Клеточная энергия. Энергетика живой клетки. Кислород как жизненная необходимость

Один из наиболее сложных вопросов - образование, накопление и распределение энергии в клетке.

Как же клетка вырабатывает энергию? Ведь в ней нет ни атомного реактора, ни электростанции, ни парового котла, хотя бы самого маленького. Температура внутри клетки постоянна и очень невысока - не более 40°. И несмотря на это, клетки перерабатывают такое количество веществ и так быстро, что им позавидовал бы любой современный комбинат.

Как это происходит? Почему полученная энергия остается в клетке, а не выделяется в виде тепла? Как клетка запасает энергию? Прежде чем ответить на эти вопросы, нужно сказать, что энергия, поступающая в клетку, - это не механическая и не электрическая, а химическая энергия, заключенная в органических веществах. На этом этапе вступают в силу законы термодинамики. Если энергия заключена в химических соединениях, то выделяться она должна путем их сгорания, и для общего теплового баланса неважно, сгорят они сразу или постепенно. Клетка выбирает второй путь.

Для простоты уподобим клетку «электростанции». Специально для инженеров добавим, что «электростанция» клетки - тепловая. Теперь вызовем представителей энергетики на соревнование: кто больше получит энергии из топлива и экономичнее ее израсходует - клетка или любая, самая экономичная, тепловая электростанция?

В процессе эволюции клетка создавала и совершенствовала свою «электростанцию». Природа позаботилась обо всех ее частях. В клетке есть «топливо», «мотор-генератор», «регуляторы его мощности», «трансформаторные подстанции» и «линии высоковольтных передач». Посмотрим, как все это выглядит.

Основное «топливо», сжигаемое клеткой, - углеводы. Самые простые из них - глюкоза и фруктоза.

Из повседневной медицинской практики известно, что глюкоза - важнейшее питательное вещество. Сильно истощенным больным ее вводят внутривенно, непосредственно в кровь.

Более сложные сахара также используются как источники энергии. Например, обычный сахар, имеющий научное название «сахароза» и состоящий из 1 молекулы глюкозы и 1 молекулы фруктозы, может служить таким материалом. У животных топливом является гликоген - полимер, состоящий из связанных в цепочку молекул глюкозы. В растениях есть вещество, аналогичное гликогену, - это всем известный крахмал. И гликоген и крахмал - запасные вещества. Оба они откладываются на «черный день». Крахмал обычно содержится в подземных частях растения, например клубнях, как у картофеля. Много крахмала и в клетках мякоти листьев растений (под микроскопом зерна крахмала сверкают как мелкие кусочки льда).

Гликоген накапливается у животных в печени и оттуда расходуется по мере необходимости.

Все более сложные, чем глюкоза, сахара до расходования должны распадаться на свои исходные «кирпичики» - молекулы глюкозы. Существуют специальные ферменты, которые разрезают, как ножницы, длинные цепи крахмала и гликогена до отдельных мономеров - глюкозы и фруктозы.

При недостатке углеводов растения могут использовать в своей «топке» органические кислоты - лимонную, яблочную и др.

В прорастающих масличных семенах расходуется жир, который сначала расщепляется, а потом превращается в сахар. Это видно из того, что по мере расходования жира в семенах увеличивается содержание сахаров.

Итак, виды топлива перечислены. Но сжигать его сразу клетке невыгодно.

Сахара сжигаются в клетке химическим путем. Обычное горение - это соединение горючего с кислородом, окисление его. Но для окисления вещество не обязательно должно соединяться с кислородом - оно окисляется, когда от него отнимают электроны в виде водородных атомов. Такое окисление называется дегидрированием («гидрос» - водород). Сахара содержат много атомов водорода, и они отщепляются не все сразу, а по очереди. Окисление в клетке осуществляется набором специальных ферментов, ускоряющих и направляющих процессы окисления. Этот набор ферментов и строгая очередность их работы составляют основу клеточного генератора энергии.

Процесс окисления у живых организмов называется дыханием, поэтому далее мы будем пользоваться этим более понятным выражением. Внутриклеточное дыхание, названное так по аналогии с физиологическим процессом дыхания, связано с ним очень тесно. Подробнее о процессах дыхания мы расскажем дальше.

Продолжим сравнение клетки с электростанцией. Теперь нам необходимо найти в ней те части электростанции, без которых она будет работать вхолостую. Понятно, что полученную от сжигания углеводов и жиров энергию необходимо подавать потребителю. Значит, нужна клеточная, ««высоковольтная линия передачи». Для обычной электростанции это сравнительно просто - провода высокого напряжения протягивают над тайгой, степями, реками, и по ним энергия поступает к заводам и фабрикам.

Клетка тоже имеет свой, универсальный «провод высокого напряжения». Только в ней энергия передается химическим путем, и «проводами», естественно, служит химическое соединение. Чтобы понять принцип его действия, введем в работу электростанции маленькое осложнение. Предположим, что энергию от высоковольтной линии нельзя подать к потребителю по проводам. В таком случае, проще всего будет зарядить от высоковольтной линии электрические аккумуляторы, транспортировать их к потребителю, обратно транспортировать использованные аккумуляторы и т. д. В энергетике это, конечно, невыгодно. А клетке аналогичный способ очень выгоден.

В качестве аккумулятора в клетке используется соединение, универсальное почти для всех организмов - аденозинтрифосфорная кислота (о нем мы уже говорили).

В отличие от энергии других фосфоэфирных связей (2- 3 килокалории) энергия связи концевых (особенно крайнего) фосфатных остатков в АТФ очень велика (до 16 килокалорий); поэтому такая связь называется «макроэргической ».

АТФ в организме обнаруживают всюду, где требуется энергия. Синтез различных соединений, работа мышц, движение жгутиков у простейших - везде энергию несет АТФ.

«Зарядка» АТФ в клетке происходит так. К месту выделения энергии подходит аденозиндифосфорная кислота - АДФ (АТФ без 1 атома фосфора). Когда энергия может быть связана, АДФ соединяется с находящимся в большом количестве в клетке фосфором и в эту связь «замуровывает» энергию. Вот теперь уже необходимо транспортное обеспечение. Оно состоит из специальных ферментов - фосфофераз («фера» - несу), которые по первому требованию «хватают» АТФ и переносят ее к месту действия. Далее подходит очередь последнего, завершающего «агрегата электростанции» - понижающих трансформаторов. Они должны понизить напряжение и дать уже безопасный ток потребителю. Эту роль выполняют те же фосфоферазы. Передача энергии с АТФ на другое вещество осуществляется в несколько стадий. Сначала АТФ соединяется с этим веществом, затем происходит внутренняя перестановка атомов фосфора и, наконец, комплекс распадается - отделяется АДФ, а богатый энергией фосфор остается «висеть»» на новом веществе. Новое вещество оказывается гораздо неустойчивее из-за избыточности энергии и способно к различным реакциям.

Неспособные к фотосинтезу клетки (например, человека) получают энергию из пищи, которой служит или биомасса растений, созданная в результате фотосинтеза, или биомасса других живых существ, питающихся растениями, или останки любых живых организмов.

Питательные вещества (белки, жиры и углеводы) преобразуются животной клеткой в ограниченный набор низкомолекулярных соединений - органических кислот, построенных из атомов углерода, которые с помощью специальных молекулярных механизмов окисляются до углекислоты и воды. При этом освобождается энергия, она аккумулируется в форме электрохимической разности потенциалов на мембранах и используется для синтеза АТФ или напрямую для совершения определенных видов работы.

История изучения проблем преобразования энергии в животной клетке, как и история фотосинтеза, насчитывает более двух веков.

У аэробных организмов окисление углеродных атомов органических кислот до углекислого газа и воды протекает с помощью кислорода и называется внутриклеточным дыханием, которое происходит в специализированных частицах - митохондриях. Трансформация энергии окисления осуществляется ферментами, расположенными в строгом порядке во внутренних мембранах митохондрий. Эти ферменты составляют так называемую дыхательную цепь и работают как генераторы, создавая разность электрохимических потенциалов на мембране, за счет которой синтезируется АТФ, подобно тому, как это происходит при фотосинтезе.

Основная задача и дыхания и фотосинтеза — поддерживать соотношение АТФ/АДФ на определенном уровне, далеком от термодинамического равновесия, что и позволяет АТФ служить донором энергии, смещая равновесие тех реакций, в которых он участвует.

Основными энергетическими станциями живых клеток служат митохондрии — внутриклеточные частицы размером 0,1-10μ, покрытые двумя мембранами. В митохондриях свободная энергия окисления продуктов питания превращается в свободную энергию АТФ. Когда АТФ соединяется с водой, при нормальных концентрациях реагирующих веществ, выделяется свободная энергия порядка 10 ккал/моль.

В неорганической природе смесь водорода и кислорода носит название «гремучей»: достаточно небольшой искры, чтобы произошел взрыв - мгновенное образование воды с огромным выделением энергии в виде тепла. Задача, которую выполняют ферменты дыхательной цепи: произвести «взрыв» так, чтобы освобождающаяся энергия была запасена в форме, пригодной для синтеза АТФ. Что они и делают: упорядоченно переносят электроны от одного компонента к другому (в конечном счете, на кислород), постепенно понижая потенциал водорода и запасая энергию.

О масштабах этой работы говорят следующие цифры. Митохондрии взрослого человека среднего роста и веса перекачивают через свои мембраны около 500 г ионов водорода в день, образуя мембранный потенциал. За это же время Н + -АТФ-синтаза производит около 40 кг АТФ из АДФ и фосфата, а использующие АТФ процессы гидролизуют всю массу АТФ назад в АДФ и фосфат.

Исследования показали, что митохондриальная мембрана действует как трансформатор напряжения. Если передавать электроны субстрата от НАДН прямо к кислороду сквозь мембрану, возникнет разность потенциалов около 1 В. Но биологические мембраны - двухслойные фосфолипидные пленки не выдерживают такую разность - возникает пробой. Кроме того, для производства АТФ из АДФ, фосфата и воды требуется всего 0,25 В, значит, нужен трансформатор напряжения. И задолго до появления человека клетки «изобрели» такой молекулярный прибор. Он позволяет в четыре раза увеличить ток и за счет энергии каждого передаваемого от субстрата к кислороду электрона перенести через мембрану четыре протона благодаря строго согласованной последовательности химических реакций между молекулярными компонентами дыхательной цепи.

Итак, два главных пути генерации и регенерации АТФ в живых клетках: окислительное фосфорилирование (дыхание) и фотофосфорилирование (поглощение света), — хотя и поддерживаются разными внешними источниками энергии, но оба зависят от работы цепочек каталитических ферментов, погруженных в мембраны: внутренние мембраны митохондрий, тилакоидные мембраны хлоропластов или плазматические мембраны некоторых бактерий.

Когда знакомишься с фундаментальными трудами человечества, нередко ловишь себя на мысли, что с развитием науки вопросов становится больше, чем ответов. В 80-х и 90-х годах молекулярная биология и генетика расширили представле-ние о клетках и клеточном взаимодействии. Был выделен целый класс клеточных факторов, которые регулируют межкле-точное взаимодействие. Это имеет важное значение для понимания функционирования многоклеточного человеческого организма и особенно клеток иммунной системы. Но с каждым годом биологи открывают все больше подобных межклеточ-ных факторов и все трудней воссоздать картину целостного организма. Таким образом, вопросов возникает больше, чем появляется ответов.

Неисчерпаемость человеческого организма и ограниченные возможности его изучения приводят к выводу о необходимос-ти ближайших и последующих приоритетов исследований. Таким приоритетом на сегодняшний день является энергетика клеток живого человеческого организма. Недостаточные знания об энергопроизводстве и об энергообмене клеток в организме становится препятствием для серьезных научных исследований.

Клетка является основной структурной единицей организма: все органы и ткани состоят из клеток. Трудно рассчитывать на успех лекарственных средств или немедикаментозных методов, если они разрабатываются без достаточных знаний об энергетике клеток и межклеточном энергетическом взаимодействии. Можно привести достаточно примеров, когда широко используемые и рекомендуемые средства наносят вред здоровью.

Господствующим в здравоохранении является субстанционный подход. Субстанция - вещество. Логика врачевания предельно простая: обеспечить организм необходимыми веществами (вода, пища, витамины, микроэлементы, а при необходимости лекарства) и вывести из организма продукты обмена (экскременты, избыточные жиры, соли, токсины и т. д.). Экспансия лекарственных средств продолжает торжествовать. Новые поколения людей во многих странах становятся добровольными участниками широкомасштабного эксперимента. Индустрия лекарств требует новых больных. Тем не менее, здоровых людей становится все меньше и меньше.

У создателя популярного справочника по лекарственным средствам как-то спросили о том, сколько лекарств ему лично пришлось опробовать. Ни одного - был ответ. По-видимому, этот умный человек имел блестящие знания о биохимии клетки и умел с пользой применять эти знания в жизни.

Представьте себе миниатюрную частичку живой материи, в форме эллипсоида, диска, шара, примерно 8-15 микрон (мкм) в поперечнике, одновременно являющуюся сложнейшей саморегулирующейся системой. Обычную живую клетку называют дифференцированной, как бы подчеркивая, что множество элементов, входящих в ее состав, четко разделены относительно друг друга. Понятие "недифференцированная клетка", как правило, принадлежит видоизмененной, например, раковой клетке. Дифференцированные клетки отличаются не только строением, внутренним обменом, но и специализацией, например, почечные, печеночные, сердечные клетки.

В общем случае клетка состоит из трех компонентов: клеточной оболочки, цитоплазмы, ядра. В состав клеточной оболоч-ки, как правило, входит трех-, четырехслойная мембрана и наружная оболочка. Два слоя мембраны состоят из липидов (жиров), основную часть которых составляют ненасыщенные жиры - фосфолипиды. Мембрана клетки имеет весьма сложное строение и многообразные функции. Разность потенциалов по обе стороны мембраны может составлять несколько сотен милливольт. Наружная поверхность мембраны содержит отрицательный электрический заряд.

Как правило, клетка имеет одно ядро. Хотя есть клетки, у которых два ядра и более. Функция ядра заключается в хранении и передаче наследственной информации, например, при делении клетки, а также в управлении всеми физиологи-ческими процессами в клетке. В ядре содержатся молекулы ДНК, несущие генетический код клетки. Ядро заключено в двухслойную мембрану.

Цитоплазма составляет основную массу клетки и представляет собой клеточную жидкость с расположенными в ней органеллами и включениями. Органеллы - постоянные компоненты цитоплазмы, выполняющие специфические важные функции. Из них нас больше всего интересуют митохондрии, которые иногда называют электростанциями клетки. Каждая митохондрия имеет две мембранные системы: наружную и внутреннюю. Наружная мембрана гладкая, в ней поровну предс-тавлены липиды и белки. Внутренняя мембрана принадлежит к наиболее сложным типам мембранных систем человеческо-го организма. В ней множество складок, называемых гребешками (кристами), за счет которых мембранная поверхность существенно увеличивается. Можно представить эту мембрану в виде множества грибовидных выростов, направленных во внутреннее пространство митохондрии. На одну митохондрию приходится 10 в 4-10 в 5 степени таких выростов.

Кроме того, во внутренней митохондриальной мембране присутствует еще 50-60 ферментов, общее число молекул разных типов достигает 80. Все это необходимо для химического окисления и энергетического обмена. Среди физических свойств этой мембраны следует отметить высокое электрическое сопротивление, что характерно для так называемых сопрягаю-щих мембран, способных аккумулировать энергию подобно хорошему конденсатору. Разность потенциалов по обе стороны внутренней митохондриальной мембраны составляет около 200-250 мВ.

Можно представить, насколько сложна клетка, если, например, печеночная клетка гепатоцит содержит около 2000 митохондрий. Но ведь в клетке множество и других органелл, сотни ферментов, гормонов и других сложных веществ. Каждая органелла имеет свой набор веществ, в ней осуществляются определенные физические, химические и биохимичес-кие процессы. В таком же динамическом состоянии находятся вещества в цитоплазматическом пространстве, они беспре-рывно обмениваются с органеллами и с внешним окружением клетки через ее мембрану.

Прошу прощения у Читателя - неспециалиста за технические детали, но эти представления о клетке полезно знать каждому человеку, желающему быть здоровым. Мы должны восхищаться этим чудом природы и одновременно учитывать слабые стороны клетки, когда занимаемся лечением. Мне доводилось наблюдать, когда обычный анальгин приводил к отекам тканей у молодого здорового человека. Поражает, как не задумываясь, с какой легкостью иные глотают таблетки!

Представления о сложности клеточного функционирования будут не полными, если мы не расскажем об энергетике клеток. Энергия в клетке тратится на выполнение различной работы: механическую - движение жидкости, движение органелл; химическую - синтез сложных органических веществ; электрическую - создание разности электрических потенциа-лов на плазматических мембранах; осмотическую - транспорт веществ внутрь клетки и обратно. Не ставя перед собой задачу перечислить все процессы, ограничимся известным утверждением: без достаточного обеспечения энергией не может быть достигнуто полноценное функционирование клетки.

Откуда клетка получает необходимую ей энергию? Согласно научным теориям химическая энергия питательных веществ (углеводов, жиров, белков) превращается в энергию макроэргических (содержащих много энергии) связей аденозинтрифос-фата (АТФ). Эти процессы осуществляются в митохондриях клеток преимущественно в цикле трикарбоновых кислот (цикл Кребса) и при окислительном фосфорилировании. Запасенная в АТФ энергия легко освобождается при разрыве макроэрги-ческих связей, в результате обеспечиваются энергозатраты в организме.

Однако эти представления не позволяют дать объективную оценку количественных и качественных характеристик энергообеспечения и энергообмена в тканях, а также состояния энергетики клеток и межклеточного взаимодействия. Следует обратить внимание на важнейший вопрос (Г. Н. Петракович), на который не может ответить традиционная теория: за счет каких факторов осуществляется межклеточное взаимодействие? Ведь АТФ образуется и расходуется, выделяя энергию, внутри митохондрии.

Между тем, имеется достаточно оснований сомневаться в благополучии энергообеспечения органов, тканей, клеток. Можно даже прямо утверждать, что человек в этом отношении весьма не совершенен. Об этом свидетельствует уста-лость, которую ежедневно многие испытывают, и которая начинает досаждать человеку с детского возраста.

Проведенные расчеты показывают, что если бы энергия в человеческом организме производилась за счет указанных процессов (цикл Кребса и окислительное фосфорилирование), то при малой нагрузке энергетический дефицит составлял бы 30-50%, а при большой нагрузке - более 90%. Это подтверждают исследования американских ученых, которые пришли к выводу о недостаточном функционировании митохондрий в плане обеспечения человека энергией.

Вопросы об энергетике клеток и тканей возможно еще долго оставались бы на обочине дороги, по которой медленно движется теоретическая и практическая медицина, если бы не произошли два события. Речь идет о Новой гипотезе дыхания и открытии Эндогенного Дыхания.

В химических реакциях при образовании связей между простыми молекулами энергия потребляется, а при разрыве выделяется.

В процессе фотосинтеза у зеленых растений энергия солнечного света переходит в энергию химических связей, возникающих между молекулами углекислого газа и воды. Образуется молекула глюкозы: CO 2 + H 2 O + Q (энергия) = C 6 H 12 O 6 .

Глюкоза является главным источником энергии для человека и большинства животных.

Процесс усвоения этой энергии называют " окислительное фосфорилирование". Энергия (Q), выделяющаяся при окислении, сразу используется на фосфорилирование аденозиндифосфорной кислоты (АДФ):

АДФ+Ф+Q (энергия)=АТФ

Получается "универсальная энергетическая валюта" клетки аденозинтрифосфорная кислота (АТФ). Она может в любой момент быть использована на любую полезную организму работу или на согревание.

АТФ®АДФ+Ф+Q (энергия)

Процесс окисления глюкозы проходит в 2 этапа.

1. Анаэробное (бескислородное) окисление, или гликолиз, происходит на гладкой эндоплазматической сети клетки. В результате этого глюкоза оказывается разорванной на 2 части, а выделившейся энергии достаточно для синтеза двух молекул АТФ.

2. Аэробное (кислородное) окисление. Две части от глюкозы (2 молекулы пировиноградной кислоты) при наличии кислорода продолжают ряд окислительных реакций. Этот этап протекает на митохондриях и приводит к дальнейшему разрыву молекул и выделению энергии.

Результатом второго этапа окисления одной молекулы глюкозы является образование 6 молекул углекислого газа, 6 молекул воды и энергии, которой достаточно для синтеза 36 молекул АТФ.

В качестве субстратов для окисления на втором этапе могут использоваться не только молекулы, полученные из глюкозы, но и молекулы, полученные в результате окисления липидов, белков, спиртов и других энергоемких соединений.

Активная форма уксусной кислоты - А-КоА (ацетил коэнзим А, или ацетил кофермент А) - это промежуточный продукт окисления всех этих веществ (глюкозы, аминокислот, жирных кислот и других).

А-КоА является точкой пересечения углеводного, белкового и липидного обменов.

При избытке глюкозы и других энергонесущих субстратов организм начинает их депонировать. В этом случае, глюкоза окисляется по обычному пути до молочной и пировиноградной кислоты, затем до А-КоА. Далее, А-КоА становится базой для синтеза молекулы жирных кислот и жиров, которые депонируются в подкожной жировой клетчатке. Наоборот, при недостатке глюкозы, ее синтезируют из белков и жиров через А-КоА (глюконеогенез).

При необходимости могут пополняться и запасы заменимых аминокислот для строительства некоторых белков.