Фармакокинетика лекарственных веществ. Метаболизм (биотрансформация) лекарственных веществ в организме. Экскреция и элиминация лекарств в организме Метаболизм лекарственных веществ в организме

История развития

Основы фармакокинетики создавались учёными разных специальностей в различных странах.

В 1913 немецкие биохимики Л. Михаэлис и M. Ментен предложили уравнение кинетики ферментативных процессов, широко используемое в современной фармакокинетике для описания метаболизма лекарственных средств .

При приёме внутрь лекарственного вещества основного характера (амины) всасываются обычно в тонком кишечнике (сублингвальные лекарственные формы всасываются из ротовой полости , ректальные - из прямой кишки), лекарственные вещества нейтрального или кислого характера начинают всасываться уже в желудке .

Всасывание характеризуется скоростью и степенью всасывания (так называемой биодоступностью). Степень всасывания - это количество лекарственного вещества (в процентах или в долях), которое попадает в кровь при различных способах введения. Скорость и степень всасывания зависит от лекарственной формы, а также от других факторов. При приёме внутрь многие лекарственные вещества в процессе всасывания под действием ферментов печени (или кислоты желудочного сока) биотрансформируются в метаболиты, в результате чего лишь часть лекарственных веществ достигает кровяного русла. Степень всасывания лекарственного вещества из желудочно-кишечного тракта , как правило, снижается при приёме лекарства после еды.

Распределение по органам и тканям

Для количественной оценки распределения дозу лекарственного вещества делят на его начальную концентрацию в крови (плазме , сыворотке), экстраполированную к моменту введения, или используют метод статистических моментов. Получают условную величину объёма распределения (объём жидкости, в котором нужно растворить дозу, чтобы получить концентрацию, равную кажущейся начальной концентрации). Для некоторых водорастворимых лекарственных веществ величина объёма распределения может принимать реальные значения, соответствующие объёму крови, внеклеточной жидкости или всей водной фазы организма . Для жирорастворимых лекарственных средств эти оценки могут превышать на 1-2 порядка реальный объём организма благодаря избирательной кумуляции лекарственного вещества жировыми и другими тканями.

Метаболизм

Лекарственные вещества выделяются из организма либо в неизмененном виде, либо в виде продуктов их биохимических превращений (метаболитов). При метаболизме наиболее распространены процессы окисления , восстановления, гидролиза , а также соединения с остатками глюкуроновой, серной , уксусной кислот, глутатионом. Метаболиты, как правило, более полярны и лучше растворимы в воде по сравнению с исходным лекарственным веществом, поэтому быстрее выводятся с мочой . Метаболизм может протекать спонтанно, но чаще всего катализируется ферментами (например, цитохромами), локализованными в мембранах клеток и клеточных органелл печени , почек , лёгких , кожи , мозга и других; некоторые ферменты локализованы в цитоплазме . Биологическое значение метаболических превращений - подготовка липорастворимых лекарственных средств к выведению из организма.

Экскреция

Лекарственные вещества выводятся из организма с мочой , калом , потом , слюной , молоком , с выдыхаемым воздухом. Выведение зависит от скорости доставки лекарственного вещества в выделительный орган с кровью и от активности собственно выделительных систем . Водорастворимые лекарственные вещества выводятся, как правило, через почки . Этот процесс определяется алгебраической суммой трёх основных процессов: гломерулярной (клубочковой) фильтрации, канальцевой секреции и реабсорбции. Скорость фильтрации прямо пропорциональна концентрации свободного лекарственного вещества в плазме крови ; канальцевая секреция реализуется насыщаемыми транспортными системами в нефроне и характерна для некоторых органических анионов , катионов и амфотерных соединений; реабсорбции могут подвергаться нейтральные формы лекарственных веществ. Полярные лекарственные вещества с молекулярной массой более 300 выводятся преимущественно с желчью и далее с калом: скорость выведения прямо пропорциональна потоку желчи и отношению концентраций лекарственного вещества в крови и желчи.

Остальные пути выделения менее интенсивны, но могут быть исследованы при изучении фармакокинетики. В частности, нередко анализируют содержание лекарственного вещества в слюне, поскольку концентрация в слюне для многих препаратов пропорциональна их концентрации в крови, исследуют также концентрацию лекарственных веществ в грудном молоке , что важно для оценки безопасности грудного вскармливания.

Литература

  • Соловьев В.H., Фирсов А. А., Филов В. А., Фармакокинетика , М., 1980.
  • Лакин К. M., Крылов Ю. Фармакокинетика. Биотрансформация лекарственных веществ , M., 1981.
  • Холодов Л.E., Яковлев В. П., Клиническая фармакокинетика . M., 1985.
  • Wagner J. G., Fundamentals of clinical pharma-cokinetics , Hamilton, 1975.

См. также

Ссылки

  • Общие вопросы клинической фармакологии. Глава 6. Основные вопросы фармакокинетики
  • Распределение лекарственных средств в организме. Биологические барьеры. Депонирование (Лекции, на русском)
  • Программное обеспечение для анализа данных фармакокинетических/фармакодинамических исследований
  • Проведение качественных исследований биоэквивалентности лекарственных средств. // Методические указания Министерства здравоохранения и социального развития РФ от 10.08.2004 г.
  • Лаборатория клинической (прикладной) фармакокинетики: стандартизация, аккредитация и лицензирование

Wikimedia Foundation . 2010 .

Смотреть что такое "Фармакокинетика" в других словарях:

    Фармакокинетика … Орфографический словарь-справочник

    - (от греч. pharmakon лекарство и kinetikos приводящий в движение), раздел фармакологии, изучающий скорости процессов поступления, распределения, биотрансформации и выведения лекарственных веществ из организма. Фармакокинетика токсических веществ… … Экологический словарь

    Сущ., кол во синонимов: 1 фармация (5) Словарь синонимов ASIS. В.Н. Тришин. 2013 … Словарь синонимов

    фармакокинетика - – раздел фармацевтической химии, задачей которого является изучение закономерностей всасывания, распределения и выделения лекарственных препаратов из организма … Краткий словарь биохимических терминов

    фармакокинетика - Раздел фармакологии, связанный с изучением концентрации и скорости прохождения лекарственного средства в организме Тематики биотехнологии EN pharmacokinetics … Справочник технического переводчика

    I Фармакокинетика (греч. pharmakon лекарство kinētikos относящийся к движению) раздел фармакологии, изучающий закономерности всасывания, распределения, метаболизма и выделения лекарственных средств. Исследование этих закономерностей основано на… … Медицинская энциклопедия

    - (фармако + греч. kinetikos относящийся к движению) раздел фармакологии, изучающий пути поступления, распределение и метаболизм лекарственных веществ в организме, а также их выведение … Большой медицинский словарь

    - (от греч. pharmakon лекарство и kinetikos приводящий в движение), изучает кинетич. закономерности процессов, происходящих с лек. ср вом в организме. Осн. фармакокинетич. процессы: всасывание, распределение, метаболизм и экскреция (выведение).… … Химическая энциклопедия

Понятия фармакокинетики Фармакокинетика– это раздел фармакологии (греч. pharmakon – лекарство и kinētikos – относящийся к движению), изучающий закономерности абсорбции, распределения, превращения (биотрансформации) и экскреции лекарственных веществ в организме человека и животных.

Понятия фармакокинетики Абсорбция– всасывание лекарственного препарата. Введенное лекарство переходит из места введения (например, желудочно-кишечный тракт, мышца) в кровь, которая разносит его по организму и доставляет в различные ткани органов и систем. Скорость и полнота всасывания характеризуют биодоступность лекарства (параметр фармакокинетики, показывающий, какая часть лекарства достигла системного кровотока). Естественно, что при внутривенном и внутриартериальном введении лекарственное вещество попадает в кровоток сразу и полностью, и его биодоступность составляет 100%.

Понятия фармакокинетики Механизмы, обеспечивающие абсорбцию лекарственных средств: - пассивная диффузия – Перенос лекарственных веществ осуществляется через липидную мембрану по градиенту концентрации (из области большей концентрации в область меньшей концентрации)(диакарб, тиопентал, аминазин, резерпин); - фильтрация - осуществляется через поры, имеющиеся между клетками эпидермиса слизистой оболочки ЖКТ, роговицы, эндотелия капилляров (крупные молекулы не проникают);

Понятия фармакокинетики Механизмы, обеспечивающие абсорбцию лекарственных средств: - активный транспорт – это транспорт ЛС против градиента концентрации. Для этого вида транспорта необходимы энергетические затраты и наличие специфической системы переноса (йод в фолликулы щитовидной железы, цитостатик 5 -фторурацил); - пиноцитоз – транспорт ЛС путём выпячивания и «охватывания» биомембраной ЛС и перемещение его внутрь клетки (крупные молекулы -витамин B 12, комплексы железа).).

Понятия фармакокинетики Распределение– проникновение лекарственного средства в различные органы, ткани и жидкости организма. От распределения лекарства в организме зависит скорость наступления фармакологического эффекта, его интенсивность и продолжительность. Для того чтобы начать действовать, лекарственное вещество должно сконцентрироваться в нужном месте в достаточном количестве и оставаться там длительное время. Легче всего преодолеваются стенки капилляров, самые сложнодоступные барьеры между кровью и тканями мозга – гематоэнцефалический барьер и между кровью матери и плода – плацентарный барьер.

Понятия фармакокинетики На характер распределения влияют многие факторы, но наиболее важными являются: Растворимость ЛС в воде и липидах. Гидрофильные ЛС, имеющие малый молекулярный вес, легко проходят во внеклеточные области, но не могут проникнуть через мембраны клеток и (или) биологические барьеры. Липофильные ЛС легко проникают через биологические барьеры и обычно быстро распространяются по всему организму. Степень связывания ЛС с белками. Лекарственный препарат, попав в кровь, находится в ней в двух фракциях: свободной и связанной (ЛС, связанные с белком, не взаимодействуют с рецепторами, ферментами и не проникают через клеточные мембраны). Главным образом лекарства связываются с альбуминами. Уменьшение связанной фракции лекарства на 10– 20% приведет к увеличению свободной фракции на 50– 100%, что важно при использовании препаратов с малой широтой терапевтического диапазона.

Понятия фармакокинетики Особенности регионарного кровотока. Естественно, что после попадания ЛС в систему циркуляторного русла оно, в первую очередь, достигает наиболее хорошо кровоснабжаемых органов (сердце, легкие, печень, почки). Наличие биологических барьеров, которые встречаются на пути распространения ЛС: плазматические мембраны, стенка капилляров (гистогематический барьер), ГЭБ, плацентарный барьер.

; Понятия фармакокинетики Распределение лекарственного средства в организме с учетом всех факторов, влияющих на этот процесс, характеризуется фармакокинетическим показателем - объемом распределения - Vd Это условный объем жидкости, необходимый для равномерного распределения в нем лекарственного средства, обнаруживаемого в терапевтической концентрации в плазме крови после однократного внутривенного введения, определяемый по формуле; Vd =D/Сo где Vd - объем распределения; D - введенная доза лекарственного вещества, С 0 - начальная концентрация в крови.

; Если для условного человека с массой тела 70 кг Vd = 3 л (объем плазмы крови), это означает, что вещество находится в плазме крови, не проникает в форменные элементы крови и не выходит за пределы кровеносного русла. Vd = 15 л означает, что вещество находится в плазме крови (3 л), в межклеточной жидкости (12 л) и не проникает в клетки тканей. Vd = 40 л (общее количество жидкости в организме) означает, что вещество распределено во внеклеточной и внутриклеточной жидкости.

; Vd = 400– 600– 1000 л означает, что вещество депонировано в периферических тканях и его концентрация в крови низкая. Например, для имипрамина Vd = 1600 л. В связи с этим концентрация имипрамина в крови очень низкая и при отравлении имипрамином гемодиализ не эффективен.

Понятия фармакокинетики Для некоторых препаратов характерно также перераспределение. Эти лекарственные препараты, вначале накапливаясь в одной ткани, в последующем перемещаются в другой орган, являющийся мишенью для них. Например, средство для неингаляционного наркоза тиопентал натрия вследствие своей высокой липофильности накапливается в жировой ткани и лишь потом начинает проникать в ЦНС и оказывать свое наркотическое действие.

Понятия фармакокинетики Биотрансформация- изменение химической структуры лекарственных веществ и их физикохимических свойств под действием ферментов организма. Цель биотрансформации – перевести вещество в более водорастворимое соединение (гидрофильное), которое легко вывести из организма (с мочой, потом или желчью). В большинстве случаев при этом образуется менее активные и менее токсичные соединения, чем исходные лекарства. Основные превращения лекарственных веществ (более 90%) происходят в клетках печени при участии специальных ферментных систем.

Понятия фармакокинетики Существуют два основных пути метаболизма лекарственных веществ в печени: Реакции метаболизма 1 -й фазы - окисление, восстановление, гидролиз. Конъюгация (реакции метаболизма 2 -й фазы), при которой происходит присоединение к молекуле вещества остатков других молекул (серной кислот, алкильных радикалов), с образованием неактивного комплекса, легко выводимого из организма с мочой или калом.

Понятия фармакокинетики Экскреция – выведение лекарств из организма после того, как они частично или полностью превращаются в водорастворимые метаболиты (некоторые препараты экскретируются в неизмененном виде); Экскреция лекарств кишечная – выведение лекарств сначала с желчью, а затем с калом. Экскреция лекарств легочная – выведение лекарств через легкие, преимущественно средств для ингаляционного наркоза. Экскреция лекарств почечная – основной путь экскреции лекарств; Экскреция лекарств с грудным молоком – выделение лекарств во время лактации с молоком (снотворные, анальгетики, фенилин, амиодорон, ацетилсалициловая кислота, соталол, этиловый спирт).

Понятия фармакокинетики Способ выведения необходимо знать, чтобы правильно дозировать препарат или при, например, заболеваниях почек или печени, для правильного лечения отравлений. Кроме того, знание способа выведения может повысить эффективность терапии. Например, антимикробное средство уросульфан выводится в неизменном виде почками, поэтому его назначают при инфекциях мочевыводящих путей, антибиотик тетрациклин выводится желчью, поэтому именно его назначают при инфекциях желчевыводящих путей; при бронхитах назначают камфару, которая, выделяясь легкими, разжижает мокроту и облегчает ее отхаркивание.

Понятия фармакокинетики Элиминация - это сумма всех процессов, связанных с метаболизмом и выведением лекарственного препарата, то есть прекращением его действия. Интенсивность выведения лекарств из организма может быть описана количественными параметрами, служащими немаловажным элементом в оценке эффективности препаратов. а) период полужизни (Т 1/2) – время, необходимое для снижения концентрации лекарственного средства в плазме крови в 2 раза. Период полужизни может варьировать в очень большом интервале времени, например, у пенициллина он 28 минут, а у витамина Д - 30 дней.

б) общий клиренс лекарственного средства (Clt) – объем плазмы крови, очищаемый от лекарственного вещества за единицу времени (мл/мин.) за счет выведения почками, печенью и т. д. Общий клиренс равняется сумме почечного и печеночного клиренса; в) почечный клиренс (Clr) – выведение лекарства с мочой; г) внепочечный клиренс (Cler) – выведение лекарства иными путями (прежде всего с желчью).

Фармакодинамика Фармакодинамика(греч. pharmakon – лекарство и dynamikos – сильный)раздел фармакологии, изучающий локализацию, механизм действия и фармакологические эффекты лекарственных веществ. Механизм действия – это способ взаимодействия лекарственных веществ с рецепторами клеток и тканей организма, при котором происходят биохимические и физиологические изменения течения патологического процесса. Изменения, вызываемые лекарственным веществом, обозначают как фармакологические эффекты данного вещества.

Фармакодинамика Фармакодинамика(греч. pharmakon – лекарство и dynamikos – сильный)раздел фармакологии, изучающий локализацию, механизм действия и фармакологические эффекты лекарственных веществ. Изменения, вызываемые лекарственным веществом, обозначают как фармакологические эффекты данного вещества. Механизм действия – способы, которыми вещества вызывают фармакологические эффекты.

Фармакодинамика Также фармакодинамика изучает: зависимость действия ЛС от различных условий; эффекты ЛС при повторном введении; комбинированное действие ЛС; несовместимость ЛС; побочные эффекты лекарственных веществ.

К основным механизмам действия лекарственных веществ относят: Физический. Действие лекарственного вещества связано с его физическими свойствами. Например, уголь активированный специально обработан, в связи с чем обладает большой поверхностной активностью. Это позволяет ему абсорбировать газы, алкалоиды, токсины и др. Механизм прямого химического взаимодействия. Это достаточно редкий механизм действия ЛС, суть которого заключается в том, что ЛС непосредственно взаимодействует с молекулами или ионами в организме. Таким механизмом действия обладает, например, препарат унитиол, относящийся к группе антидотов. В случае отравления тиоловыми ядами, в том числе солями тяжелых металлов, унитиол вступает с ними в прямую химическую реакцию, в результате чего образуются нетоксичные комплексы, которые выводятся из организма с мочой.

Мембранный (физико-химический). Связан с влиянием ЛС на токи ионов (Na+, K+, Cl ־ и др.), определяющих трансмембранный электрический потенциал. По такому механизму действуют средства для наркоза, антиаритмические препараты, местные анестетики и др. Ферментативный (биохимический). Этот механизм определяется способностью некоторых ЛС оказывать активирующее или угнетающее влияние на ферменты. Арсенал ЛС с таким механизмом действия весьма широк. Например, антихолинэстеразные препараты, ингибиторы моноаминооксидазы, блокаторы протонной помпы и др.

Рецепторный механизм. В организме человека существуют высокоспецифичные биологически активные вещества (медиаторы), которые взаимодействуют с рецепторами и изменяют функции тех или иных органов или тканей организма. Рецепторы - это макромолекулярные структуры, обладающие избирательной чувствительностью к определенным химическим соединениям. При взаимодействии ЛС с рецепторами происходят биохимические и физиологические изменения в организме, сопровождающиеся тем или иным клиническим эффектом.

Препараты, прямо возбуждающие или повышающие функциональную активность рецепторов, называют агонистами, а вещества, препятствующие действию специфических агонистов, – антагонистами.

Виды действия лекарственных веществ Главное и побочное действия. Под главным понимают основное, желательное действие лекарства, на которое рассчитывает врач. Побочное действие является, как правило, нежелательным, вызывающим осложнения. Например, главным для морфина является обезболивающее действие, а его способность вызывать эйфорию и наркоманию расценивается как существенный недостаток. Побочное действие может носить положительный характер. Например, кофеин оказывает стимулирующее действие на центральную нервную систему, а также усиливает работу сердца. Побочное действие может носить и нежелательный (отрицательный) характер. Некоторые слабительные средства при своем действии вызывают боли в кишечнике.

Виды действия лекарственных веществ Обратимое, необратимое. Связывание лекарственного вещества с соответствующим субстратом является обратимым, если они (субстрат и лекарство) связываются друг с другом на какое-то время. В немногих случаях терапевтическая цель требует необратимого выключения структуры из ее функции. Это относится, например, к большинству противомикробных, противоопухолевых средств, которые способны образовывать прочные (ковалентные) связи с элементами спиралей ДНК клеток («сшивки спиралей») или ферментами бактерий, в результате чего клетки утрачивают способность к размножению.

Виды действия лекарственных веществ Прямое, опосредованное (косвенное). Прямое действие подразумевает, что лечебный эффект обусловлен непосредственным взаимодействием препарата с биосубстратом больного органа и прямо ведет к определенным сдвигам. Если же функция органа (системы) изменяется вторично в результате прямого влияния препарата на иной орган, иную систему, такое действие называется опосредованным (косвенным). Сердечные гликозиды улучшают сократимость миокарда (прямое действие) и, как следствие, улучшают кровообращение в организме, что сопровождается улучшением диуреза (косвенное действие).

Виды действия лекарственных веществ Местное, резорбтивное. Местное действие препарата осуществляется до его всасывания в кровь (например, мази). Резорбтивное (системное) действие развивается после всасывания препарата в кровь. Таким действием обладает подавляющее большинство лекарств.

Виды действия лекарственных веществ Избирательное, общее Избирательное (селективное) действие - это действие терапевтических доз лекарств на специфические рецепторы. Например, действие сальбутамола на β 2 адренорецепторы. Общее действие когда лекарственные вещества не имеют выраженного избирательного действия (антибиотики).

Фармакокинетика раздел фармакологии, изучающий процессы поступления, распределения, изменения и выведения лекарственных веществ из организма.

Действие лекарственных веществ невозможно без их распределения в тканях после поступления в общий кровоток. В организм вещество может попасть через защитные барьеры, кожу, пищеварительный тракт, дыхательные пути или в результате нарушения их целостности (подкожная, внутримышечная, внутривенная, внутриполостная инъекция). Поступая в систему кровообращения, а затем в различные клетки, лекарственные вещества преодолевают клеточные мембраны. Этот процесс осуществляется путем пассивной или активной диффузии.

Основные механизмы абсорбции лекарственных веществ представлены на рис. 2.6.

Простая диффузия , или пассивный транспорт , обусловлена различиями в концентрации веществ по обе стороны мембраны. Этот процесс характеризуется перемещением молекул вещества из пространства с высокой концентрацией в область, где концентрация веществ низкая или отсутствует. При этом скорость транспорта пропорциональна градиенту концентрации по обе стороны мембраны и достигает равновесия, когда концентрация веществ выравнивается.

Вещества, растворимые в жирах, проникают через бимолекулярный липидный слой. Через гидрофильный поляризованный слой клеточной мембраны могут проникнуть водорастворимые вещества.

Фильтрация через поры зависит от гидростатического и осмотического давления. Диаметр пор в мембране эпителия кишечника составляет примерно 0,4 нм, через них проникает вода, мелкие гидрофильные молекулы (мочевина).

Рис. 2.6.

кружки – молекулы ЛВ, стрелкой указано направление движения молекул ЛВ

Некоторые лекарственные вещества всасываются путем активного транспорта . В этом процессе участвуют транспортные системы клеточных мембран, характеризующиеся избирательностью к определенным соединениям, возможностью транспорта против градиента концентраций, конкуренцией двух веществ за один транспортный механизм, затратой энергии насыщаемостью при высоких концентрациях. Так всасываются гидрофильные полярные молекулы, ионы, сахара, аминокислоты.

При пиноцитозе образуются пузырьки (вакуоли) с захваченными крупными молекулами вещества.

Скорость наступления эффекта, выраженность, продолжительность действия ЛС во многом определяют путь введения.

ЛС может быть введено энтерально и парентерально. Разновидностями энтеральных путей введения являются пероральный, ректальный и введение под язык. Парентеральные пути введения – подкожный, внутримышечный, внутривенный, субарахноидальный, ингаляционный.

Пероральный путь введения (через рот) является наиболее распространенным.

Основной механизм всасывания в тонком кишечнике – пассивная диффузия, незначительную роль играет активный транспорт, фильтрация практически не имеет значения, всасывание белков, витамина В12 осуществляются путем пиноцитоза.

Преимущества перорального пути введения – простота и удобство, однако у больных в бессознательном состоянии, при неукротимой рвоте, а также применении некоторых веществ, разрушающихся соляной кислотой, ферментами желудка и кишечника или же плохо проникающих через мембрану клеток эпителия желудочно-кишечного тракта, данный способ введения невозможен. Действие препаратов при пероральном приеме наступает не сразу, а через 15–30 мин, что непригодно в случаях неотложной терапии.

Лекарственные препараты в основном назначают натощак, чтобы предотвратить взаимодействие с пищей, исключение составляют вещества, оказывающие раздражающее действие, их назначают после еды. Если препарат разрушается желудочным соком или оказывает раздражающее действие на слизистую оболочку желудка, его назначают в капсулах, растворяющихся в тонком кишечнике. Для пролонгирования эффекта применяют капсулы, наполненные гранулами с разной толщиной оболочки (спансулы).

При введении лекарств ректально (в прямую кишку) в суппозиториях или лекарственных клизмах действие наступает быстрее, чем при приеме внутрь. Лекарственное вещество попадает в кровь, минуя печень, этот путь введения выбирают, когда хотят избежать действия препарата на печень или если лекарство разрушается в печени.

Основные пути введения лекарств представлены на рис. 2.7.

Всасывание лекарственных веществ при введении внутрь представлено на рис. 2.8.

При введении вещества под язык – сублингвально – лекарства через несколько минут попадают в кровь, минуя печень. Этим путем пользуются редко, так как всасывающая поверхность подъязычной области мала. Под язык можно назначать только очень активные вещества, применяемые в малых количествах.

Введение лекарства подкожно (в подкожную жировую клетчатку) осуществляется с помощью шприца или безыгольного инъектора. Лекарство должно быть стерильным, нельзя вводить раздражающие вещества, гипертонические растворы. Действие препаратов развивается через 5–15 мин. Подкожные инъекции применяют, если нельзя использовать вещество энтерально, для достижения более быстрого эффекта.

При введении внутримышечно лекарственные вещества всасываются в кровь несколько быстрее и более полно, чем при подкожном введении. Стерильные масляные растворы, суспензии приводят к возникновению в мышце депо, из которого лекарственное вещество поступает в кровь длительное время.

При внутривенном введении все лекарственное вещество сразу поступает в кровь, что обеспечивает точность дозировки и скорость действия. Стерильные водные растворы вводят в вену медленно, иногда в течение нескольких минут, при капельном введении – до нескольких часов, чтобы не создавать в крови сразу чрезмерной концентрации вводимого вещества, которая может быть опасна для деятельности сердца и ЦНС.

Ингаляционным путем введения можно вдыхать газообразные ЛС, пары летучих жидкостей, аэрозоли (взвеси в воздухе мельчайших частиц растворов).

Рис. 2.7. Пути введения лекарств

Рис. 2.8. Всасывание лекарственных веществ при введении внутрь

Путь лекарственного вещества в организме представлен на рис. 2.9.

Рис. 2.9.

Попадая в кровь, лекарственные препараты распространяются по всему организму, за исключением ЦНС, которую отделяет от системы крови специальный биологический барьер, называемый гематоэнцефалическим. Этот барьер образован дополнительным слоем специальных клеток, окружающих капилляры мозга. Через этот барьер проникают не все лекарственные вещества. Поэтому при заболеваниях мозга (например, менингитах) бензилпенициллин и стрептомицин вводят через оболочки мозга непосредственно под паутинную (арахноидальную) оболочку – субарахноидально .

Нанесение лекарственных средств на поверхность кожи или слизистых оболочек используется для получения локального (местного) эффекта. Однако некоторые вещества при нанесении их на слизистые оболочки носа, глаза и даже на кожу, могут всасываться и вызывать системное действие. Например, длительное применение кортикостероидных мазей приводит к возникновению побочных эффектов, подобным таковым при системном приеме препаратов. В настоящее время используются и лекарственные пленки, обеспечивающие медленное и длительное всасывание лекарственного вещества, за счет чего пролонгируется их эффект (нитроглицерин).

Электрофорез это метод, при котором на организм человека одновременно воздействуют электрический ток и вводимое им лекарственное вещество.

Проблема повышения биодоступности лекарственных средств последнее время все чаще решается методами нанофармакологии и внедрением новых нанотехнологичных систем доставки. Нанотехнологии – это область научного знания, направленная на решение технологических проблем, связанных с частицами в диапазоне от 1 до 100 нм. При уменьшении размера изучаемого объекта до масштабов 100 нм и менее на смену классическим физическим законам взаимодействия между атомами и молекулами приходят квантовые, например, туннельные переходы и поверхностный плазменный резонанс. Система, имеющая размеры нанометрового диапазона, может быть описана с позиции термодинамики нелинейных процессов. Суммарный эффект нанотехнологий в фармакологии – это принципиально новый подход, который состоит из следующих составляющих компонентов:

  • 1) лекарственные средства применяются в дозах, которые значительно меньше, чем известные фармакопейные;
  • 2) препарат упакован или связан с мембраной наноструктуры и в таком виде достигает органа-мишени;
  • 3) метаболическая трансформация препарата замедляется, и он оказывает более длительное и сильное действие в организме больного;
  • 4) деградация наноструктуры происходит не сразу, а в течение определенного времени, это еще более продлевает действие препарата в организме больного;
  • 5) наноструктура сама по себе обладает биологической активностью, так как размер и заряд наноструктуры (липосомы, фуллерены и др.) влияют на энергию связей и взаимодействие с клеточными и молекулярными структурами;
  • 6) фармакокинетические параметры для каждого конкретного препарата, упакованного в наноструктуры, значительно изменяются.

Наиболее распространенной в настоящее время системой для целевой доставки лекарств являются липосомы. Липосомы нетоксичны и неиммуногенны, не вызывают гемолиза даже при повторных инъекциях, они биосовместимы и биоразлагаемы.

Современные системы направленной доставки лекарств – drug delivery systems (DDS ) – липосомы, снабженные "молекулярным компасом" (антителами, помогающими найти пораженный орган).

Вопросы практики

Липосомы представляют собой коллоидные, везикулярные структуры, состоящие из одного или нескольких бислоев, окружающих равное количество водных отсеков. Проблемами при использовании липосом в естественных условиях является их поглощение ретикулоэндотелиальной системой в организме и их относительно низкая стабильность в пробирке. Для борьбы с этим к поверхности липосом могут быть добавлены молекулы полиэтиленгликоля. Доступный препарат липосомальной структуры – амбизом (амфотерицин В).

Нанотехнологии позволяют проводить микроскопически точные операции но деструкции патологических очагов. Адресная доставка лекарств с помощью моноклональных антител позволяет значительно улучшить качество жизни онкологических больных за счет снижения побочных эффектов, а также повысить избирательность, следовательно, и эффективность лечения . Для этого в организм вводятся наночастицы металла с фиксированными на них лекарствами и антителами. При помощи специфических антител наноструктуры, выполняющие роль "молекулярного компаса", безошибочно опознают мишени для воздействия на патологически измененные клетки, присоединяются к ним благодаря реакции "антиген – антитело" и разрушают их с помощью транспортируемого лекарства (антибластомные антибиотики).

Нанонейрофармакология предполагает применение лекарств в новых лекарственных формах – наноструктурах нейротропного действия, которые обладают свойствами корригировать функцию ЦНС (липосомы, фуллерены, дендримеры, нанокластеры, нанотрубки и др.). Разработана методика биохимического синтеза наночастиц металлов (Ag, Au, Сu, Zn, Со, Ni и др.). Стандартизированные наночастицы (15 нм) сохраняют свою стабильность на воздухе в течение длительного времени и могут использоваться в мицеллярных и водных растворах. При этом они приобретают высокие антимикробные, каталитические и другие полезные свойства.

Характеристика наночастиц представлена в табл. 2.3.

Таблица 2.3

Характеристика наночастиц

Название

Структура

Размер, нм

Фармакодинамика

Фармакокинетика

1. Фуллерен

Углеродные

Антиоксидант, антибластомное действие

Повышает проницаемость мембран клеток, проникает через гистогематические барьеры и клеточные мембраны

2. Дендример

Ветвистое строение

Антибластомное действие

Транспортеры лекарств

3. Нанотрубки

Карбоновые, фосфолипидные

Антиоксиданты, антибластомное действие

Замыкаются в липосомы при самосборке

4. Липосомы

Фосфолипидные

Антиагреганты, антиоксиданты

Повышают биодоступность, транспортируют лекарства

5. Нано-кластеры

Кремнезем, сафлоровое масло

Структурируют воду, повышают синтез АТФ, антиоксиданты

Усиливают комплементарность к лекарствам, ускоряют биохимические процессы и метаболизм лекарств

Метаболизм (биотрансформация) лекарственных веществ в организме. Экскреция и элиминация лекарств в организме

Биотрансформация (метаболизм) - изменение химической структуры лекарственных веществ и их физико-химических свойств под действием ферментов организма. Большинство лекарственных средств подвергается в организме биотрансформации. В неизмененном виде выделяются главным образом высокогидрофильные ионизированные соединения. Из липофильных веществ исключение составляют средства для ингаляционного наркоза, основная часть которых в химические реакции в организме не вступает. Они выводятся легкими в том же виде, в каком были введены. В биотрансформации лекарственных средств принимают участие многие ферменты, из которых важнейшая роль принадлежит микросомальным ферментам печени (находятся в эндоплазматической сети). Они метаболизируют чужеродные для организма липофильные соединения (разной структуры), превращая их в более гидрофильные. Субстратной специфичности у них нет. Существенное значение имеют и немик - росомальные ферменты разной локализации (печени, кишечника и других тканей, а также плазмы), особенно в случае инактивации гидрофильных веществ.

Выделяют два основных вида превращения лекарственных препаратов: 1 - метаболическую трансформацию и 2 - конъюгацию.

Метаболическая трансформация - это превращение веществ за счет окисления, восстановления и гидролиза. Многие липофильные соединения подвергаются окислению в печени под влиянием микросомальной системы ферментов, известных как оксидазы смешанных функций, или монооксигеназы. Основными компонентами этой системы являются цитохром Р-450-редуктаза и цитохром Р-450 - гемопротеин, который связывает молекулы лекарственного вещества и кислород в своем активном центре. Реакция протекает при участии НАДФН. В результате происходит присоединение одного атома кислорода к субстрату (лекарственному веществу) с образованием гидроксильной группы (реакция гидро-ксилирования).

RH + О 2 + НАДФН + Н + > ROH + Н 2 О + НАДФ + , где

RH - лекарственное вещество, a ROH - метаболит.

Оксидазы смешанных функций обладают низкой субстратной специфичностью. Известно много изоформ цитохрома Р-450 (Cytochrome Р-450, CYP), каждая из которых может метаболизировать несколько лекарственных веществ. Так, изо-форма CYP2C9 участвует в метаболизме варфарина, фенитоина, ибупрофена, CYP2D6 метаболизирует имипрамин, галоперидол, пропранолол, a CYP3A4 - карбамазепин, циклоспорин, эритромицин, нифедипин, верапамил и некоторые другие вещества. Окисление некоторых лекарственных веществ происходит под влиянием немикросомальных ферментов, которые локализованы в цитозоле или митохондриях. Для этих ферментов характерна субстратная специфичность, например, моноаминоксидаза А метаболизирует норадреналин, адреналин, серотонин, алкогольдегидрогеназа метаболизирует этиловый спирт до ацетальдегида.

Восстановление лекарственных веществ может происходить при участии микросомальных (хлорамфеникол) и немикросомальных ферментов (хлоралгидрат, налоксон).

Гидролиз лекарственных веществ осуществляется в основном немикросомальными ферментами (эстеразами, амидазами, фосфатазами) в плазме крови и тканях. При этом вследствие присоединения воды происходит разрыв эфирных, амидных и фосфатных связей в молекулах лекарственных веществ. Гидролизу подвергаются сложные эфиры - ацетилхолин, суксаметоний (гидролизуются при участии холинэстераз), амиды (прокаинамид), ацетилсалициловая кислота.

Метаболиты, которые образуются в результате несинтетических реакций, могут в отдельных случаях обладать более высокой активностью, чем исходные соединения. Примером повышения активности лекарственных веществ в процессе метаболизма является использование предшественников лекарств (пролекарства). Пролекарства фармакологически неактивны, но в организме они превращаются в активные вещества. Например, препарат для лечения неспецифического язвенного колита салазопиридазин под действием фермента азоредуктазы кишечника превращается в сульфапиридазин и 5-аминосалициловую кислоту, обладающие антибактериальным и противовоспалительным действием. Многие антигипертензивные средства, например ингибиторы ангиотензин-пре-вращающего фермента (эналаприл), гидролизуются в организме с образованием активных соединений. Пролекарства обладают рядом преимуществ. Очень часто с их помощью решаются проблемы с доставкой лекарственного вещества к месту его действия. Например, леводопа является предшественником дофамина, но в отличие от дофамина она проникает через гематоэнцефалический барьер в ЦНС, где под действием ДОФА-декарбоксилазы превращается в активное вещество - дофамин.

Иногда продукты метаболической трансформации оказываются более токсичными, чем исходные соединения. Так, токсические эффекты препаратов, содержащих нитрогруппы (метронидазол, нитрофурантоин), определяются промежуточными продуктами метаболического восстановления NО 2 -групп.

Конъюгация - это биосинтетический процесс, сопровождающийся присоединением к лекарственному веществу или его метаболитам ряда химических группировок или молекул биогенных соединений. В процессе биосинтетических реакций (конъюгация) к функциональным группировкам молекул лекарственных веществ или их метаболитов присоединяются остатки эндогенных соединений (глюкуроновой кислоты, глутатиона, глицина, сульфаты и др.) или высокополярные химические группы (ацетильные, метильные группы). Эти реакции протекают при участии ферментов (в основном, трансфераз) печени, а также ферментов других тканей (легкие, почки). Локализуются ферменты в микросомах или в цитозольной фракции.

Наиболее общей реакцией является конъюгация с глюкуроновой кислотой. Присоединение остатков глюкуроновой кислоты (образование глюкуронидов) происходит при участии микросомального фермента UDP-глюкуронилтрансферазы, обладающей низкой субстратной специфичностью, вследствие чего очень многие лекарственные вещества (а также некоторые экзогенные соединения, такие как кортикостероиды и билирубин) вступают в реакцию конъюгации с глюкуроновой кислотой. В процессе конъюгации образуются высокополярные гидрофильные соединения, которые быстро выводятся почками (многие метаболиты также подвергаются конъюгации). Конъюгаты, как правило, менее активны и токсичны, чем исходные лекарственные вещества.

Скорость биотрансформации лекарственных веществ зависит от многих факторов. В частности, активность ферментов, метаболизирующих лекарственные вещества, зависит от пола, возраста, состояния организма, одновременного назначения других лекарственных средств. У мужчин активность микросомальных ферментов выше, чем у женщин, так как синтез этих ферментов стимулируется мужскими половыми гормонами. Поэтому некоторые вещества метаболизируются быстрее у мужчин, чем у женщин.

В эмбриональном периоде отсутствует большинство ферментов метаболизма лекарственных веществ, у новорожденных в первый месяц жизни активность этих ферментов снижена и достигает достаточного уровня лишь через 1 - 6 мес. Поэтому в первые недели жизни не рекомендуется назначать такие лекарственные вещества, как хлорамфеникол (вследствие недостаточной активности ферментов замедлены процессы его конъюгации и проявляются токсические эффекты).

Активность ферментов печени снижается в старческом возрасте, вследствие чего уменьшается скорость метаболизма многих лекарственных веществ (лицам старше 60 лет такие препараты назначают в меньших дозах). При заболеваниях печени снижается активность микросомальных ферментов, замедляется биотрансформация некоторых лекарственных веществ и происходит усиление и удлинение их действия. У утомленных и ослабленных больных обезвреживание лекарственных веществ происходит медленнее.

Под действием некоторых лекарственных веществ (фенобарбитал, рифампицин, карбамазепин, гризеофульвин) может происходить индукция (увеличение скорости синтеза) микросомальных ферментов печени. В результате при одновременном назначении с индукторами микросомальных ферментов других препаратов (например, глюкокортикоидов, пероральных контрацептивов) повышается скорость метаболизма последних и снижается их действие. В некоторых случаях может увеличиваться скорость метаболизма самого индуктора, вследствие чего уменьшаются его фармакологические эффекты (карбамазепин).

Некоторые лекарственные вещества (циметидин, хлорамфеникол, кетоконазол, этанол) снижают активность метаболизирующих ферментов. Например, циметидин является ингибитором микросомального окисления и, замедляя метаболизм варфарина, может повысить его антикоагулянтный эффект и спровоцировать кровотечение. Известны вещества (фуранокумарины), содержащиеся в грейпфрутовом соке, которые угнетают метаболизм таких лекарственных веществ, как циклоспорин, мидазолам, алпразолам и, следовательно, усиливают их действие. При одновременном применении лекарственных веществ с индукторами или ингибиторами метаболизма необходимо корректировать назначаемые дозы этих веществ.

Скорость метаболизма некоторых лекарственных веществ определяется генетическими факторами. Появился раздел фармакологии - фармакогенетика, одной из задач которого является изучение патологии ферментов лекарственного метаболизма. Изменение активности ферментов часто является следствием мутации гена, контролирующего синтез данного фермента. Нарушение структуры и функции фермента называют энзимопатией (ферментопатией). При энзимопатиях активность фермента может быть повышена, и в этом случае процесс метаболизма лекарственных веществ ускоряется и их действие снижается. И наоборот, активность ферментов может быть снижена, вследствие чего разрушение лекарственных веществ будет происходить медленнее и действие их будет усиливаться вплоть до появления токсических эффектов.

Выведение (экскреция) из организма лекарств и продуктов их превращения происходит различными путями: через желудочно-кишечный тракт, легкие, молочные и другие железы, кожу. Однако основным путем выведения большинства лекарственных средств являются почки. Поэтому заболевание почек может привести к задержке лекарств в организме и вызвать более сильный и длительный эффект, вплоть до развития отравления. При заболеваниях почек назначение некоторых лекарств противопоказано. Усиливая выделительную функцию почек мочегонными средствами, можно ускорить выведение лекарственных веществ из организма (например, при отравлениях - форсированный диурез). На выведение лекарств почками в определенной степени влияет рН мочи. Так, при кислой реакции мочи улучшается выделение щелочных соединений (например алкалоидов) и затрудняется выделение лекарств кислого характера (например, барбитуратов, сульфаниламидов и т.д.). Назначением хлорида аммония можно «подкислить» мочу и тем самым ускорить выделение с мочой оснований, а гидрокарбонат натрия или другие соединения, которые изменяют реакцию мочи на щелочную, будут способствовать выделению из организма веществ кислого характера.

К подобному управлению реакцией мочи нередко прибегают при отравлениях. Если же при отравлении функция почек резко нарушена, и возникает угроза жизни, то в таких случаях к кровеносной системе человека подключают специальный аппарат («искусственная почка»), с помощью которого ядовитые вещества удаляются из крови.

Некоторые лекарства, которые плохо всасываются в желудочно-кишечном тракте, могут выводиться вместе с калом. Кроме того, слизистой оболочкой желудочно-кишечного тракта могут выделяться некоторые лекарства даже после их парентерального введения в организм (например морфин). Следовательно, промывание желудка в таких случаях вполне оправдано, хотя яд не был принят внутрь. Частичное выделение лекарственных веществ может происходить потовыми, слюнными и слезными железами. Легкими выделяются в основном летучие вещества (эфир, фторотан, этиловый спирт и др.).

Особое внимание следует обращать на возможность выделения лекарственных веществ молочными железами во время лактации и их поступления с молоком матери в организм ребенка. В связи с этим категорически противопоказано назначать кормящей грудью женщине препараты группы морфина, к которым дети очень чувствительны.

Следует отметить, что некоторые лекарства при длительном назначении могут раздражать ткани выделительных органов, вызывать их воспаление и даже повреждение. Так, препараты ртути повреждают почки, препараты брома могут вызвать воспаление потовых желез и т.д.

Элиминация лекарственных веществ представляет собой суммарный результат инактивации лекарств в тканях организма и экскреции их различными путями. Скорее всего элиминируются водорастворимые, ионизированные вещества, не связанные с белками плазмы. Медленнее элиминируют жирорастворимые вещества, связанные с белками крови. Для большинства лекарственных веществ скорость элиминации зависит от концентрации вещества (чем меньше концентрация вещества, тем меньше скорость элиминации). При этом кривая изменения концентрации вещества во времени имеет экспоненциальный характер. Такая элиминация соответствует кинетике 1-го порядка (в единицу времени элиминируется определенная часть вещества).

Основными параметрами, характеризующими процесс элиминации, являются константа скорости элиминации (k el , к e) и период полуэлиминации (t 1/2).

Константа скорости элиминации 1-го порядка показывает, какая часть вещества элиминируется из организма в единицу времени (размерность мин -1 , ч -1). Например, если k el какого-либо вещества, которое ввели внутривенно в дозе 100 мг, составляет 0,1 ч -1 , то через 1 ч количество вещества в крови будет равно 90 мг, а через 2 ч - 81 мг и т.д.

Немногие лекарственные вещества (этанол, фенитоин) элиминируются в соответствии с кинетикой нулевого порядка. Скорость такой элиминации не зависит от концентрации вещества и является постоянной величиной, т.е. в единицу времени элиминируется определенное количество вещества (например, за 1 ч элиминируется 10 г. чистого этанола). Связано это с тем, что при терапевтических концентрациях названных веществ в крови происходит насыщение ферментов, метаболизирующих эти вещества. Поэтому при увеличении концентрации таких веществ в крови скорость их элиминации не повышается.

Период полуэлиминации (t 1/2 , half-life) - время, за которое концентрация вещества в плазме крови снижается на 50%. Для большинства лекарственных веществ (для тех, элиминация которых подчиняется кинетике 1-го порядка) период полуэлиминации - величина постоянная в определенных пределах и не зависит от дозы лекарственного вещества. Поэтому, если за один период полуэлиминации из плазмы крови удаляется 50% внутривенно введенного лекарственного вещества, то за 2 периода - 75%, а за 3,3 периода - 90% (этот параметр используют для подбора интервалов между введениями вещества, необходимых для поддержания его постоянной концентрации в крови).

  • 1) Введение лекарственного средства в организм;
  • 2) Высвобождение лекарственного вещества из лекарственной формы;
  • 3) Действие и проникновение лекарственного вещества через биологические мембраны в сосудистое русло и ткани;
  • 4) Распределение лекарственного вещества в биологических жидкостях органов и тканей;
  • 5) Биодоступность;
  • 6) Биотрансформация;
  • 7) Выведение лекарственного вещества и метаболитов.

Всасывание - процесс поступления лекарства из места введения в кровеносное русло. Независимо от пути введения скорость всасывания препарата определяется тремя факторами:

  • а) лекарственной формой (таблетки, свечи, аэрозоли);
  • б) растворимостью в тканях;
  • в) кровотоком в месте введения.

Существует ряд последовательных этапов всасывания лекарственных средств через биологические барьеры:

  • 1) Пассивная диффузия. Таким путем проникают хорошо растворимые в липоидах лекарственные вещества. Скорость всасывания определяется разностью его концентрации с внешней и внутренней стороны мембраны;
  • 2) Активный транспорт. В этом случае перемещение веществ через мембраны происходит с помощью транспортных систем, содержащихся в самих мембранах;
  • 3) Фильтрация. Вследствие фильтрации лекарства проникают через поры, имеющиеся в мембранах (вода, некоторые ионы и мелкие гидрофильные молекулы лекарственных веществ). Интенсивность фильтрации зависит от гидростатического и осмотического давления;
  • 4) Пиноцитоз. Процесс транспорта осуществляется посредством образования из структур клеточных мембран специальных пузырьков, в которых заключены частицы лекарственного вещества. Пузырьки перемещаются к противоположной стороне мембраны и высвобождают своё содержимое.

Распределение. После введения в кровеносное русло лекарственное вещество распределяется по всем тканям организма. Распределение лекарственного вещества определяется его растворимостью в липидах, качеством связи с белками плазмы крови, интенсивностью регионарного кровотока и другими факторами.

Значительная часть лекарства в первое время после всасывания попадает в те органы и ткани, которые наиболее активно кровоснабжаются (сердце, печень, лёгкие, почки).

Многие естественные вещества циркулируют в плазме частично в свободном виде, а частично в связанном состоянии с белками плазмы. Лекарственные средства также циркулируют как в связанном, так и в свободном состоянии. Важно, что фармакологически активна только свободная, несвязанная фракция препарата, а связанная с протеином представляет собой биологически неактивное соединение. Соединение и распад комплекса препарата с белком плазмы происходят как правило быстро.

Метаболизм (биотрансформация) - это комплекс физико-химических и биохимических превращений, которым подвергаются лекарственные вещества в организме. В результате образуются метаболиты (водорастворимые вещества), которые легко выводятся из организма.

В результате биотрансформации вещества приобретают большой заряд (становятся более полярными) и как следствие большую гидрофильность, т. е. растворимость в воде. Подобное изменение химической структуры влечёт за собой изменение фармакологических свойств (как правило, уменьшение активности), скорости выделения из организма.

Это происходит по двум основным направлениям:

  • а) снижение растворимости препаратов в жирах и
  • б) снижение их биологической активности.

Этапы метаболизма:

  • 1. Гидроксилирование.
  • 2. Диметилирование.
  • 3. Окисление.
  • 4. Образование сульфоксидов.

Выделяют два типа метаболизма лекарственных препаратов в организме:

Несинтетические реакции метаболизма лекарств, осуществляемые ферментами. К несинтетическим реакциям относится окисление, восстановление и гидролиз. Они разделяют на катализируемые ферментами лизосом клеток (микросомальные) и катализируемые ферментами другой локализации (немикросомальные).

Синтетические реакции, которые реализуются с помощью эндогенных субстратов. В основе этих реакций лежит конъюгация лекарственных препаратов с эндогенными субстратами (глюкуроновая кислота, глицин, сульфаты, вода и др.).

Биотрансформация препаратов происходит главным образом в печени, однако она осуществляется также в плазме крови и в других тканях. Интенсивные и многочис­ленные реакции метаболизма протекают уже в стенке кишечника.

На биотрансформацию влияют заболевания печени, характер питания, половые особенности, возраст и ряд других факторов. При поражении печени усиливается токсическое действие многих лекарственных веществ на центральную нервную систему и резко возрастает частота развития энцефалопатии. В зависимости от тяжести заболевания печени, некоторые лекарственные препараты применяются с осторожностью или они вовсе противопоказаны (барбитураты, наркотические анальгетики, фенотиазины, андрогенные стероиды и др.).

Клинические наблюдения показали, что эффективность и переносимость одних и тех же лекарственных веществ у различных животных неодинакова. Эти отличия определяются генетическими факторами, детерминирующими процессы метаболизма, рецепции, иммунного ответа и др. Изучение генетических основ чувствительности организма к лекарственным веществам составляет предмет фармакогенетики. Проявляется это чаще всего недостаточностью ферментов, катализирующих биотрансформацию препаратов. Атипичные реакции могут проявляться и при наследственных нарушениях обмена веществ.

Синтез ферментов находится под строгим генетическим контролем. При мутации соответствующих генов возникают наследственные нарушения структуры и свойств ферментов - ферментопатии. В зависимости от характера мутации гена изменяется скорость синтеза фермента или синтезируется атипичный фермент.

Элиминация. Различают несколько путей выведения (экскреции) лекарственных веществ и их метаболитов из организма: с калом, мочой, выдыхаемым воздухом, слюнными, потовыми, слёзными и молочными железами.

Элиминация почками. Экскреция лекарственных веществ и их метаболитов почками происходит с участием нескольких фи­зиологических процессов:

Клубочковая фильтрация. Скорость, с которой вещество переходит в клубочковый фильтрат, зависит от его концентрации в плазме, ОММ и заряда. Вещества с ОММ более 50 000 не попадают в клубочковый фильтрат, а с ОММ менее 10 000 (т. е. практически большинство лекарственных веществ) фильтруются в почечных клубочках.

Экскреция в почечных канальцах. К важным механизмам экскреторной функции почек относится способность клеток проксимальных почечных канальцев активно переносить заряженные (катионы и анионы) молекулы из плазмы в канальцевую жидкость.

Почечная канальцевая реабсорбция. В клубочковом фильтрате концентрация лекарственных веществ та же, что и в плазме, но по мере продвижения по нефрону он концентрируется с увеличением концентрационного градиента, поэто­му концентрация препарата в фильтрате превышает его кон­центрацию в крови, проходящей через нефрон.

Элиминация через кишечник.

После приёма препарата внутрь для системного действия часть его, не абсорбируясь, может экскретироваться с каловыми массами. Иногда внутрь принимают лекарственные средства, специально не предназначенные для абсорбции в кишечнике (например, неомицин). Под влиянием ферментов и бактериальной микрофлоры желудочно-кишечного тракта лекарственные препараты могут превращаться в другие соединения, которые вновь могут доставляться в печень, где и проходит новый цикл.

К важнейшим механизмам, способствующим активному транспорту препарата в кишечник, относится билиарная экскреция (печенью). Из печени с помощью активных транспортных систем лекарственные вещества в виде метаболитов или, не изменяясь, поступают в желчь, затем в кишечник, где и выводятся с калом.

Степень выведения лекарственных веществ печенью следует учитывать при лечении больных, страдающих болезнями печени и воспалительными заболеваниями желчных путей.

Элиминация через лёгкие. Легкие служат основным путем введения и элиминации летучих анестезирующих средств. В дру­гих случаях медикаментозной терапии их роль в элиминации невелика.

Элиминация лекарственных веществ молоком. Лекарственные вещества, содержащиеся в плазме лактирующих животных, экскретируются с молоком; их количества в нем слишком малы для того, чтобы существенным образом влиять на их элиминацию. Однако иногда лекарственные средства, попадающие в организм детеныша, могут оказывать на него существенное воздействие (снотворные, анальгетики и др.).

Клиренс позволяет определить выведение лекарственного вещества из организма. Термином «почечный клиренс креатинина» определяют выведение эндогенного креатинина из плазмы. Большинство лекарственных веществ элиминируется либо через почки, либо через печень. В связи с этим общий клиренс в организме представляет собой сумму печеночного и почечного клиренса, причём печёночный клиренс рассчитывают путем вычитания значения почечного клиренса из общего клиренса организма (снотворные, анальгетики и др.).