Применение сплавов титана в клинике ортопедической стоматологии и имплантологии (экспериментально-клиническое исследование) Мушеев Илья Урьеевич. Что нужно знать при работе с титаном? Видео: Металл с памятью формы в медицине

Металл в стоматологии занимает центральное место среди материалов. Из стоматологических сплавов отливают (или штампуют) большинство несъёмных протезов, каркасы съемных протезов. Сплавы в стоматологии используют как вспомогательные материалы, для пайки и штамповки. Из них делают стоматологические инструменты.

План статьи:

  • Классификация металлов и сплавов в стоматологии
  • Конструкционные сплавы металлов в ортопедической стоматологии
  • Благородные сплавы металлов в стоматологии
  • Неблагородные сплавы в ортопедической стоматологии
  • Вспомогательные сплавы металлов в стоматологии

Металлы и сплавы в стоматологии Классификация

Все металлы и сплавы делят на черные и цветные .

Черные металлы – это железо и сплавы на его основе. Стали и чугун. Чугун содержит более 2,14% углерода. В стоматологии не применяется.


Поверхность у чугуна матовая и неблестящая. Он плохо поддается полировке.

сплав на основе железа, содержащий менее 2,14% углерода. Кроме железа и углерода в стали присутствуют и другие металлы. Они придают сплаву новые свойства (легированная сталь), в том числе делают её нержавеющей.


Стальные колпачки для штамповки коронок

– сплав железа и углерода, с добавлением любых других металлов. Они меняют свойства сплава (температуру плавления, твердость, пластичность, ковкость и т.д.).


– сталь устойчивая к коррозии. В качестве антикарозионного агента чаще всего применяют хром (21%), а также другие металлы.

— это соответственно все остальные металлы.

Металлы в ортопедической стоматологии делят на благородные и не благородные.

Благородные металлы (или драгоценные металлы) – металлы устойчивые к коррозии и химически инертные. Основные благородные металлы – это золото, серебро, и металлы платиновой группы (платина, палладий, иридий, осмий и др.).

Неблагородные металлы – металлы, легко подвергающиеся коррозии, и не встречающиеся в природе в чистом виде. Их всегда добывают из руд.

В зависимости от плотности

металлы применяемые в стоматологии бывают легкие и тяжелые.

В этом вопросе нет единой точки зрения. Наиболее общий критерий – плотность металла больше плотности железа (8г/см³) или атомный вес больше 50 а.е.м. Если хотя бы одно условие выполняется – металл тяжелый.

Для экологии и медицины тяжелые металлы — это металлы, которые обладают высокой токсичностью и экологической значимостью. Что создает ещё большую путаницу. Например золото с плотностью 19,32 г/см³ и атомным весом 197 а.е.м. не относят к тяжелым металлам, из-за его инертности и отличной биосовместимости.

Стоматологические сплавы металлов классификация

По назначению сплавы металлов в ортопедической стоматологии делят на:

  • А. Конструкционные – из них делают зубные протезы.

  • Б. Сплавы для пломбирования – амальгамы.

  • В. Сплавы, для изготовления стоматологических инструментов.

  • Г. Вспомогательные. Металлы, применяемые для других целей (Например, легкоплавкие металлы для штамповки или припои).

По химическому составу сплавы применяемые в стоматологии бывают:

  • Сплавы благородных металлов

  • Сплавы неблагородных металлов

Благородные металлы в стоматологии и сплавы

Благородные металлы в стоматологии стоят дорого. Но, несмотря на это, их продолжают применять из-за отличной биосовместимости. Они не подвержены коррозии, не реагируют со слюной, не вызывают аллергию и интоксикацию.

Золотой сплав часто может стать единственным вариантом для пациентов с полиэтиологической контактной аллергией.

Благородные сплавы долговечны. Единственный их недостаток (кроме цены) – это мягкость и подверженность истиранию.

Сплавы золота в стоматологии.

  • Сплав золота 900-й пробы. (ЗлСрМ-900-40).

СОСТАВ: 90% золота, 4% серебра, 6% меди.

СВОЙСТВА: температура плавления 1063°С.

Сплав отличается пластич­ностью, легко под­да­ется механи­ческой об­работке под давлением (штамповке, вальце­ванию, ковке).

Из-за низкой твердости сплав легко стирается. Поэтому, при изготов­лении штампованных коронок изнутри, на жевательную поверх­ность или режущий край, заливают припой.

Выпускают: в виде дис­ков диамет­ром 18, 20, 23, 25мм и бло­ков по 5г.

Применение: для штампованных коронок и мостовидных протезов из

сплава благородных металлов в ортопедической стоматологии

  • Сплав золота 750-й пробы (ЗлСрПлМ-750-80)

Состоит из Золота – 75%, Серебра и меди по 8%, и платины – 9%

Платина придает этому сплаву упругость и уменьшает усадку при литье.

Применяют для изготовления литых золотых частей бюгельных протезов, кламмеров и вкладок

  • Сплав золота стоматологический 750-й пробы (ЗлСрКдМ)

В состав добавлен кадмий – 5-12%.

За счет кадмия снижается температура плавления сплава до 800 С. (Средняя температура плавления золотых сплавов 950-1050 С.) Что позволяет применять этот сплав в качестве припоя.

Серебряно-палладиевые сплавы отличаются большей Т.пл = 1100-1200 С. Их физико-механические свойства похожи на золотые сплавы. Но устойчивость к коррозии ниже. (Серебро темнеет при контакте с соединениями серы) Сплавы пластичные и ковкие. Паяются золотым припоем (ЗлСрКдМ).

  • Сплав Пд-250

СОСТАВ: 75,1% серебра, 24,5% палладия, немного ле­гирующих металлов (цинк, медь, золото).

Применяют для штампованных коронок. Выпускают соответственно в виде дисков различного диаметра (18, 20, 23, 25 мм) и толщиной 0,3 мм.

  • Сплав Пд-190

Состав : 78% серебра, 18,5% палладия, другие металлы.

Применяют как сплав для литья в стоматологии.

  • Сплав Пд-150

Уменьшено кол-во палладия до 14,5%, увеличено серебра.

Применяют для вкладок.

Неблагородные сплавы металлов применяемые в ортопедической стоматологии

Для уменьшения стоимости протезов разрабатывались сплавы, на основе более дешевых металлов, чтобы заменить дорогое золото.

В СССР наиболее широко использовалась дешевая нержавеющая сталь.

Сегодня основную массу ранка занимают кобальто-хромовые и никель-хромовые сплавы.

Сплав нержавеющий стоматологический-сталь стоматологическая

Сталь – самый распространенный сплав в мире. Его свойства отлично известны. А за счет легирующих агентов ей можно придать какие угодно свойства.

Сталь стоматологическая очень дешевая.

Из недостатков: сталь тяжелая (плотность около 8 г/см3) и химически активная. Может вызвать аллергию, гальванозы.

Нержавеющая сталь в стоматологии ортопедической — марки:

  • СТАЛЬ МАРКИ 1 X 18 H 9Т (ЭЯ-1)

Стоматологический сплав для коронок СОСТАВ :

1,1% углерода; 9% никеля;18% хрома; 2% марганца, 0,35% титана, 1,0% кремния, остальное — железо.

Применяют для несъемных протезов: индивидуальных коронок, литых зубов, фасеток.

  • СТАЛЬ МАРКИ 20Х18Н9Т

СОСТАВ: 0,20% углерода, 9% никеля, 18%хрома, 2,0% марганца, 1,0% титана, 1,0% кремния, остальное — железо.

Из этого типа стали в заводских условиях изготавливают:

  • стандартные гильзы , идущие на производство штампованных коро­нок;
  • заготовки кламмеров (для ЧСПП)

  • эластичные металлические матрицы для пломбирования, а также сепарационные по­лоски

  • СТАЛЬ для стоматологии МАРКИ 25Х18Н102С

СОСТАВ : 0,25% углерода, 10,0% никеля, 18,0% хрома, 2,0% мар­ганца, 1,8% кремния, остальное — железо.

ПРИМЕНЕНИЕ : в заводских условиях изготавливают:

  • зубы (боковые верхние и нижние) для штампованнопаяных мостовидных протезов;

  • проволоку ортодонтическую диаметром от 0,6 до 2,0 мм (шаг 0,2мм)
    .

В качестве припоя для неблагородных сплавов используется серебряный припой ПСР-37 или припой Цетрина.

Содержит серебро-37%, медь – 50%, Марганец – 8-9%, Цинк – 5-6%

Температура плавления – 725-810 С

Кобальт хромовый сплав в стоматологии

(кобальто-хромовый сплав, хромокобальтовый сплав)


СОСТАВ:

  • кобальт 66-67%, основа сплава, твердый, прочный и лёгкий металл.
  • хром 26-30%, вводимый в основном(как и в стали) для повышения устойчивости коррозии.
  • никель 3-5%, повышает пластичность, ковкость, вязкость сплава, улучшает технологические свойства сплава.
  • молибден 4-5,5%,повышает проч­ность сплава.
  • марганец 0,5%, увеличивающий прочность, качество литья, пони­жаю­щий температуру плавления, способствующий удалению ток­сических соединений серы из сплава.
  • углерод 0,2%, снижает температуру плавления и улучшает жид­котекучесть сплава.
  • кремний 0,5%, улучшает качество отливок, повышает жидко­текучесть сплава.
  • железо 0,5%, повышает жидкотекучесть, улучшает ка­чество литья.

СВОЙСТВА КХС-сплава стоматологического:

Отличается хорошими физико-механическими свойст­вами, малой плотностью (и соответственно весом реставраций) и отличной жидкотекучестью, позво­ляющей отливать ажурные изделия высокой прочности.

Температура плавления составляет 1458 С

Сплав устойчив к истира­нию и долго сохраняет зеркальный блеск.

Кобальтохромовый сплав в стоматологии

Используется в для литых коронок, мостовидных протезов, цельнолитых бюгельных протезов, каркасов металлокера­мических про­тезов, съемных протезов с литыми базисами, шинирующих аппаратов, литых кламмеров.

Металлокерамика состав металла в стоматологии

Целлит-К – кобальто-хромовый

сплав входящий в состав металла

металлокерамики в стоматологии.

Сплавы, в которых основной элемент Ni. Элементы этого сплава кроме никеля — Сг (не менее 20%), Со и молибден (Мо) (4%).

По свойствам сплав никеля близок к сплаву кобальта.

Применяется: для литья несъемных протезов и каркасов съемных протезов.

Сегодня ограничено применение сплавов никеля из-за их высокой аллергенности.

Сплавы титана в стоматологии ортопедической

В стоматологии применяют как чистый титан (99,5%), так и его сплавы.


Чистый титан

Для литья и фрезерования применяют сплавы титана, алюминия и ванадия (90-6-4% соответственно). И сплав титана с алюминием и ниобием (87-6-7%).

Сплавы титана лёгкие и удивительно прочные. Но тугоплавкие и тяжелые в обработке.

В ортодонтии, для изготавления дуг применяют сплавы титана, ванадия и алюминия (75-15-10%).

Металлы используемые в ортопедической стоматологии

Сплав никеля и титана – никелид титана – никель 55%, титан 45%.

Сплав обладает памятью формы. Деформированные охлажденные изделия из этого сплава при нагревании приобретают исходную форму.

Сплав применяется в ортодонтии, где при действии температуры тела он принима
ет нужную форму.

Также из него делают эндодонтические инструменты с памятью формы.

Вспомогательные сплавы применяемые в ортопедической стоматологии

Бронза – сплав меди с оловом. В стоматологии применяется алюминиевая бронза (алюминий вместо олова). Из нее делают лигатуры для шинирования переломов челюстей.

Латунь – сплав меди с цинком – из нее делают штифты для разборных моделей.

Магналий – сплав алюминия и магния – из него делают детали самолетов (сплав очень легкий и прочный). В стоматологии из него делают артикуляторы и некоторые кюветы.

Амальгамы – сплав металла с ртутью. Применяются для пломбирования.

Тема слишком обширная, о амальгаме в стоматологии будет отдельная статья.

Легкоплавкие сплавы в стоматологии ортопедической

Сплавы легкоплавкие (Меллота, Вуда, Розе) – содержат Висьмут, Олово, Свинец

– их температура плавления около 70 С.

Применяются для штампов при штамповки коронок, контр штампов, изготовления разборных моделей.

Легкоплавкие металлы в стоматологии

Сплав Вуда.

Температура плавления 68 С.

Состав: Висмут – 50%, Свинец – 25%, Олово – 12,5%, Кадмий – 12,5%.

Токсичен, так как содержит кадмий.

Сплав Меллота.

Температура плавления 63 С

Состав: Висмут – 50%, Свинец – 20%, Олово – 30%.

Сплав Розе для стоматологии.

Температура плавления 94 С.

Состав: Висмут – 50%, Свинец и Олово по 25%.

Инструментальная сталь – содержит углерод от 0,7% и более.

Отличается высокой прочностью и твердостью (после специальной температурной обработки).

Добавление к стали вольфрама, молибдена, ванадия и хрома делает сталь способной хорошо резать при высокой скорости. Такую сталь используют для боров и фрез.

Карбид вольфрама – не сплав. Химическое соединение вольфрама с углеродом (химическая формула WC). Сопостовим по твердости с алмазом. Применяют для производства бронебойных танковых снарядов. А ещё для твердосплавных стоматологических боров.

Диоксид циркония – тоже не сплав. Химическое соединение металла циркония с кислородом. По химической природе близок к керамике, но твёрже и прочнее. В стоматологии применяют для изготовления фрезерованных протезов.

Сплавы металлов применяемых в стоматологии (заключение)

Представить современную стоматологию без металлов невозможно. Они в основе всего. И нет материала, который мог бы заменить металл.

Применение металлов в стоматологии

Металлы в стоматологии применяют для:

    • Коронок и мостовидных протезов
    • Каркасов бюгельных протезов
    • Металлических базисов чспп и пспп
    • Дентальных имплантатов
    • Для инструментов и приспособлений
    • Как вспомогательный материал для различных технологических процессов
    • Для пломбирования

Видео: Металл с памятью формы в медицине

Металл В Стоматологии-Стоматологические Сплавы обновлено: Февраль 4, 2017 автором: Алексей Василевский

Кобальт-хромовые сплавы

Со — Сг сплавы впервые в стоматологической практике начали использоваться в 30-х годах, и с этого времени они успешно заменяют золотосодержащие сплавы IV типа при изготовлении каркасов частичных зубных протезов, прежде всего благодаря их относительно низкой стоимости, что является существенным фактором при изготовлении таких больших отливок.

Состав

Сплав содержит кобальт (55 - 65%) и хром (до 30%). Другие основные легирующие элементы - молибден (4 - 5%) и реже титан (5%) (Таблица 3.3.6). Кобальт и хром формируют твердый раствор с содержанием хрома до 30%, что является пределом растворимости хрома в кобальте; избыток хрома образует вторую хрупкую фазу.

В целом, чем выше содержание хрома, тем устойчивее сплав к коррозии. Поэтому производители стараются максимально увеличить количество хрома, не допуская образования второй хрупкой фазы. Молибден вводят для образования мелкозернистой структуры материала путем создания большего количества центров кристаллизации во время процесса затвердевания. Это имеет дополнительное преимущество, так как молибден вместе с железом дают существенное упрочнение твердого раствора. Тем не менее, зерна имеют довольно большие размеры, хотя их границы очень трудно определить из-за грубой дендритной структуры сплава.

Углерод, присутствующий только в небольших количествах, является чрезвычайно важным компонентом сплава, поскольку незначительные изменения в его количественном содержании могут существенно изменить прочность, твердость и пластичность сплава. Углерод может сочетаться с любым другим легирующим элементом с образованием карбидов. Тонкий слой карбидов в структуре может значительно повысить прочность и твердость сплава. Однако, слишком большое количество карбидов может привести к чрезмерной хрупкости сплава. Это представляет проблему для зубного техника, которому необходимо гарантировать, что во время плавки и литья сплав не абсорбировал излишнее количество углерода. Распределение карбидов также зависит от температуры литья и степени охлаждения, т.к. единичные кристаллы карбидов по границам зерен лучше, чем их сплошной слой вокруг зерна.

Свойства

Для зубного техника работа с этими сплавами труднее, чем с золотосодержащими сплавами, поскольку перед литьем, их нужно нагреть до очень высоких температур. Температура литья этих сплавов в пределах 1500-1550°С, а связанная с ней литейная усадка равна примерно 2%.

Эту проблему в основном решили с появлением оборудования для индукционного литья и огнеупорных формовочных материалов на фосфатной основе.

Точность отливки страдает при таких высоких температурах, что значительно ограничивает использование этих сплавов, в основном для изготовления частичных зубных протезов.

Эти сплавы трудно полировать обычным механическим способом из-за их высокой твердости. Для внутренних поверхностей протезов, непосредственно прилегающих к тканям полости рта, применяется метод электролитической полировки, чтобы не снизить качество прилегания протеза, но внешние поверхности приходится полировать механическим способом. Преимущество такого способа в том, что чисто отполированная поверхность сохраняется более длительное время, что является существенным достоинством для съемных зубных протезов.

Недостаток пластичности, усугубляемый включениями углерода, представляет собой особую проблему, и в частности потому, что эти сплавы склонны к образованию пор при литье. При сочетании эти недостатки могут приводить к поломкам кламмеров съемных протезов.

Тем не менее, существует несколько свойств этих сплавов, которые делают их почти идеальными для изготовления каркасов частичных зубных протезов. Модуль упругости Со - Сг сплава обычно равен 250 ГПа, в то время как для сплавов, рассмотренных ра нее, этот показатель находится в диапазоне 70 - 100 ГПа. Такой высокий модуль упругости имеет преимущество в том, что протез, и особенно плечи кламмера, могут быть изготовлены с более тонким поперечным сечением, сохраняя при этом необходимую жесткость.

Сочетание такого высокого показателя модуля упругости с плотностью, которая приблизительно вполовину ниже, чем у золотосодержащих сплавов, значительно облегчают вес отливок. Это, несомненно, большое преимущество для комфортности пациента. Добавление хрома обеспечивает получение коррозионностойких сплавов, которые применяют для изготовления многих имплантатов, включая бедренные и коленные суставы. Поэтому можно с уверенностью утверждать, что эти сплавы обладают высокой степенью биосовместимости.

Некоторые сплавы также содержат никель, который добавляют производители при получении сплава ш усиления вязкости и снижения твердости. Однако никель известный аллерген, и его применение может вызывать аллергические реакции слизистой полости рта.

Титановые сплавы

Интерес к титану с точки зрения использования его при изготовлении съемных и несъемных зубных протезов появился одновременно с внедрением титано

Вых стоматологических имплантатов. Титан обладает целым рядом уникальных свойств, в том числе высокой прочностью при низкой плотности и биосовместимостью. Кроме того, предполагали, что, если для изготовления коронок и мостовидных протезов, опирающихся на титановые имплантаты, использовать другой металл, а не титан, это может привести к гальваническому эффекту.

Открытие элемента титана связывают с именем Reverend William Gregor в 1790, но первый образец чистого титана был получен лишь в 1910 году. Чистый титан получают из титановой руды (например, рутила) в присутствии углерода или хлора. Полученный в результате нагревания TiCl4 восстанавливается расплавленным натрием с образованием титановой губки, которая затем плавится в условиях вакуума или в среде аргона для получения заготовки (слитка) металла.

Состав

В клиническом аспекте наибольший интерес представляют две формы титана. Это технически чистая форма титана и сплав титана - 6% алюминий - 4% ванадий.

Технически чистый титан

Титан - металл, склонный к аллотропическим или полиморфным превращениям, с гексагональной плотноупакованной структурой (а) при низких температурах и структурой ОЦК (Р) при температуре выше 882С. Чистый титан фактически является сплавом титана с кислородом (до 0,5%). Кислород находится в растворе, так что металл является единственной кристаллической фазой. Такие элементы, как кислород, азот и углерод обладают большей растворимостью в гексагональной плотноупакованной структуре а-фазы, чем в кубической структуре 3-фазы. Эти элементы формируют промежуточные твердые растворы с титаном и способствуют стабилизации а-фазы. Такие элементы, как молибден, ниобий и ванадий, выступают в качестве Р-стабилизаторов.

Сплав титан - 6% алюминий - 4% ванадий

При добавлении к титану алюминия и ванадия в небольших количествах, прочность сплава становится выше, чем у чистого титана Ti. Считается, что алюминий является а-стабилизатором, а ванадий выступает в качестве В-стабилизатора. Когда их добавляют к титану, температура, при которой происходит переход гх-Р, понижается настолько, что обе и формы могут существовать при комнатной температуре. Таким образом, Ti - 6% Al - 4% V имеет двухфазную структуру а- и 3-зерен.

Свойства

Чистый титан это белый блестящий металл, который обладает низкой плотностью, высокой прочностью и коррозионной стойкостью. Он пластичный и является легирующим элементом для многих других металлов. Сплавы титана широко применяются в авиационной промышленности и в военной области благодаря высокой прочности на разрыв (-500 МПа) и способности выдерживать воздействие высоких температур. Модуль упругости чистого титана тех.ч.Т равен ПО ГПа, т.е. вдвое ниже модуля упругости нержавеющей стали и кобальт-хромового сплава.

Свойства при растяжении чистого титана Tex.4.Ti в значительной степени зависят от содержания кислорода, и хотя предел прочности при растяжении, показатель постоянной деформации и твердость увеличиваются с повышением концентрации кислорода, все это происходит за счет снижения пластичности металла.

Путем легирования титана алюминием и ванадием возможно получение широкого спектра механических свойств сплава, превосходящих свойства технически чистого титана тех.ч.Тг Такие сплавы титана являются смесью а- и Р-фаз, где ос-фаза относительно мягкая и пластичная, а Р-фаза жестче и тверже, хотя и обладает некоторой пластичностью. Таким образом, меняя относительные пропорции фаз можно получить большое разнообразие механических свойств.

Для сплава Ti - 6% Al -4% V можно добиться более высокой прочности при растяжении (-1030 МПа), чем для чистого титана, что расширяет область применения сплава, в том числе при воздействии больших нагрузок, например, при изготовлении частичных зубных протезов.

Важным свойством титановых сплавов является их усталостная прочность. Как чистый титан тех.ч.Т1, так и сплав Ti - 6% Al - 4%V имеют четко определенный предел усталости с кривой S - N (напряжение - число циклов), выравнивающейся после 10 - 10 циклов знакопеременного напряжения, величина которого устанавливается на 40-50% ниже предела прочности на растяжение. Таким образом, тех. ч. Ti не следует применять в случаях, где требуется усталостная прочность выше 175 МПа. Наоборот, для сплава Ti - 6% Al - 4% V этот показатель составляет примерно 450 МПа.

Как известно, коррозия металла является основной причиной разрушения протеза, а также возникновения аллергических реакций у пациентов под воздействием выделяющихся токсичных компонентов. Титан стал широко использоваться именно потому, что это один из самых устойчивых к коррозии металлов. В полной мере эти качества можно отнести и к его сплавам. Титан обладает высокой реакционной способностью, что является в данном случае его сильной стороной, поскольку оксид, образующийся на поверхности (ТЮ2), чрезвычайно стабилен, и он оказывает пассивирующий эффект на весь остальной металл. Высокая устойчивость титана к коррозии в биологической области применения хорошо изучена и подтверждена многими исследованиями.

Литье титановых сплавов представляет серьезную технологическую проблему. Титан имеет высокую температуру плавления (~1670°С), что затрудняет компенсацию усадки отливки при охлаждении. В связи с высокой реакционной способностью металла, литье необходимо выполнять в условиях вакуума или в инертной среде, что требует использования специального оборудования. Другая проблема заключается в том в том, что расплав имеет тенденцию вступать в реакцию с литейной формой из огнеупорного формовочного материала, образуя слой окалины на поверхности отливки, что снижает качество прилегания протеза. При конструировании протезов, опирающихся на имплантаты (супраструктуры) следует выдерживать очень жесткий допуск для получения хорошего прилегания к имплантату. В противном случае можно нарушить ретенцию имплантата в кости. В титановых отливках также часто можно наблюдать внутреннюю пористость. Поэтому используются и другие технологии для изготовления зубных протезов из титана, например, такие как CAD/САМ-технологии в сочетании с прокаткой и методом искровой эрозии.

Некоторые свойства сплавов неблагородных металлов, рассмотренных выше, представлены в Таблице 3.3.7.

Выводы

В настоящее время в стоматологии используется множество различных сплавов. Для того чтобы сделать рациональный выбор из существующего многообразия сплавов с высоким содержанием золота или друга типов сплавов, врачу-стоматологу, как никогда раньше, необходимо обладать знаниями о природе сплавов, их физических и механических свойствах.

Стоимость сплава является существенной частьюв сумме затрат на протезирование. Однако, недорогие сплавы, как правило, требуют дополнительных расходов на изготовление протезов и в конечном итоге меньшая стоимость сплава часто нивелируется повышенной стоимостью производства протеза. Важно также отметить, что высокое содержание золота в сплаве открывает большую возможность изготовления высококачественного зубного протеза.

Клиническое значение

Полную ответственность за выбор материалов для изготовления зубных протезов несет врач-стоматолог, а не зубной техник.

Основы стоматологического материаловедения
Ричард ван Нурт

Сплавы титана обладают высокими технологическими и физико-механическими свойствами, а также токсикологической инертностью. Титан марки ВТ-100 листовой используется для штампованных коронок (толщина 0,14-0,28 мм), штампованных базисов (0,35-0,4 мм) съемных протезов, каркасов титанокерамических протезов, имплантатов различных конструкций. Для имплантации применяется также титан ВТ-6.

Для создания литых коронок, мостовидных протезов, каркасов дуговых (бюгельных), шинирующих протезов, литых металлических базисов применяется литьевой титан ВТ-5Л . Температура плавления титанового сплава составляет 1640° С.

В зарубежой специальной литературе существует точка зрения, по которой титан и его сплавы выступают альтернативой золоту. При контакте с воздухом титан образует тонкий инертный слой оксида. К его другим достоинствам относятся низкая теплопроводность и способность соединяться с композиционными цементами и фарфором. Недостатком является трудность получения отливки (чистый титан плавится при 1668° С и легко реагирует с традиционными формовочными массами и кислородом). Следовательно, он должен отливаться и спаиваться в специальных приборах в бескислородной среде. Разрабатываются сплавы титана с никелем, которые можно отливать традиционным методом (такой сплав выделяет очень мало ионов никеля и хорошо соединяется с фарфором). Новые методы создания несъемных протезов (в первую очередь коронок и мостовидных протезов) по технологии CAD/CAM (компьютерное моделирование/компьютерное фрезерование) сразу устраняет все проблемы литья. Определенные успехи достигнуты и отечественными учеными.

Съемные зубные протезы с тонколистовыми титановыми базисами толщиной 0,3-0,7 мм имеют следующие основные преимущества перед протезами с базисами из других материалов:

Абсолютную инертность к тканям полости рта, что полностью исключает возможность аллергической реакции на никель и хром, входящие в состав металлических базисов из других сплавов; - полное отсутствие токсического, термоизолирующего и аллергического воздействия, свойственного пластмассовым базисам; - малую толщину и массу при достаточной жесткости базиса благодаря высокой удельной прочности титана; - высокую точность воспроизведения мельчайших деталей рельефа протезного ложа, недостижимую для пластмассовых и литых базисов из других металлов; - существенное облегчение в привыкании пациента к протезу; - сохранение хорошей дикции и восприятия вкуса пищи.

Применение в стоматологии получили пористый титан, а также никелид титана, обладающий памятью формы в качестве материалов для имплантатов. Был период, когда в стоматологии получило распространение покрытие металлических протезов нитридом титана, придающее золотистый оттенок стали и КХС и изолирующее, по мнению авторов метода, линию паяния. Однако эта методика не получила широкого применения по следующим причинам:

1) покрытие нитрид-титаном несъемных протезов базируется на старой технологии, т. е. штамповке и пайке;

2) при применении протезов с нитрид-титановым покрытием используется старая технология протезов, таким образом, квалификация стоматологов-ортопедов не повышается, а остается на уровне 50-х годов;

3) протезы с нитрид-титановым покрытием неэстетичны и рассчитаны на дурной вкус некоторой части населения. Наша задача - не подчеркивать дефект зубного ряда, а скрывать его. И с этой точки зрения данные протезы неприемлемы. Золотые сплавы тоже имеют недостатки эстетического характера. Но приверженность ортопедов-стоматологов к золотым сплавам объясняется не их цветом, а технологичностью и большой устойчивостью к воздействию ротовой жидкости;

4) клинические наблюдения показали, что нитрид-титановое покрытие слущивается, иначе говоря, это покрытие имеет ту же судьбу, что и другие биметаллы;

5) следует иметь в виду, что интеллектуальный уровень наших пациентов значительно возрос, а вместе с этим повысились требования к внешнему виду протеза. Это идет вразрез с попытками некоторых ортопедов найти суррогат золотого сплава;

6) причины появления предложения - покрытие несъемных протезов нитрид-титаном - заключаются, с одной стороны, в отсталости материально-технической базы ортопедической стоматологии, а с другой - в недостаточном уровне профессиональной культуры некоторых врачей-стоматологов.

К этому можно добавить большое количество токсико-аллергических реакций организма пациентов на нитрид-титановое покрытие несъемных протезов.

Такой материал, как титан, обладает целым рядом положительных характеристик, за счет чего он широко применяется в стоматологии.

Его использование в данной отрасли началось в середине прошлого века и успешно продолжается сегодня.

Преимущественные характеристики материала

Титан и сплавы на его основе имеют качества, которые позволяют применять их при изготовлении ряда стоматологических конструкций, а именно:

  • имплантов;
  • штифтов;
  • коронок;
  • мостовидных протезов;
  • съемных протезов.

За счет технологических и физико-механических характеристик сплавов на основе данного материала соблюдается оптимальное сочетание двух основных качеств, необходимых для стоматологических конструкций:

  • пластичность;
  • твердость.

Этими двумя характеристиками обладает пористый титан и никелид титана. Они применяются при изготовлении имплантов, поскольку имеют такое качество, как память формы.

Доказано, что титановые сплавы предпочтительны для изготовления имплантов, по целому ряду причин:

  1. Способность к пассивизации , то есть, образованию особого рода пленки, состоящей из оксидов. Эта пленка инертна, то есть, не вступает в реакции с другими веществами.
  2. Низкая теплопроводность .
  3. Возможность соединения и комбинироваться с другими материалами , например, фарфором, стоматологическими композитами.
  4. Простота технологии отлива. Это качество относится к особым сплавам титана и никеля, применяемым в стоматологии.

При изготовлении коронок применение титана дает ряд особых преимуществ, за счет следующих качеств:

  • инертность, благодаря которой снижается риск инфицирования;
  • небольшой удельный вес, за счет чего готовая коронка легкая;
  • упругость;
  • прочность, за счет чего снижается вероятность истирания.

При изготовлении съемных протезов титан предпочтительнее других материалов. Конструкции обладают такими характеристиками, как:

  • гипоаллергенность;
  • отсутствие токсичного воздействия на организм;
  • легкость;
  • прочность;
  • точность воспроизведения рельефов и поверхностей, контактирующих с тканями.

Съемные протезы на основе данного материала не причиняют пациенту дискомфорта при использовании. У пациентов не наблюдается существенных изменения в дикции, в восприятии вкуса.

Титан и сплавы на его основе являются высококачественными материалами, имеющими большое число преимуществ для изготовления стоматологических конструкций.

Уникальные свойства и виды сплавов

Титан в стоматологии чаще всего применяют в виде сплавов. Сплавы на основе этого материала с добавлением других элементов придают полученному материалу особые свойства.

Для изготовления стоматологических конструкций применяют сплавы титана с такими элементами, как:

  • алюминий;
  • хром;
  • молибден;
  • никель;
  • олово;
  • марганец;
  • цирконий;
  • медь;
  • кремний;
  • железо.

Все, перечисленные выше добавки, относятся к трем типам веществ, каждый из которых имеет особое влияние на титан:

  1. Альфа-стабилизаторы. В составе сплава они стабилизируют свойства материала. К этой группе относятся алюминий, кислород и азот. Они повышают прочность материала за счет повышения температуры при его переходе в другую фазу.
  2. Нейтральные стабилизаторы. К ним относятся олово и цирконий. Они повышают прочность материала, не меняя его свойств.
  3. Бета-стабилизаторы. К ним можно отнести все прочие элементы, применяемые при изготовлении сплава, например, медь, кремний, никель. Они повышают прочность материала за счет снижения температуры при переходе в другую фазу.

В таблице ниже приведены марки титановых сплавов и область их применения в стоматологии.

Каждый из приведенных в таблице сплавов имеет особые свойства, что делает его оптимальным материалом для изготовления определенного типа конструкций:

  1. Сплав ВТ5Л имеет в своем составе алюминий. Он придает сплаву прочность и упругость. Он хорошо поддается ковке, штамповке и литью.
  2. Сплав ВТ-6 состоит из титана, алюминия и ванадия. Эти элементы придают материалу прочность и пластичность. Он менее других склонен к коррозии.
  3. Сплав ВТ1-00 изготавливается из титана и железа. Он отличается высокой пластичностью.

В зависимости от сочетания элементов в сплаве, он становится применим для изготовления различного рода стоматологических конструкций.

Техника обработки

Титан, применяемый для стоматологических целей, имеет особые свойства, поэтому при изготовлении конструкций должны применяться особые правила его обработки.

При обработке данного материала должны учитываться следующие параметры:

  • физические свойства;
  • фазы окисления;
  • особенности строения кристаллической решетки.

Для обработки такого рода материала применяют особые фрезы. Они имеют насечку крестообразной формы.

При их применении необходимо соблюдать следующие условия:

  • уменьшенный угол воздействия;
  • уменьшенная сила давления на фрезу;
  • охлаждение фрезы в процессе работы.

При нарушении технологии и правил обработки, материал претерпевает ряд изменений. Изделие из титана меняет цвет, поверхность становится шероховатой. На поверхности изделия могут образовываться сколы. Подобного рода дефекты неприемлемы для изготовления стоматологических конструкций.

Обработка материала включает в себя два основных процесса:

  1. Изготовление изделия. Для этой цели применяются особые фрезы. При изготовлении бюгельных протезов или каркасов применяются карборундовые диски и камни. Применяется также и пескоструйный метод обработки.
  2. Шлифовка и полировка изделия. Для этой цели применяются особые вращающиеся резиновые головки. Чтобы снизить вероятность повреждения поверхности, при шлифовке дополнительно применяются различные виды полировочных паст.

При работе с таким материалом, как титан, разработаны особые параметры. При работе с фрезой соблюдаются следующие требования:

  • невысокая скорость вращения;
  • ведение работы только в одном направлении;
  • сглаживание острых углов;
  • периодическое очищение фрезы.

При проведении пескоструйной обработки должны соблюдаться следующие параметры:

  • применение одноразового аксида алюминия;
  • применение мелкозернистого песка;
  • направление струи под прямым углом.

После проведения обработки изделие оставляют на несколько минут, для пассивации, то есть, для образования на поверхности пленки их оксидов. После этого изделие очищают с помощью пара.

Особые требования предъявляются и к уходу за инструментами.

  1. Инструменты, применяемые для обработки и полировки титана, хранят отдельно от прочих.
  2. Инструменты подвергаются периодической чистке. Во время работы фрезу чистят особыми кисточками. После работы их очищают пескоструйным способом.

При изготовлении стоматологических конструкций из титановых сплавов применяются особые методы. Процесс работы протекает с соблюдением всех требований и норм.

Изготовление конструкций

При изготовлении протезов из титановых сплавов применяются различные методики. Каждая из методик имеет ряд преимуществ и технику проведения работ.

Литьевой метод

С помощью этого способа делают отдельные коронки, мостовидные протезы. Процесс включает в себя несколько этапов.

  1. Оттиск челюстей пациента.
  2. Приготовление литейной формы.
  3. Изготовление рабочей модели протеза.
  4. Подгонка и шлифовка конструкции.
  5. Установка поверхностного покрытия из керамики или пластика.

Данный способ подходит для замены как одного зуба, например, моляра, или нескольких зубов.

Штамповка

Штамповка протезов состоит из нескольких этапов:

  1. Изготовление модели из гипса.
  2. Моделировка с применением стоматологического воска.
  3. Изготовление металлического штампика, повторяющего форму зуба.
  4. Подбор гильзы из титанового сплава.
  5. Штамповка гильзы по форме штампика.

При изготовлении протезов данным способом применяют горячую штамповку.

Пластичная формовка

При применении этого метода работу проводят следующим образом:

  • изготовление слепка челюсти;
  • изготовление матрицы;
  • подгонка листовой заготовки по форме матрицы.

Этот метод представляет собой несложную технологию, которая позволяет создать конструкцию точно и быстро.

Система cad/cam

Сокращения CAD/CAM являются английскими аббревиатурами и переводятся как «производство с применением компьютерных технологий».

Этот способ предполагает следующие этапы работы:

  • изготовление слепка;
  • подготовка гипсовой модели;
  • сканирование модели, построение трехмерной модели с применением компьютерных технологий;
  • программирование;
  • автоматизированная обработка протеза на станке.

Изготовление протеза из сплава происходит под контролем компьютера, что исключает неточности или ошибки.

Метод 3- Д печати

Изделие изготавливается с применением особого принтера, принцип работы которого состоит в том, что металл наносится на модель в виде порошка в несколько слоев.

Сваривание происходит посредством лазера. В процессе наслаивания производится необходимый протез заданной формы.

Процесс работы контролируется с помощью компьютерной программы, поэтому вероятность неточностей сведена к минимуму.

В видео специалист рассказывает о достоинствах титана и его сплавах.

Выводы

Титан является современным высокотехнологичным материалом, из которого успешно изготавливаются зубные протезы и импланты любой сложности.

Они имеют ряд преимуществ, в числе которых безвредность для здоровья пациента, высокая скорость приживаемости и прочность.

Если вы нашли ошибку, пожалуйста, выделите фрагмент текста и нажмите Ctrl+Enter .

Титан и тантал – «компромиссные» металлы для медицины
Использование в медицине различных металлоизделий практикуется издревле. Сочетание таких полезных свойств металлов и их сплавов, как прочность, долговечность, гибкость, пластичность, упругость, не имеет альтернатив, в частности, при изготовлении ортопедических конструкций, медицинского инструментария, приспособлений для скорейшего сращивания переломов. А в последние десятилетия, благодаря открытию эффекта «памяти формы» и внедрению прочих инноваций металлы стали широко применяться также в сосудистой и нейрохирургии для изготовления шовного материала, сетчатых стентов для расширения вен и артерий, крупных эндопротезов, в офтальмологической и стоматологической имплантологии.

Однако далеко не все металлы пригодны для применения в медицинской сфере, и главными деструктивными причинами здесь выступают подверженность коррозии и вступление в реакцию с живыми тканями – факторы, имеющие разрушительные последствия, как для металла, так и для самого организма.

Конечно, вне конкуренции стоят золото и металлы платиновой группы (платина, иридий, осмий, палладий, родий и т.п.). Тем не менее, возможность использования драгметаллов для массового применения практически отсутствует ввиду их запредельно высокой стоимости, да и сочетание полезных свойств, востребованных в тех или иных конкретных клинических ситуациях, присуще благородным металлам далеко не всегда.

Значительное место в этой сфере по сегодняшний день занимают нержавеющие стали, легированные определенными добавками для получения требуемых характеристик. Но подобные металломатериалы, которые в сотни раз дешевле драгметаллов, недостаточно эффективно противостоят коррозии и другим агрессивным воздействиям, что значительно ограничивает возможность их применения для целого ряда медицинских нужд. Кроме того, препятствием для приживления изделий из нержавеющих сталей, имплантируемых внутрь организма, является их, конфликт с живыми тканями, обуславливающий высокий риск отторжения и других осложнений.

Своеобразным компромиссом между этими двумя полюсами являются такие металлы, как титан и тантал : прочные, ковкие, почти не подверженные коррозии, имеющие высокую температуру плавления, а главное – совершенно нейтральные в биологическом отношении, за счет чего воспринимаются организмом как собственная ткань и практически не вызывают отторжения. Что же касается стоимости, то у титана она не высока, хотя и значительно превосходит аналогичный параметр нержавеющих сталей . Тантал же, будучи достаточно редким металлом, более чем вдесятеро дороже титана, но все равно обходится намного дешевле в сравнении с драгоценными металлами. При сходстве большинства основных эксплуатационных свойств по некоторым из них он все же уступает титану, хотя по некоторым превосходит его, что, собственно, и обуславливает актуальность применения.

Именно в силу данных причин титан и тантал, нередко именуемые «медицинскими металлами», а также ряд их сплавов, получили широчайшее распространение во многих врачебных отраслях. Различаясь по ряду характеристик и, тем самым, взаимно дополняя друг друга, они раскрывают перед современной медициной воистину необъятные перспективы.

Ниже будет более подробно рассказано об уникальных характеристиках титана и тантала, основных сферах их использования в медицине, применении различных форм выпуска данных металлов для изготовления инструментов, ортопедического и хирургического оборудования.

Титан и тантал – определение, актуальные свойства

Титан для медицины


Титан (Ti) – легкий металл серебристого оттенка, внешне напоминающий сталь – является одним из химических элементов Периодической таблицы, размещенным в четвертой группе четвертого периода, атомный № 22 (рис. 1).

Рисунок 1. Титановый самородок.

Имеет атомную массу 47,88 при удельной плотности 4,52 г/см 3 . Температура плавления – 1669°С, температура кипения –3263 °С. В промышленных марках с высокой устойчивостью является четырехвалентным. Характеризуется хорошей пластичностью и ковкостью.

Будучи одновременно легким и обладая высокой механической прочностью, вдвое превышающей аналогичный показатель Fe и вшестеро – Al, титан также имеет низкий коэффициент теплового расширения, что позволяет применять его в широком температурном диапазоне.

Титан характеризуется низким показателем теплопроводности, вчетверо меньшим по сравнению с железом и более чем на порядок меньшем, чем у алюминия. Коэффициент терморасширения при 20°С относительно невелик, но увеличивается по мере дальнейшего нагревания.

Отличается данный материал и весьма высоким показателем удельного электросопротивления, который, в зависимости от наличия посторонних элементов, может варьироваться в диапазоне 42·11 -8 ...80·11 -6 Ом·см.

Титан относится к парамагнитным металлам, имея невысокий показатель электропроводности. И хотя у парамагнитных металлов магнитовосприимчивость, как правило, уменьшается по мере разогревания, титан в данном отношении можно отнести к разряду исключений, поскольку его магнитовосприимчивость, напротив, возрастает с увеличением температуры.

За счет суммы вышеперечисленных свойств титан совершенно незаменим в качестве исходного сырья для различных областей практической медицины и медицинского приборостроения. И все же самым ценным качеством титана для использования с этой целью является его высочайшая устойчивость к коррозионным воздействиям, и, как следствие, гипоаллергенность.

Своей коррозионной стойкостью титан обязан тому, что при температурах вплоть до 530-560 °С поверхность металла покрыта прочнейшей естественной защитной пленкой оксида TiO 2 , совершенно нейтральной по отношению к агрессивным химико-биологическим средам. В отношении устойчивости к коррозии титан сравним с платиной и металлами-платиноидами, и даже превосходит эти благородные металлы. В частности, он исключительно устойчив к воздействию кислото-щелочных сред, не растворяясь даже в столь агрессивном «коктейле», как царская водка. Достаточно отметить, что интенсивность коррозионного разрушения титана в морской воде, имеющей химсостав во многом сходный с человеческой лимфой, не превышает 0,00003 мм/год или 0,03 мм в течение тысячелетия!

Благодаря биологической инертности титановых конструкций к организму человека, при имплантации они не отторгаются и не провоцируют аллергических реакций, быстро обтягиваясь костно-мышечными тканями, структура которых остается постоянной на протяжении всей последующей жизни.

Существенным преимуществом титана является и его ценовая доступность, обуславливающая возможность массового применения.

Марки титана и титановые сплавы
Наиболее востребованными медициной марками титана являются технически чистые ВТ1-0, ВТ1-00, ВТ1-00св. В них почти не присутствуют примеси, количество которых столь незначительно, что колеблется в пределах нулевой погрешности. Так, в марке ВТ1-0 содержится около 99,35-99,75% чистого металла, а в марках ВТ1-00 и ВТ1-00св, соответственно, – 99,62-99,92% и 99,41-99,93%.

На сегодняшний день в медицине используется широкий спектр титановых сплавов, различных по своему химсоставу, и механотехнологическим параметрам. В качестве легирующих добавок в них чаще всего используются Та, Al, V, Mo, Mg, Cr, Si, Sn. К наиболее эффективным стабилизаторам можно причислить Zr, Au и металлы платиновой группы. При введении в титан до 12% Zr его коррозиестойкость увеличивается на порядки. Достичь же наибольшего эффекта удается при добавлении в титан небольшого количества Pt и платиноидов Pd, Rh, Ru. Введение в Ti лишь 0,25% данных элементов позволяет на десятки порядков уменьшить активность его взаимодействия с кипящими концентрированными H 2 SO 4 и HCl.

Широкое распространение в имплантологии, ортопедии и хирургии получил сплав Ti-6Al-4V, значительно превосходящий по эксплуатационным параметрам «конкурентов» на базисе кобальта и нержавеющих сталей. В частности, модуль упругости у титановых сплавов в два раза ниже. Для медицинского применения (имплантаты для остеосинтеза, эндопротезы суставов и т.д.) это является большим преимуществом, так как обеспечивает более высокую механосовместимость имплантата с плотными костными структурами организма, у которых модуль упругости составляет 5¸20 Гпа. Еще более низкими показателями в этом отношении (до 40 ГПа и ниже) характеризуются титано-ниобиевые сплавы, разработка и внедрение которых особенно актуальны. Однако прогресс не стоит на месте, и сегодня на смену традиционному Ti-6Al-4V приходят новые медицинские сплавы Ti-6Al-7Nb, Ti-13Nb-13Zr и Ti-12Mo-6Zr, не содержащие алюминия и ванадия – элементов, оказывающих хотя и незначительное, но все же токсичное воздействие на живые ткани.

В последнее время все более востребованными для медицинских нужд становятся биомеханически совместимые имплантаты, материалом для изготовления которых служит никелид титана TiNi. Причиной роста популярности данного сплава является присущий ему т. наз. эффект запоминания формы (ЭЗФ). Его сущность состоит в том, что контрольный образец, будучи деформированным при пониженных температурах, способен постоянно сохранять вновь обретенные очертания, а при последующем нагревании – восстанавливать изначальную конфигурацию, демонстрируя при этом сверхупругость. Никелид-титановые конструкции незаменимы, в частности, при лечении позвоночных травм и дистрофии опорно-двигательного аппарата.

Тантал для медицины

Определение и полезные характеристики
Тантал (Ta, лат. Tantalum) – тяжелый тугоплавкий металл серебристо-голубоватого «свинцового» оттенка, которому обязан покрывающей его пленке пентаоксида Ta 2 O 5 . Является одним из химических элементов Периодической таблицы, размещенным в побочной подгруппе пятой группы шестого периода, атомный № 73 (рис. 2).

Рисунок 2. Кристаллы тантала.

Тантал имеет атомную массу 180,94 при высокой удельной плотности 16,65 г/см 3 при 20 °C (для сравнения: удельная плотность Fe – 7,87 г/см 3 , Рв – 11,34 г/см 3). Температура плавления – 3017 °С (более тугоплавкими являются только W и Re). 1669°С, температура кипения – 5458 °С. Тантал характеризуется свойством парамагнитности: его удельная магнитовосприимчивость при комнатной температуре составляет 0,849·10 -6 .

Данный конструкционный материал, сочетая в себе высокие показатели твердости и пластичности, в чистом виде хорошо поддается механообработке любыми способами (штамповка, прокатка, ковка, протяжка, скручивание, резание, и т. д.). При низких температурах обрабатывается без сильного наклепа, подвергаясь деформационным воздействиям (ст. сжатия 98,8%) и не нуждаясь при этом в предварительном обжиге. Тантал не утрачивает пластичности даже в случае его заморозки до –198 °C.

Значение модуля упругости тантала составляет 190 Гн/м 2 или 190·102 кгс/мм 2 при 25 °С, благодаря чему он легко перерабатывается в проволоку. Осуществляется также выпуск тончайшего танталового листа (толщина примерно 0,039 мм) и других конструкционных полуфабрикатов.

Своеобразным «двойником» Та является Nb, характеризуемый множеством схожих свойств.

Тантал отличает исключительная стойкость к агрессивным средам. Это является одним из ценнейших его свойств для применения во множестве отраслей, включая медицинскую. Он устойчив к воздействию таких неорганических агрессивных кислот, как HNO 3 , H 2 SO 4 , HCl, H 3 PO 4 , а также органических кислот любых концентраций. По данному параметру его превосходят лишь благородные металлы, да и то не во всех случаях. Так, Та, в отличие от Au, Pt и многих других драгметаллов, «игнорирует» даже царскую водку HNO 3 +3HCl. Несколько меньшая устойчивость тантала наблюдается по отношению к щелочам.

Высокая коррозиестойкость Та проявляется и по отношению к атмосферному кислороду. Процесс окисления начинается только при 285 °С: на металле формируется поверхностная защитная плёнка пентаоксида тантала Ta 2 O 5 . Именно наличие пленки из этого единственно стабильного из всех окислов Та делает металл невосприимчивым к агрессивным реагентам. Отсюда – такая особенно ценная для медицины характеристика тантала, как высокая биосовместимость с организмом человека, воспринимающим вживляемые в него танталовые конструкции как собственную ткань, без отторжения. На этом ценнейшем качестве основано медицинское использование Та в таких сферах, как восстановительная хирургия, ортопедия, имплантология.

Тантал входит в число редких металлов: его запасы в земной коре составляют примерно 0,0002%. Это обуславливает высокую стоимость данного конструкционного материала. Вот почему столь распространено применение тантала в виде наносимых на основной металл тонких пленок защитных антикоррозийных покрытий, имеющих, кстати, в три-четыре раза большую твердость, чем чистый отожженный тантал.

Еще чаще тантал используется в виде сплавов как легирующую добавку в менее дорогостоящие металлы для придания получаемым соединениям комплекса необходимых физико-механических и химсвойств. Стальные, титановые и другие металлические сплавы с добавлением тантала широко востребованы в химико-медицинском приборостроении. Из них, в частности, практикуют изготовление змеевиков, дистилляторов, аэраторов, рентгеновской аппаратуры, устройств контроля и т.д. В медицине тантал и его соединения применяют также с целью изготовления оборудования для операционных.

Примечательно, что в ряде областей тантал, как менее дорогостоящий, но имеющий множество адекватных эксплуатационных характеристик, способен успешно заменять драгметаллы платиноиридиевой группы.

Марки тантала и его сплавы
Основными марками нелегированного титана с содержанием примесей в пределах статистической погрешности являются:

  • ТВЧ: Ta - 99,9%, (Nb) - 0,2%. Прочие примеси, такие как (Ti), (Al), (Co), (Ni), содержатся в тысячных и десятитысячных долях процента.
  • ТВЧ 1: Химический состав указанной марки на 99,9% состоит из Ta. Ниобию (Nb), который всегда присутствует в промышленном тантале, соответствует всего 0,03%.
  • ТЧ: Та – 99,8%. Примеси (не более %): Nb - 0,1%, Fe - 0,005%, Ti, H - по 0,001%, Si - 0,003%, W+Mo, O - по 0,015%, Co - 0,0001%, Ca - 0,002%, Na, Mg, Mn - по 0,0003%, Ni, Zr, Sn - по 0,0005%, Al - 0,0008%, Cu, Cr - по 0,0006%, C, N - по 0,01%.
  • Т: Та – 99,37%, Nb – 0,5%, W – 0,05%, Mo – 0,03%, (Fe) - 0,03%; (Ti) - 0,01%, (Si) - 0,005%.

Высокие показатели твердости Ta позволяют изготавливать на его основе конструкционные твердые сплавы, например, Ta с W (ТВ). Замена сплава TiС танталовым аналогом TaС существенно оптимизирует механические характеристики конструкционного материала и расширяет возможности его применения.

Актуальность применения Та в медицинских целях
На медицинские нужды расходуется примерно 5% производимого в мире тантала. Несмотря на это, значимость его использования в данной отрасли трудно переоценить.

Как уже отмечалось, тантал является одним из лучших металлических биоинертных материалов благодаря самообразующейся на его поверхности тончайшей, но очень прочной и химически стойкой пленки пентаоксида Та 2 О 5 . Благодаря высоким показателям адгезии, облегчающей и ускоряющей процесс сращивания имплантата с живой тканью, наблюдается низкий процент отторжения танталовых имплантатов и отсутствие воспалительных реакций.

Из таких танталовых полуфабрикатов, как лист, пруток, проволока и прочие формы выпуска, изготавливают конструкции, востребованные в пластической, кардио-, нейро- и остеохирургии для наложения швов, сращивания костных обломков, стентирования и клипирования сосудов (рис. 3).

Рисунок 3. Танталовая крепежная конструкция в плечевом суставе.

Применение тонких танталовых пластинчатых и сетчатых конструкций практикуется в челюстно-лицевой хирургии и для лечения черепно-мозговых травм. Волокнами танталовой пряжи замещают ткань мышц и сухожилий. С помощью тантала Хирурги используют танталовое волокно при полостных операциях, в частности, с целью укрепления стенок брюшной полости. Танталовые сетки незаменимы в сфере офтальмопротезирования. Тончайшие танталовые нити используют даже для регенерации нервных стволов.

И, конечно, Та и его соединения, наряду с Ti, повсеместно применяют в ортопедии и имплантологии для изготовления суставных эндопротезов и стоматологического протезирования.

С начала нового тысячелетия обретает все более широкую популярность инновационная сфера медицины, в основу которой заложен принцип использования статических электрополей для активизации в человеческом организме желательных биопроцессов. Научно доказано наличие высоких электретных свойств покрытия из пентаоксида тантала Та 2 О 5 . Титанооксидные электретные пленки ужа получили распространение в сосудистой хирургии, эндопротезировании, создании медицинских инструментов и приборов.

Практическое применение титана и тантала в конкретных отраслях медицины

Травматология: конструкции для сращивания переломов

В настоящее время для скорейшего сращивания переломов все чаще применяют такую инновационную технологию, как металлический остеосинтез. С целью обеспечить стабильное положение костных осколков используют различные фиксирующие конструкции, как наружные, так и внутренние, имплантируемые в тело. Однако применяемые ранее стальные изделия показывают невысокую эффективность ввиду их подверженности коррозии под воздействием агрессивной среды организма и явления гальванизации. В результате наступает как быстрое разрушение самих фиксаторов, так и реакция отторжения, вызывающая воспалительные процессы на фоне сильных болевых ощущений вследствие активного взаимодействия ионов Fe с физиологической средой костно-мышечных тканей в электрическом поле организма.

Избежать нежелательных последствий позволяет изготовление титановых и танталовых фиксаторов-имплантатов, обладающих свойством биосовместимости с живыми тканями (рис. 4).

Рисунок 4. Титановые и танталовые конструкции для остеосинтеза.

Подобные конструкции простых и сложных конфигураций могут быть использованы для продолжительного или даже постоянного внедрения в организм человека. Это особенно важно для пожилых пациентов, поскольку избавляет их от необходимости операции по удалению фиксатора.

Эндопротезирование

Искусственные механизмы, имплантируемые хирургическим путем в костную ткань, называются эндопротезами. Наибольшее распространение получило эндопротезирование суставов – тазобедренного, плечевого, локтевого, коленного, голеностопного и т.д. Процесс эндопротезирования всегда представляет собой сложную операцию, когда часть не подлежащего естественному восстановлению сустава удаляется с последующей ее заменой на имплантат-эндопротез.

К металлическим компонентам эндопротезов предъявляется ряд серьезных требований. Они должны одновременно обладать свойствами жесткости, прочности, эластичности, возможностью создания необходимой поверхностной структуры, стойкостью к коррозионным воздействиям со стороны организма, исключающей риск отторжения, другими полезными качествами.

Для изготовления эндопротезов могут быть использованы различные биоинертные металлы. Ведущее место среди них занимают титан, тантал и их сплавы. Эти долговечные, прочные и удобные в обработке материалы обеспечивают эффективную остеоинтеграцию (воспринимаются костной тканью как естественные ткани организма и не вызывают с его стороны негативных реакций) и быстрое срастание костей, гарантируя стабильность протеза на длительные сроки, исчисляемые десятилетиями. На рис. 5 представлено применение титана в артропластике бедра.

Рисунок 5. Титановый эндопротез тазобедренного сустава.

При эндопротезировании как альтернативу использованию цельнометаллических конструкций широко используют метод плазменного напыления на поверхность неметаллических компонентов протеза защитных биосовместимых покрытий на основе оксидов Ti и Та.

Чистый титан и его сплавы. В сфере эндопротезирования находят широкое применение как чистый Ti (напр. CP-Ti с содержанием Ti 98,2-99,7 %), так и его сплавы. Наиболее распространенный из них Ti-6AI-4V при высоких показателях прочности, характеризуется коррозиестойкостью и биологической инертностью. Сплав Ti-6A1-4V отличается особенно высокой механопрочностью, имея торсионно-аксиальные характеристики, предельно близкие к аналогичным параметрам кости.

К настоящему времени разработан целый ряд современных титановых сплавов. Так, в химическом составе сплавав Ti-5AI-2,5Fe и Ti-6AI-17 Niobium не содержится токсичный V, кроме того, они отличаются низким значением модуля упругости. А сплаву Ti-Ta30 присуще наличие модуля терморасширения, сопоставимого с аналогичным показателем металлокерамики, что обуславливает его устойчивость при длительном взаимодействии с металлокерамическими компонентами имплантата.

Тантало-циркониевые сплавы. В сплавах Та+Zr совмещаются такие важнейшие для эндопротезирования свойства, как биосовместимость с тканями организма на основе коррозионной и гальванической стойкости, поверхностная жесткость и трабекулярная (пористая) структура металлической поверхности. Именно благодаря свойству трабекулярности возможно значительное ускорение процесса остеоинтеграции – наращивания на металлической поверхности имплантата живой костной ткани.

Эластичные эндопротезы из проволочной титановой сетки. Благодаря высокой пластичности и легкости в современной восстановительной хирургии, других медицинских отраслях активно используются инновационные эластичные эндопротезы в виде тончайшей проволочной титановой сетки-«паутины». Упругая, прочная, эластичная, долговечная и сохраняющая свойство биоинертности, сетка является идеальным материалом для эндопротезов мягких тканей (рис. 6).

Рисунок 6. Сетчатый эндопротез из титанового сплава для пластики мягких тканей.

«Паутину» уже успешно опробовали в таких сферах, как гинекология, челюстно-лицевая хирургия и травматология. По мнению специалистов, сетчатые титановые эндопротезы не знают себе равных в плане стабильности при практически нулевом риске побочных проявлений.

Титано-никелевые медицинские сплавы с эффектом запоминания формы

Сегодня в различных сферах медицины находят широкое распространение сплавы из никелида титана, имеющие т. наз. с эффект запоминания формы (ЭЗФ). Данный материал применяют для эндопротезирования связочно-хрящевой ткани опорно-двигательного аппарата человека.

Никелид титана (международный термин нитинол) представляет собой интерметаллид TiNi, который получают путем сплавления в равных пропорциях Ti и Ni. Важнейшей характеристикой никелид-титановых сплавов является свойство сверхупругости, на котором и базируется ЭЗФ.

Сущность эффекта состоит в том, что образец при охлаждении в определенном диапазоне температур легко деформируется, причем деформация самоустраняется при повышении температуры до первоначального значения с возникновением сверхупругих свойств. Другими словами, если пластину из сплава нитинол изогнуть при пониженной температуре, то в этом же температурном режиме она будет сохранять свою новую форму сколь угодно долго. Однако стоит лишь повысить температуру до исходной, пластина вновь выпрямится подобно пружине и обретет первоначальную форму.

Образцы продукции медицинского назначения из сплава нитинол показаны на представленных ниже рис. 7, 8, 9, 10.

Рисунок 7. Набор имплантатов из никелида титана для травматологии (в виде скоб, скреп, фиксаторов и т.д.).

Рисунок 8. Набор имплантатов из никелида титана для хирургии (в виде зажимов, дилататоров, хирургического инструментария).

Рисунок 9. Образцы пористых материалов и имплантатов из никелида титана для вертебрологии (в виде эндопротезов, изделий пластинчатой и цилиндрической конфигурации).

Рисунок 10. Материалы и эндопротезы из никелида титана для челюстно-лицевой хирургии и стоматологии.

Помимо этого, никелид-титановые сплавы, как и большинство изделий на титановой основе, биоинертны вследствие высокой коррозие- и гальваностойкости. Таким образом, это идеальный по отношению к организму человека материал для изготовления биомеханически совместимых имплантатов (БМСИ).

Применение Ti и Та для изготовления сосудистых стентов

Стентами (от англ. stent) - в медицине называют специальные, имеющие вид упругих сетчатых цилиндрических каркасов, металлоконструкции, помещаемые внутрь крупных сосудов (вен и артерий), а также прочих полых органов (пищевод, кишечник, желче- мочевыводящие протоки и др.) на патологически суженных участках с целью их расширения до необходимых параметров и восстановления проходимости.

Наиболее востребовано применение метода стентирования в такой сфере, как сосудистая хирургия, и, в частности, коронарная ангиопластика (рис. 11).

Рисунок 11. Образцы титановых и танталовых сосудистых стентов.

На сегодняшний день научно разработаны и внедрены в реальную практику сосудистые стенты более чем полутысячи различных типов и конструкций. Они различаются между собой по составу исходного сплава, длине, конфигурации отверстий, виду поверхностного покрытия, другим рабочим параметрам.

Требования, предъявляемые к сосудистым стентам, призваны обеспечить их безупречную функциональность, а потому многообразны и весьма высоки.

Данные изделия должны быть:

  • биосовместимыми с тканями организма;
  • гибкими;
  • эластичными;
  • прочными;
  • рентгеноконстрастыми и т.д.

Основными материалами, используемыми сегодня при изготовлении металлостентов являются композиции благородных металлов, а также Та, Ti и его сплавы (ВТ6С, ВТ8, ВТ 14, ВТ23, нитинол), полностью биоинтегрируемые с тканями организма и сочетающие в себе комплекс всех прочих необходимых физико-механических свойств.

Сшивание костей, сосудов и нервных волокон

Периферические нервные стволы, поврежденные в результате различных механических травм или осложнений тех или иных заболеваний, нуждаются для восстановления в серьезном хирургическом вмешательстве. Положение усугубляется тем, что обычно подобные патологии наблюдаются на фоне травмирования сопутствующих органов, таких, как кости, сосуды, мышцы, сухожилия и др. В этом случае разрабатывается комплексная программа лечения с наложением специфических швов. В качестве же исходного сырья для изготовления шовного материала – нитей, скреп, фиксаторов и т.д. – используются титан, тантал и их сплавы, как металлы, обладающие химической биосовместимостью и всем комплексом необходимых физикомеханических свойств.

На представленных ниже рисунках изображены примеры подобных операций.

Рисунок 12. Сшивание кости титановыми скрепами.

Рисунок 13. Сшивание пучка нервных волокон с применением тончайших танталовых нитей.

Рисунок 14. Сшивание сосудов с применением танталовых скрепок.

В настоящее время разрабатываются все более совершенные технологии нейро- остео- и вазопластики, однако применяемые для этого титано-танталовые материалы продолжают удерживать пальму первенства перед всеми прочими.

Пластическая хирургия

Пластической хирургией называют устранение хирургическим путем дефектов органов с целью воссоздания их идеальных анатомических пропорций. Часто при этом подобные реконструкции выполняются с использованием имплантируемых в ткани различных металлических изделий в виде пластин, сеток, пружин и т.д.

Особенно показательна в данном отношении краниопластика – операция по исправлению деформации черепа. В зависимости от показаний в каждой конкретной клинической ситуации краниопластика может выполняться посредством наложения на оперируемый участок жестких титановых пластин или эластичных сеток из тантала. В обоих случаях допускается применение как чистых металлов без легирующих добавок, так и их биоинертных сплавов. Примеры краниопластики с применением титановой пластины и танталовой сетки представлены на приведенных ниже рисунках.

Рисунок 15. Краниопластика с использованием титановой пластины.

Рисунок 16. Краниопластика с применением танталовой сетки.

Титано-танталовые конструкции могут применяться также при косметическом восстановлении лица, груди, ягодиц и многих других органов.

Нейрохирургия (наложение микроклипсов)

Клипированием (англ. clip зажим) называется нейрохирургическая операция на сосудах головного мозга, имеющая целью остановить кровотечение (в частности, при разрыве аневризмы) либо выключить из кровообращения травмированные мелкие сосуды. Сущность метода клипирования заключается в том, что на поврежденные участки накладываются миниатюрные металлические зажимы - клипсы.

Востребованность метода клипирования, прежде всего, в нейрохирургической сфере объясняется невозможность перевязывания мелких мозговых сосудов традиционными способами.

В связи с разнообразием и спецификой возникающих клинических ситуаций, в нейрохирургической практике используется обширная номенклатура сосудистых клипсов, различающихся по конкретному назначению, способу фиксации, размерным и другим функциональным параметрам (рис. 17).

Рисунок 17. Клипсы для выключения аневризм головного мозга.

На фотографиях клипсы кажутся крупными, на самом же деле по размерам они не больше ноготка ребенка и устанавливаются под микроскопом (рис. 18).

Рисунок 18. Операция по клипированию аневризмы сосуда головного мозга.

Для изготовления клипсов, как правило, используют плоскую проволоку из чистого титана или тантала, в некоторых случаях из серебра. Такие изделия абсолютно инертны по отношению к мозговому веществу, не вызывая реакций противодействия.

Стоматологическая ортопедия

Широкое медицинское применение титан, тантал и их сплавы нашли в стоматологии, а именно в сфере протезирования зубов.

Ротовая полость – особенно агрессивная среда, негативно воздействующая на металлические материалы. Даже такие традиционно используемые при дентальном протезировании драгметаллы, такие как золото и платина, в ротовой полости не могут совершенно противостоять коррозии и последующему отторжению, не говоря уже о высокой стоимости и большой массе, вызывающей дискомфорт у пациентов. С другой стороны, легкие ортопедические конструкции из акриловой пластмассы также не выдерживают серьезной критики в силу своей недолговечности. Подлинной революцией в стоматологии стало изготовление отдельных коронок, а также мостовидных и съемных протезов на базисе титана и тантала. Данные металлы, ввиду таких присущих им ценных качеств, как биологическая инертность и высокая прочность при относительной дешевизне успешно конкурируют с золотом и платиной, а по ряду параметров даже превосходят их.

Большой популярностью, в частности, пользуются штампованные и цельнолитые титановые коронки (рис. 19). А коронки с плазменным напылением из нитрида титана TiN по внешнему виду и функциональным свойствам практически неотличимы от золотых (рис. 19)

Рисунок 19. Цельнолитая титановая коронка и коронка с напылением из нитрида титана.

Что же касается протезов, то они могут быть несъемными (мостовидными) для восстановления нескольких рядом стоящих зубов или съемными, используемыми при утрате всего зубного ряда (полная адентия челюсти). Наиболее распространенные протезы – бюгельные (от нем. der Bogen «дуга»).

Бюгельный протез выгодно отличает наличие металлического каркаса, на котором крепится базисная часть (рис. 20).

Рисунок 20. Бюгельный протез нижней челюсти.

Сегодня бюгельная часть протеза и кламмеры выполняются, как правило, из чистого медицинского титана высокой чистоты марки ТВЧ.

Подлинной революцией в стоматологии явилась становящаяся все более востребованной технология имплантационного зубного протезирования. Протезирование на имплантатах – самый надежный способ крепления ортопедических конструкций, которые в этом случае служат десятилетиями или даже пожизненно.

Дентальный (зубной) имплантат – служащая опорой для коронок, а также мостовидных и съемных протезов двусоставная конструкция, базовая часть которой (собственно имплантат) представляет собой конусный штифт с резьбой, ввинчиваемый непосредственно в кость челюсти. На верхнюю платформу имплантата устанавливается абатмент, служащий для фиксации коронки или протеза (рис. 21).

Рисунок 21. Зубной имплантат Nobel Biocare из чистого медицинского титана класса 4(G4Ti).

Чаще всего для изготовления винтовой части имплантата служит чистый медицинский титан с поверхностным тантал-ниобиевым напылением, способствующим активизации процесса остеоинтеграции – сращивания металла с живыми костными и десневыми тканями.

Однако некоторые производители предпочитают изготавливать не двусоставные, а цельные имплантаты, в которых винтовая часть и абатмент имеют не раздельную, а монолитную структуру. При этом, например, немецкая компания Zimmer производит цельные имплантаты из пористого тантала, который, в сравнении с титаном, обладает большей гибкостью и внедряется в ткань кости с практически нулевым риском осложнений (рис. 22).

Рисунок 22. Цельные зубные имплантаты Zimmer из пористого тантала.

Тантал, в отличие от титана – более тяжелый металл, поэтому пористая структура существенно облегчает изделие, не вызывая, к тому же, необходимости в дополнительном внешнем напылении остеоинтегрирующего покрытия.

Примеры имплантационного протезирования отдельных зубов (коронки) и путем установки на имплантаты съемных протезов показаны на рис. 23.

Рисунок 23. Примеры применения титано-танталовых имплантатов в зубном протезировании.

Ныне, в добавление к уже существующим, разрабатываются все новые методики протезирования на имплантатах, показывающие высокую эффективность в различных клинических ситуациях.

Изготовление медицинского инструментария

Сегодня в мировой клинической практике используется сотни разновидностей различных хирургических и эндоскопических инструментов и медицинской аппаратуры, изготавливаемых с применением титана и тантала (ГОСТ 19126-79 «Инструменты медицинские металлические. Общие технические условия». Они выгодно отличаются от прочих аналогов по показателям прочности, пластичности и коррозиестойкости, обуславливающей биологическую инертность.

Титановые мединструменты по легкости почти вдвое превосходят стальные аналоги, являясь при этом более удобными и долговечными.

Рисунок 24. Хирургические инструменты, изготовленные на титано-танталовой основе.

Основными медицинскими отраслями, в которых более всего востребован титаново-танталовый инструментарий, являются офтальмологическая, стоматологическая, отоларингологическая и хирургическая. В составе обширной номенклатуры инструментов представлены сотни наименований шпателей, клипсов, расширителей, зеркал, зажимов, ножниц, щипцов, скальпелей, стерилизаторов, тубусов, долот, пинцетов, всевозможных пластин.

Биохимические и физикомеханические характеристики легких титановых инструментов имеют особую ценность для военно-полевой хирургии и различных экспедиций. Здесь они совершенно незаменимы, поскольку в экстремальных условиях буквально каждые 5-10 граммов лишнего груза являются существенной обузой, а устойчивость к коррозии и максимум надежности – обязательные требования.

Титан, тантал и их сплавы в виде монолитных изделий или тонких защитных покрытий активно применяют в медицинском приборостроении. Их используют при изготовлении дистилляторов, насосов для перекачки агрессивных сред, стерилизаторов, компонентов наркозо-дыхательной аппаратуры, сложнейших устройств для дублирования работы жизненно важных органов типа «искусственное сердце», «искусственное легкое», «искусственная почка» и др.

Титановые головки аппаратов для УЗИ имеют самый продолжительный эксплуатационный ресурс, при том, что аналоги из прочих материалов даже при нерегулярном воздействии ультразвуковых колебаний быстро приходят в негодность.

В дополнение к выше сказанному можно отметить, что титан, как и тантал, в отличие от многих других металлов, имеют способность к десорбированию («отталкиванию») излучения радиоактивных изотопов, в связи с чем активно применяются в производстве различных защитных устройств и радиологической аппаратуры.

Заключение

Разработка и производство изделий медицинского назначения – одно из наиболее интенсивно развивающихся направлений научно-технического прогресса. С началом третьего тысячелетия медицинская наука и техника вошли в число основных движущих сил современной мировой цивилизации.

Значение металлов в человеческой жизнедеятельности неуклонно возрастает. Революционные изменения происходят на фоне интенсивного развития научного материаловедения и практической металлургии. И вот уже в последние десятилетия «на щит истории» подняты такие промышленные металлы, как титан и тантал, которые со всеми на то основаниями можно назвать конструкционными материалами нового тысячелетия.

Значение титана в современном врачевании просто невозможно переоценить. Несмотря на относительно непродолжительную историю использования в практических целях, он стал одним из лидирующих материалов во множестве медицинских отраслей. Титан и его сплавы обладают для этого суммой всех необходимых характеристик: коррозиестойкостью (и, как следствие, биоинертностью), а также легкостью, прочностью, твёрдостью, жёсткостью, долговечностью, гальванической нейтральностью и т.д.

Не уступает титану в плане практической значимости и тантал. При общем сходстве большинства полезных свойств по некоторым качествам они уступают, а по некоторым – превосходят друг друга. Вот почему трудно, да и вряд ли разумно объективно судить о приоритетности какого-то одного из этих металлов для медицины: они, скорее, органично дополняют друг друга, чем конфликтуют между собой. Достаточно отметить, что ныне активно разрабатываются и находят реальное применение медицинские конструкции на основе титано-танталовых сплавов, объединяющих в себе все преимущества Ti и Та. И далеко не случайно в последние годы предпринимаются все более успешные попытки создания имплантируемых непосредственно в организм человека полноценных искусственных органов из титана, тантала и их соединений. Близится время, когда, скажем, понятия «титановое сердце» или «танталовые нервы» уверенно перейдут из разряда фигур речи в сугубо практическую плоскость.