную роль в изменении процессов метаболизма при голодании.

Внешними проявлениями истощения, помимо исхудания, являются слабость и значительная утомляемость при обычной работе, ухудшение когнитивных функций. Гипотермия нарастает по мере увеличения степени истощения. Вышеперечисленные симптомы являются прямым следствием гипотиреоза.

Еще одним проявлением гипотиреоза у истощенных является брадикардия, доходящая в тяжелых случаях до 30 ударов в минуту, и понижение артериального давления. Данные клинические проявления обусловлены также синтезом аномального реверсивного трийодтиронина из-за отсутствия фермента дейодиназы, вследствие подавления ее стрессовыми гормонами.

Постоянным симптомом у истощенных людей является полиурия, при этом суточное количество выделяемой мочи достигает 3 – 6 литров. Характерно также учащение мочеиспускания, а у части больных появляется ночное недержание мочи. Нарушения мочевыделения не связаны, однако, со структурными изменениями в почках. Эти изменения объясняются атрофией коркового вещества надпочечников и связанным с ней гипоальдостеронизмом и, соответственно, нарушением реабсорбции воды в дистальных канальцах.

По мере прогрессирования истощения возникают так называемые голодные поносы. Одним из факторов появления жидкого стула при голодании является недостаток витамина РР (никотиновой кислоты). Считается, что механизм пелларгической диареи связан с низкой активностью некоторых ферментов, по отношению к которым витамин РР выступает в качестве кофактора.

Другим фактором развития поносов является внешнесекреторная недостаточность поджелудочной железы, связанная с атрофией ее экзокринного аппарата. Кроме того, возможно повреждение, самопереваривание и атрофия желез, ворсинок кишечного эпителия.

Фактором развития диареи может служить и недостаток жирных кислот в просвете толстой кишки. Функция толстой кишки, заключающаяся, в том числе и во всасывании натрия и воды, зависит от наличия в просвете определенных жирных кислот. Их наличие обусловлено ферментацией клетчатки кишечными бактериями. При отсутствии этих жирных кислот (в том числе n-бутирата) нарушается всасывание и усиливается секреция натрия, вслед за которым в просвет кишки поступает вода.

Голодные поносы развиваются только при тяжелом истощении и в его финале примерно за две недели до смерти. В эти же сроки появляются отеки. Поскольку онкотическое давление плазмы крови понижается, жидкость по градиенту давления выходит из сосудистого русла и накапливается в тканях, серозных полостях и в просвете кишечника.

Высокий уровень инфекционной заболеваемости у истощенных людей, наряду с белковой и энергетической недостаточностью питания, связан и с гиповитаминозами, ведущими к нарушению иммунитета. Так, недостаток в рационе витамина А сопровождается снижением фагоцитарной активности полиморфноядерных лейкоцитов и выработки плазматическими клетками антител. Их выработка страдает также при дефиците витамина В1. На фоне изменений метаболизма у голодающих уменьшается подвижность фагоцитов, Т– и В-лимфоцитов, данный эффект развивается и при дефиците витамина Е. Таким образом, истощенные люди чаще болеют инфекционными заболеваниями, в первую очередь пневмонией, а также подвержены возникновению туберкулеза.

Ч то является причиной развития метаболического синдрома и инсулинорезистентности (ИР) тканей? Какова связь между ИР и прогрессированием атеросклероза? На эти вопросы пока не получено однозначного ответа. Предполагают, что первичным дефектом, лежащим в основе развития ИР, является дисфункция эндотелиальных клеток сосудов.

Эндотелий сосудов представляет собой гормонально активную ткань, которую условно называют самой большой “эндокринной железой” человека. Если выделить из организма все клетки эндотелия, их вес составит приблизительно 2 кг, а общая протяженность - около 7 км. Уникальное положение клеток эндотелия на границе между циркулирующей кровью и тканями делает их наиболее уязвимыми для различных патогенных факторов, находящихся в системном и тканевом кровотоке. Именно эти клетки первыми встречаются с реактивными свободными радикалами, с окисленными липопротеинами низкой плотности, с гиперхолестеринемией, с высоким гидростатическим давлением внутри выстилаемых ими сосудов (при артериальной гипертонии), с гипергликемией (при сахарном диабете). Все эти факторы приводят к повреждению эндотелия сосудов, к дисфункции эндотелия, как эндокринного органа и к ускоренному развитию ангиопатий и атеросклероза. Перечень функций эндотелия и их нарушений перечислены в таблице 1.

Функциональная перестройка эндотелия при воздействии патологических факторов проходит несколько стадий:

I стадия - повышенная синтетическая активность клеток эндотелия, эндотелий работает как “биосинтетическая машина”.

II стадия - нарушение сбалансированной секреции факторов, регулирующих тонус сосудов, систему гемостаза, процессы межклеточного взаимодействия. На этой стадии нарушается естественная барьерная функция эндотелия, повышается его проницаемость для различных компонентов плазмы.

III стадия - истощение эндотелия, сопровождающееся гибелью клеток и замедленными процессами регенерации эндотелия.

Из всех факторов, синтезируемых эндотелием, роль “модератора” основных функций эндотелия принадлежит эндотелиальному фактору релаксации или оксиду азота (NO). Именно это соединение регулирует активность и последовательность “запуска” всех остальных биологически-активных веществ, продуцируемых эндотелием. Оксид азота не только вызывает расширение сосудов, но и блокирует пролиферацию гладкомышечных клеток, препятствует адгезии клеток крови и обладает антиагрегантными свойствами. Таким образом, оксид азота является базовым фактором антиатерогенеза.

К сожалению, именно NO-продуцирующая функция эндотелия оказывается наиболее ранимой. Причина тому - высокая нестабильность молекулы NO, являющейся по природе своей свободным радикалом. В результате благоприятное антиатерогенное действие NO нивелируется и уступает место токсическому атерогенному действию других факторов поврежденного эндотелия.

В настоящее время существуют две точки зрения на причину эндотелиопатии при метаболическом синдроме . Сторонники первой гипотезы утверждают, что дисфункция эндотелия вторична по отношению к имеющейся ИР, т.е. является следствием тех факторов, которые характеризуют состояние ИР - гипергликемии, артериальной гипертонии, дислипидемии. При гипергликемии в эндотелиальных клетках активируется фермент протеинкиназа-С, который увеличивает проницаемость сосудистых клеток для белков и нарушает эндотелий-зависимую релаксацию сосудов. Кроме того, гипергликемия активирует процессы перекисного окисления, продукты которого угнетают сосудорасширяющую функцию эндотелия. При артериальной гипертонии повышенное механическое давление на стенки сосудов приводит к нарушению архитектоники эндотелиальных клеток, повышению их проницаемости для альбумина, усилению секреции сосудосуживающего эндотелина-1, ремоделированию стенок сосудов. Дислипидемия повышает экспрессию адгезивных молекул на поверхности эндотелиальных клеток, что дает начало формированию атеромы. Таким образом, все перечисленные состояния, повышая проницаемость эндотелия, экспрессию адгезивных молекул, снижая эндотелий-зависимую релаксацию сосудов, способствуют прогрессированию атерогенеза.

Сторонники другой гипотезы считают, что дисфункция эндотелия является не следствием, а причиной развития ИР и связанных с ней состояний (гипергликемии, гипертонии, дислипидемии). Действительно, для того чтобы соединиться со своими рецепторами, инсулин должен пересечь эндотелий и попасть в межклеточное пространство. В случае первичного дефекта эндотелиальных клеток трансэндотелиальный транспорт инсулина нарушается. Следовательно, может развиться состояние ИР. В таком случае ИР будет вторичной по отношению к эндотелиопатии (рис. 1).

Рис. 1. Возможная роль дисфункции эндотелия в развитии синдрома инсулинорезистентности

Для того, чтобы доказать эту точку зрения, необходимо исследовать состояние эндотелия до появления симптомов ИР, т.е. у лиц с высоким риском развития метаболического синдрома. Предположительно, к группе высокого риска формирования синдрома ИР относятся дети, родившиеся с низким весом (менее 2,5 кг). Именно у таких детей впоследствии в зрелом возрасте появляются все признаки метаболического синдрома. Связывают это с недостаточной внутриутробной капилляризацией развивающихся тканей и органов, включая поджелудочную железу, почки, скелетную мускулатуру. При обследовании детей в возрасте 9-11 лет, родившихся с низким весом, было обнаружено достоверное снижение эндотелий-зависимой релаксации сосудов и низкий уровень антиатерогенной фракции липопротеидов высокой плотности, несмотря на отсутствие у них других признаков ИР. Это исследование позволяет предположить, что, действительно, эндотелиопатия первична по отношению к ИР.

До настоящего времени не получено достаточных данных в пользу первичной или вторичной роли эндотелиопатии в генезе ИР. В то же время неоспоримым является факт, что эндотелиальная дисфункция является первым звеном в развитии атеросклероза, связанного с синдромом ИР . Поэтому поиск терапевтических возможностей восстановления нарушенной функции эндотелия остается наиболее перспективным в предупреждении и лечении атеросклероза. Все состояния, входящие в понятие метаболического синдрома (гипергликемия, артериальная гипертония, гиперхолестеринемия) усугубляют дисфункцию эндотелиальных клеток. Поэтому устранение (или коррекция) этих факторов безусловно будет способствовать улучшению функции эндотелия. Перспективными препаратами, позволяющими улучшить функцию эндотелия, остаются антиоксиданты, устраняющие повреждающее воздействие окислительного стресса на клетки сосудов, а также лекарства, повышающие продукцию эндогенного оксида азота (NO), например, L-аргинин.

В таблице 2 перечислены препараты, у которых доказано антиатерогенное действие посредством улучшения функции эндотелия. К ним относятся: статины (симвастатин ), ингибиторы ангиотензинпревращающего фермента (в частности, эналаприл ), антиоксиданты, L-аргинин, эстрогены.

Экспериментальные и клинические исследования по выявлению первичного звена в развитии ИР продолжаются. Одновременно идет поиск препаратов, способных нормализовать и сбалансировать функции эндотелия при различных проявлениях синдрома инсулинорезистентности. В настоящее время стало совершенно очевидно, что тот или иной препарат только в том случае сможет оказать антиатерогенное воздействие и предупредить развитие сердечно-сосудистых заболеваний, если он прямо или опосредованно восстанавливает нормальную функцию эндотелиальных клеток.

Симвастатин -

Зокор (торговое название)

(Merck Sharp & Dohme Idea)

Эналаприл -

Веро-эналаприл (торговое название)

(Верофарм ЗАО)